Supporting Information

Iridium Catalyzed Hydrocarboxylation of 1,1-Dimethylallene: Byproduct-Free Reverse Prenylation of Carboxylic Acids

In Su Kim and Michael J. Krische*

University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA

Table of Contents

General Method	S2
General Procedure for the Coupling of Carboxylic Ac	cids and 1,1-Dimethylallene
	S2
Detailed Procedure and Spectral Data of All Compou	ands (1b–12b)
	S3–S22
Experimental Details for Mechanistic Studies	S23–S28
Experimental Procedure and Spectral Data for the Procedure	eparation
of Allenes (13a and 14a)	S29–S32
Experimental Procedure and Spectral Data for the Co	oupling of Benzoic Acid
and Allenes (13a and 14a)	S33–S36

General Methods

All reactions were run under one atmosphere of argon gas unless otherwise indicated. 1,2-Dichloroethane (DCE) was distilled from Pure-Solv MD-5 Solvent Purification System (Innovative Technology, inc). Anhydrous solvents were transferred by an oven-dried syringe. Reaction vessels were dried in oven for overnight and cooled under a stream of nitrogen. [Ir(cod)₂Cl] and BIPHEP were used as received from Umicore or Strem Chemicals. Cesium Carbonate was purchased from Aldrich. Carboxylic acids (1a-11a) were commercially available and were used directly without further purification. N-Boc-protected (-)-phenylalanine (12a) was prepared according to literature procedure. Analytical thin-layer chromatography (TLC) was carried out using 0.2-mm commercial silica gel plates (DC-Fertigplatten Kieselgel 60 F₂₅₄). Infrared spectra were recorded on a Perkin-Elmer 1600 spectrometer. High-resolution mass spectra (HRMS) were obtained on a Karatos MS9 and are reported as m/z (relative intensity). Accurate masses are reported for the molecular ion (M+1, M or M-1) or a suitable fragment ion. Nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) spectra were recorded with a Varian Gemini (300 MHz) spectrometer for CDCl₃ solutions and chemical shifts are reported as parts per million (ppm) relative to, respectively, residual CHCl₃ δ_H (7.26 ppm) and CDCl₃ δ_C (77.0 ppm) as internal standards. Coupling constants are reported in hertz (Hz).

General Procedure for the Coupling of Carboxylic Acids and 1,1-Dimethylallene

To an oven-dried reaction vessel under one atmosphere of argon gas charged with carboxylic acids 1a-12a (100 mol%), $[Ir(cod)Cl]_2$ (1 mol%), BIPEHP (2 mol%) and Cs_2CO_3 (2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (120 mol% or 240 mol%). The reaction mixture was allowed to stir at 60 $^{\circ}$ C until complete consumption of starting material was observed, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes) provided 1b-12b.

_

¹ Čaplar, V.; Žinić, M.; Pozzo, J-.L.; Fages, F.; Mieden-Gundert, G.; Vögtle, F. Eur. J. Org. Chem. **2004**, 4048–4059.

Detailed Procedure and Spectral Data of All Compounds (1b–12b)

2-Methylbut-3-en-2-yl benzoate² (1b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with benzoic acid (1a) (36.6 mg, 0.300 mmol, 100 mol%), [Ir(cod)Cl]₂ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs₂CO₃ (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (24.5 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 °C for a period of 24 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:30) provided 1b (48 mg, 0.252 mmol) as a clear oil in 84% yield.

TLC (SiO₂): $R_f = 0.30$ (ethyl acetate:hexanes, 1:30).

¹H NMR (300 MHz, CDCl₃): δ 8.03 (d, J = 7.8 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 6.22 (dd, J = 17.4, 10.5 Hz, 1H), 5.29 (d, J = 17.4 Hz, 1H), 5.16 (d, J = 10.5 Hz, 1H), 1.69 (s, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 165.6, 142.8, 132.8, 131.8, 129.7, 128.5, 113.1, 81.5, 26.8.

<u>FTIR</u> (neat): υ 2979, 2927, 2360, 2339, 1716, 1700, 1683, 1669, 1558, 1472, 1417, 1313, 1284, 1235, 1165, 1109, 1069, 1026, 921, 847, 711 cm⁻¹.

S3

² Sedighi, M.; Calimsiz, S.; Lipton, M. A. J. Org. Chem. **2006**, 71, 9517–9518.

