The First Organically Templated Tetravalent Uranium Phosphates with

Dimer-Structured Topologies

Yu-Lun Lai, Ray-Kuang Chiang, Kwang-Hwa Lii, and Sue-Lein Wang A.*

^aDepartment of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan

^bDepartment of Chemical Engineering, Far East College, Tainan, 74448, Taiwan

^cDepartment of Chemistry, National Central University, Chungli 32054, Taiwan

- Table S1. Fluorine tests, ICP-AES and EA analyses
- Figure S1. ORTEP of $(C_4H_{16}N_3)[U_2F_3(PO_4)_2(HPO_4)]$ (1)
- Figure S2. ORTEP of $(C_6H_{21}N_3)[U_2F_4(PO_4)(HPO_4)_2]$ (2)
- Figure S3. ORTEP of $(C_4H_{16}N_3)_2[U_2F_{10}(HPO_4)_2]$ (3)
- Figure S4. ORTEP of $(C_6H_{16}N_2)_2(UF_7)(H_2PO_4)$ (4)
- Figure S5. Experimental (top) and simulated (bottom) X-ray powder patterns for $(C_4H_{16}N_3)[U_2F_3(PO_4)_2(HPO_4)]$ (1)
- Figure S6. Experimental (top) and simulated (bottom) X-ray powder patterns for $(C_6H_{21}N_3)[U_2F_4(PO_4)(HPO_4)_2]$ (2)
- Figure S7. Experimental (top) and simulated (bottom) X-ray powder patterns for $(C_6H_{16}N_2)_2(UF_7)(H_2PO_4)$ (4)
- Figure S8. Infinite chains of U⁶⁺ and U⁴⁺.

Table S1.Fluorine tests, ICP-AES and EA analyses

	1	2	3	4
%U found (calcd.) ^a	34.43 (34.58)	44.15 (44.47)	48.05 (48.17)	51.12 (51.45)
%P found (calcd.) ^a	4.51 (4.49)	5.64 (5.78)	9.21 (9.40)	9.94 (10.04)
%F found (calcd.) ^b	18.95 (19.32)	17.46(17.75)	7.32(7.69)	5.69 (6.16)
%C found (calcd.)	20.67(20.94)	8.86(8.97)	7.18(7.29)	5.03(5.19)
%N found (calcd.)	8.01(8.14)	7.68(7.85)	5.41(5.69)	4.48(4.54)
%H found (calcd.)	3.15(3.22)	3.11(3.20)	2.15(2.34)	1.69(1.85)

a. ICP-AES results

b. Fluoride test were measured by ion chromatography.

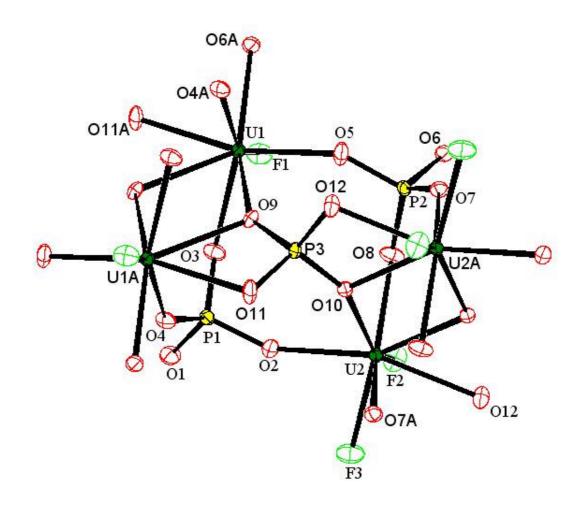


Figure S1. ORTEP of $(C_4H_{16}N_3)[U_2F_3(PO_4)_2(HPO_4)]$ (1)

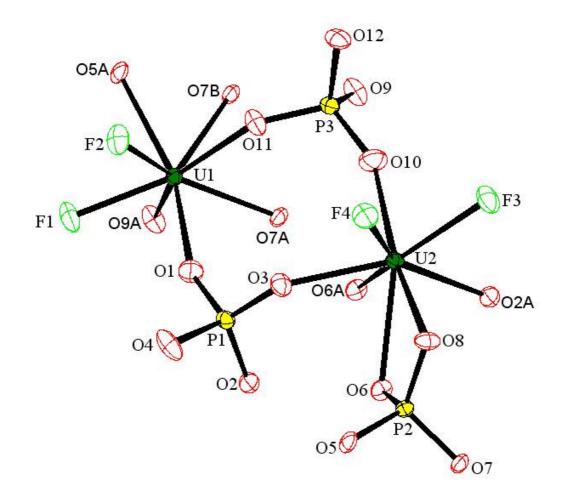


Figure S2. ORTEP of $(C_6H_{21}N_3)[U_2F_4(PO_4)(HPO_4)_2]$ (2)

