Supporting Materials

Differentiation of Gas Molecules Using Flexible and

All-Carbon Nanotube Devices

Dongliang Fu¹, Hueiling Lim¹, Yumeng Shi¹, Xiaochen Dong¹, S. G. Mhaisalkar¹, Yuan Chen², Shabbir Moochhala³ and Lain-Jong Li¹*

¹School of Materials Science and Engineering, Nanyang Technological University 50, Nanyang Ave.

Singapore, 637819

² School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459

³DSO National Laboratories, 20 Science Park Drive, Singapore 118230, Singapore

Figure summary:

Figure S1. (a) Typical electrical characteristics including transfer curves and I_d - V_d relations for an all-P2-SWNT transistor. (b) Transfer curves showing that an all-P2-SWNT transistor is p-doped (or threshold voltage positively shifted) upon exposure to NO from N_2 .

Figure S2. Typical electrical characteristics, I_d vs. V_g and I_d vs. V_d for an all-P3-SWNT resistor. The resistance of the resistor is $0.51 \text{M}\Omega$.

Figure S3. Sensing curves for the Au-contacted resistor showing that the device is normally insensitive to CO exposure (measured at $V_d = 10V$).

Figure S1. (a) Typical electrical characteristics including transfer curves and I_d - V_d relations for an all-P2-SWNT transistor. (b) Transfer curves showing that an all-P2-SWNT transistor is p-doped (or threshold voltage positively shifted) upon exposure to NO from N_2 .

Figure S2. Typical electrical characteristics, I_d vs. V_g and I_d vs. V_d for an all-P3-SWNT resistor. The resistance of the resistor is $0.51 \text{M}\Omega$.

Figure S3. Sensing curves for the Au-contacted resistor showing that the device is insensitive to CO exposure (measured at $V_d = 10V$).