2-Methylbut-3-en-2-yl 4-nitrobenzoate³ (2b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with p-nitrobenzoic acid (**2a**) (50.1 mg, 0.300 mmol, 100 mol%), [Ir(cod)Cl]₂ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs₂CO₃ (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (24.5 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 $^{\circ}$ C for a period of 16 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:15) provided **2b** (60 mg, 0.255 mmol) as pale yellow solid in 85% yield.

<u>TLC (SiO₂)</u>: $R_f = 0.38$ (ethyl acetate:hexanes, 1:8).

MP: 112-114 °C (hexanes/CH₂Cl₂)

¹H NMR (300 MHz, CDCl₃): δ 8.28 (d, J = 8.7 Hz, 2H), 8.19 (d, J = 8.7 Hz, 2H), 6.21 (dd, J = 17.4, 10.8 Hz, 1H), 5.31 (d, J = 17.4 Hz, 1H), 5.20 (d, J = 10.8 Hz, 1H), 1.71 (s, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 163.6, 150.6, 142.0, 137.3, 130.8, 123.7, 113.9, 83.0, 26.7.

<u>FTIR</u> (neat): υ 3114, 2982, 1720, 1645, 1606, 1523, 1471, 1415, 1380, 1366, 1348, 1322, 1288, 1265, 1115, 1102, 873, 842, 784, 739, 716 cm⁻¹.

-

³ Chi, K.-W.; Koo, E.-C. Bull. Korean. Chem. Soc. **1994**, 15, 98–100.

2-Methylbut-3-en-2-vl 4-methoxybenzoate³ (3b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with p-anisic acid (**3a**) (45.6 mg, 0.300 mmol, 100 mol%), [Ir(cod)Cl]₂ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs₂CO₃ (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (24.5 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 $^{\circ}$ C for a period of 16 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:30) provided **3b** (60 mg, 0.272 mmol) as a clear oil in 91% yield.

TLC (SiO₂): $R_f = 0.28$ (ethyl acetate:hexanes, 1:30).

¹H NMR (300 MHz, CDCl₃): δ 7.97 (dd, J = 8.7, 2.1 Hz, 2H), 6.91 (dd, J = 8.7, 2.1 Hz, 2H), 6.21 (dd, J = 17.4, 10.8 Hz, 1H), 5.27 (d, J = 17.4 Hz, 1H), 5.14 (d, J = 10.8 Hz, 1H), 3.86 (s, 3H), 1.67 (s, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 165.4, 163.3, 143.1, 131.7, 124.3, 113.7, 112.8, 81.1, 55.6, 26.9.

FTIR (neat): υ 2978, 1714, 1606, 1509, 1286, 1257, 1168, 1136, 1101, 1031, 847, 771 cm⁻¹.

2-Methylbut-3-en-2-yl 4-bromobenzoate³ (4b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with p-bromobenzoic acid (**4a**) (60.3 mg, 0.300 mmol, 100 mol%), [Ir(cod)Cl]₂ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs₂CO₃ (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (24.5 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 °C for a period of 24 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:30) provided **4b** (66 mg, 0.245 mmol) as a clear oil in 82% yield.

TLC (SiO₂): $R_f = 0.32$ (ethyl acetate:hexanes, 1:20).

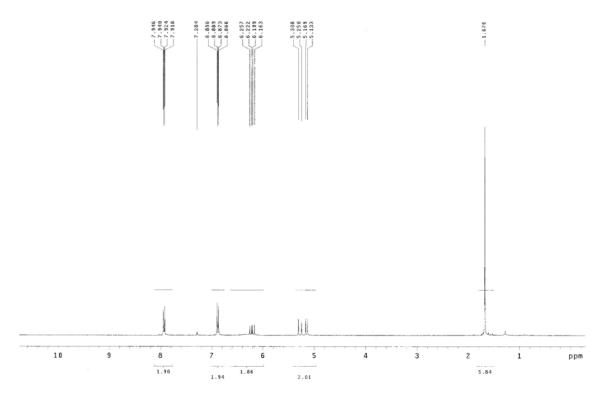
<u>1H NMR</u> (300 MHz, CDCl₃): δ 7.87 (dd, J = 8.4, 1.8 Hz, 2H), 7.57 (dd, J = 8.4, 2.1 Hz, 2H), 6.20 (dd, J = 17.4, 10.8 Hz, 1H), 5.28 (d, J = 17.4 Hz, 1H), 5.16 (d, J = 10.8 Hz, 1H), 1.67 (s, 6H).