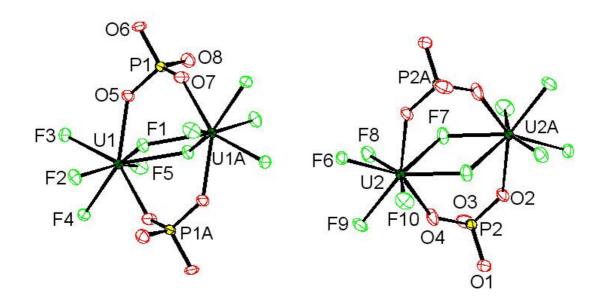


Figure S3. ORTEP of $(C_4H_{16}N_3)_2[U_2F_{10}(HPO_4)_2]$ (3)

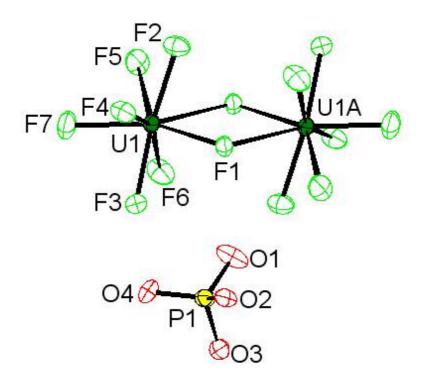


Figure S4. ORTEP of $(C_6H_{16}N_2)_2[(H_2PO_4)UF_7]$ (4)

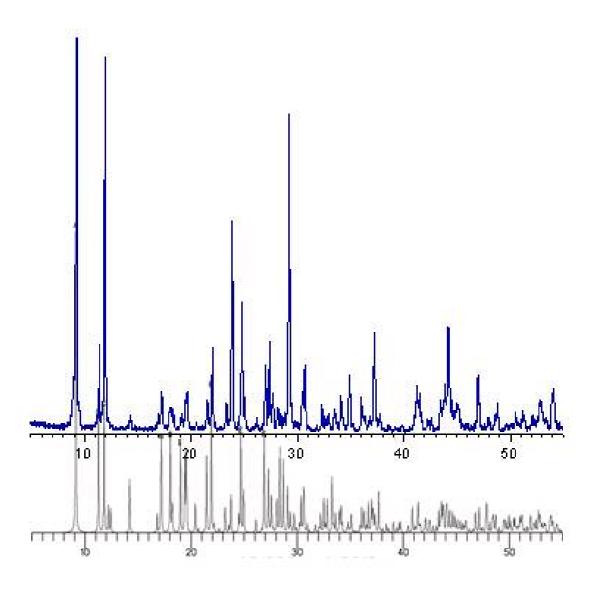


Figure S5. Experimental (top) and simulated (bottom) X-ray powder patterns for $(C_4H_{16}N_3)[U_2F_3(PO_4)_2(HPO_4)]$ (1)

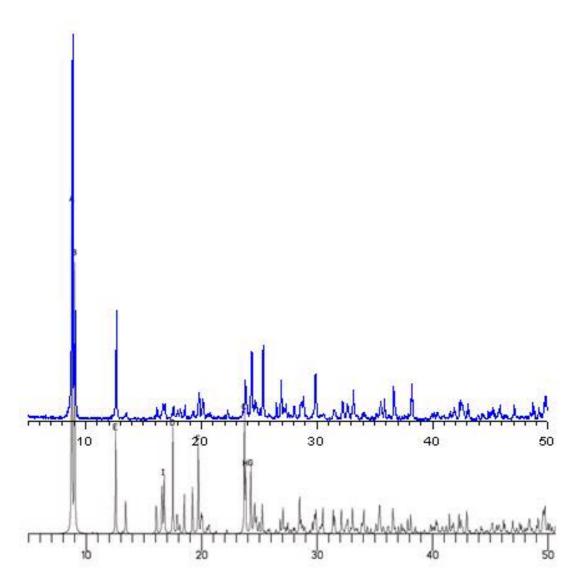


Figure S6. Experimental (top) and simulated (bottom) X-ray $powder\ patterns\ for\ (C_6H_{21}N_3)[U_2F_4(PO_4)(HPO_4)_2]\ \textbf{(2)}$

Figure S7. Experimental (top) and simulated (bottom) X-ray powder patterns for $(C_6H_{16}N_2)_2[(H_2PO_4)UF_7]$ (4)

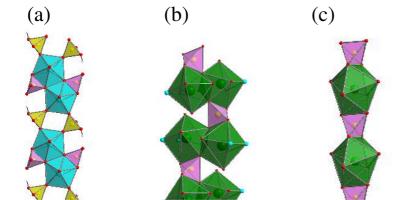


Figure S8. (a) 1D chain structure of U^{6+} ((H₃A)[UO₂(PO₄)(HPO₄)] with A = dien or tren) prepared from the same reactions as 1 and 2 by increasing the concentration of amine templates; (b) and (c) showing the similar connection skeleton of the chain B in 1 and the $_{\infty}$ [UPO₄] chain in CaU(PO₄)₂