FATE OF PRIONS IN SOIL: INTERACTIONS OF RecPrP WITH ORGANIC MATTER OF SOIL AGGREGATES AS REVEALED BY LTA-PAS

Amaranta Pucci^{1,2}, Luigi Paolo D'Acqui², Luca Calamai¹

¹ Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Università degli Studi di Firenze, Piazzale Cascine 28 50144 Firenze, Italy

2 Istituto per lo Studio degli Ecosistemi, CNR Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI),

Figure S1, page S2: Kinetics of organic C and N removal in natural aggregates from CM soil;

Figure S2, page S2: Kinetics of organic C and N removal in natural aggregates from SS;

Figure S3, page S3: Adsorption kinetics of RecPrP on CM and LTACM soils at plateau;

Figure S4, page S3: PAS-FTIR-spectra of SS, SS after LTA treatment and PAS-FTIR difference spectrum;

Figure S5 page S4: PAS-FTIR-spectra of SS after RecPrP adsorption, SS and PAS-IR difference spectrum;

Table S1, page S4: Soil characteristics;

Table S2, page S5: Organic C and N removal in native SS and CM aggregates;

Table S3, page S5: Soil Mineralogy.

Figure S1. Kinetics of organic C and N removal in natural aggregates from CM soil.

Figure S2. Kinetics of organic C and N removal in natural aggregates from SS.

Figure S3. Adsorption kinetics of RecPrP on CM and LTACM soils at plateau.

Figure S4. PAS-FTIR-spectra of SS, SS after LTA treatment and PAS-FTIR difference spectrum.

Figure S5. PAS-FTIR-spectra of SS after RecPrP adsorption, SS and PAS-IR difference spectrum.

TableS1		
Soil characteristics	CM ^a	SS ^b (Scottish sand)
рН	5.2	6.98
Particles Size		
%clay (<0.002mm)	23	6.4
%silt (0.00202mm)	31	11.9
%sand (0.02-2.0mm)	46	81.7
texture	loamy	loamy sand
OC content, mg g ⁻¹	33±1.4	17.5
CEC, cmol _c Kg ⁻¹	28.6	1.89
Specific Surface Area, m ² g ⁻¹	27.7±0.1	20.8±1.1
Pore Specific Volume, mm ³ g ⁻¹	35.6±0.8	25.4±0.5

^aAll analyses of CM soil and Specific Surface Area, Pore Specific Volume of Scottish soil, were carried out in our laboratory ^b Data from Cooke, C.M.; Rodger, J.; Smith, A.; Fernie, K.; Shaw, G.; Somerville, R.A. Fate of prions in soil: detergent extraction of PrP from soils. *Environ. Sci. Technol.* **2007**, *41*(3), 811-817).

Table S2. Organic C and N removal in native SS and CM aggregates

Sample s	Treatment time	Residual C	C removed	Residual N	C/N Ratio	Specific Surface Area	Pore Specific Volume
	h	mg g⁻¹	%	mg g¯'		$m^2 g^{-1}$	mm ³ g ⁻¹
	0	33±1.4	-	2.1±0.1	16±1.4	27.7±0.1	35.6±0.8
CM	5	26±1.5	21	1.9±0.1	14±1.4	28.7±0.3	38.8±0.2
	24	26±0.1	21	1.7±0.1	15±0.1	-	-
	0	8±0.2	-	1±0.1	8±0.9	20.8±1.1	25.4±0.5
SS	5	5±0.1	35	0.6 ± 0.1	8±1.3	21.3±0.8	26.3±0.4
	24	3 ± 0.4	68	0.4 ± 0.1	7±2.3	-	-

		TableS3. Soil Mineralogy
SS	СМ	Mineralogy (mass percent)
9.4	10	Chlorite
		Chionie
9.1	8	illite/IS/Mica
16.8	22	feldspar
48.7	60	quartz
8.1	-	caolinite
6.6	-	pyroxene