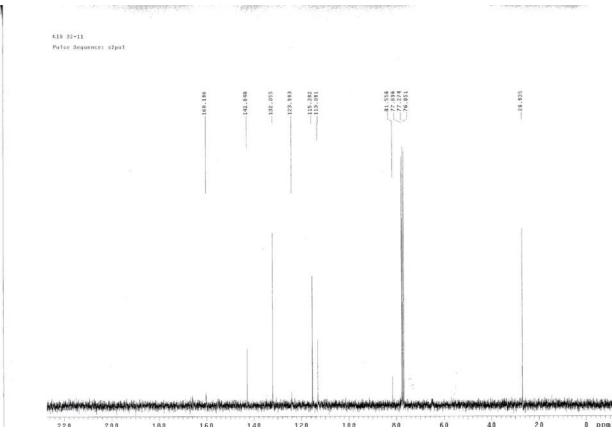
¹³C NMR (75 MHz, CDCl₃): δ 164.9, 142.5, 131.8, 131.3, 130.7, 127.9, 113.3, 82.0, 26.8.

FTIR (neat): υ 2979, 2926, 1718, 1589, 1483, 1396, 1379, 1364, 1287, 1235, 1166, 1135, 1101, 1068, 1012, 847, 757, 682 cm⁻¹.

2-Methylbut-3-en-2-yl 4-hydroxybenzoate (5b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with 4-hydroxybenzoic acid (**5a**) (41.4 mg, 0.300 mmol, 100 mol%), [Ir(cod)Cl]₂ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs₂CO₃ (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (24.5 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 °C for a period of 24 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:8) provided **5b** (49 mg, 0.238 mmol) as a clear oil in 79% yield.


TLC (SiO₂): $R_f = 0.28$ (ethyl acetate:hexanes, 1:8).


¹H NMR (300 MHz, CDCl₃): δ 7.93 (dd, J = 6.6, 1.8 Hz, 2H), 6.88 (dd, J = 6.9, 2.1 Hz, 2H), 6.36 (br, 1H), 6.20 (dd, J = 17.4, 10.8 Hz, 1H), 5.27 (d, J = 17.4 Hz, 1H), 5.14 (d, J = 10.8 Hz, 1H), 1.67 (s, 6H).

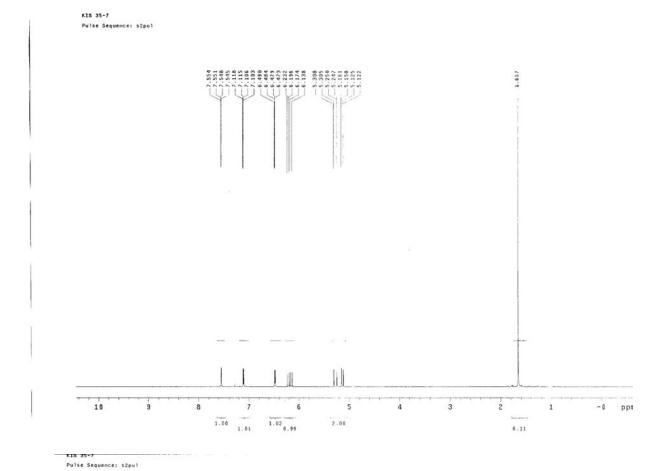
¹³C NMR (75 MHz, CDCl₃): δ 160.2, 142.8, 132.1, 124.0, 115.4, 113.1, 81.5, 26.9.

<u>FTIR</u> (neat): υ 3363, 2981, 1710, 1688, 1680, 1608, 1592, 1513, 1443, 1366, 1315, 1285, 1233, 1166, 1135, 1114, 851, 773 cm⁻¹.

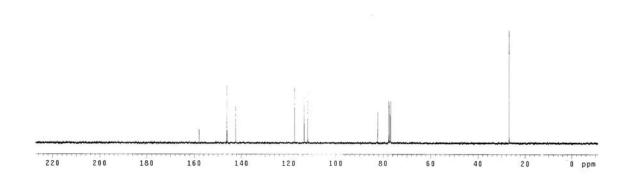
HRMS (CI) Calcd. for C₁₂H₁₅O₃ [M+1]: 207.1021, