Supporting Information for

Intermolecular Interaction-Induced Hierarchical Transformation in 1D Nanohybrids: Analysis of Conformational Changes by 2 Dimensional Correlation Spectroscopy

HoSeok Park, ${ }^{\dagger}$ Yeong Suk Choi, ${ }^{\ddagger}$ Young Mee Jung, ${ }^{\S}$ Won Hi Hong ${ }^{\dagger *}$
${ }^{\dagger}$ Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Guseong-dong 373-1, Yusong-gu, Daejeon, Republic of Korea
${ }^{\text { }}$ Energy \& Environment Laboratory, Samsung Advanced Institute of Technology
(SAIT), P.O. Box 111, Suwon, Republic of Korea
${ }^{\S}$ Department of Chemistry, Kangwon National University, Chunchon, Republic of

Figure S1. DSC curves of (a) $[\mathrm{BMim}]\left[\mathrm{BF}_{4}\right]+\mathrm{AlOOH}$ conventional mixture and [BMim$]\left[\mathrm{BF}_{4}\right]$ and (b) RAH 1 and RAH 2.

Figure S1. DSC curves of (a) $[\mathrm{BMim}]\left[\mathrm{BF}_{4}\right]+\mathrm{AlOOH}$ conventional mixture and [BMim$]\left[\mathrm{BF}_{4}\right]$ and (b) RAH 1 and RAH 2.

Figure S2. Changes in the absorbance at $230 \mathrm{~nm} / 300 \mathrm{~nm}$ as functions of the contents of $[\mathrm{BMim}]\left[\mathrm{BF}_{4}\right]$ (circle) / aluminum hydroxide (triangle) in hybrids.
${ }^{\mathrm{a}}$ wt \% of $[\mathrm{BMim}]\left[\mathrm{BF}_{4}\right]$ was calculated by elemental analysis.
${ }^{\mathrm{b}} \mathrm{wt} \%$ of aluminum hydroxide was determined by subtracting wt $\%$ of $[\mathrm{BMim}]\left[\mathrm{BF}_{4}\right]$ and chemisorbed water from hybrids given by Table 1.

As shown in Figure S2, we plotted the changes in the absorbance as functions of the contents of [BMim$]\left[\mathrm{BF}_{4}\right]$ / aluminum hydroxide. In RAH system, the absorbance of [BMim$]\left[\mathrm{BF}_{4}\right]$ was increased with its content at 230 nm , whereas the absorbance of aluminum hydroxide was increased with its content at 300 nm . The slopes of two curves obtained from approximate linear relation are ca. 0.020 for [BMim$]\left[\mathrm{BF}_{4}\right]$ and 0.026 for aluminum hydroxide. Considering reciprocal relation of relative content of [BMim$]\left[\mathrm{BF}_{4}\right]$ and aluminum hydroxide in RAHs, similar slopes of two curves can support reciprocal transition of UV spectra.

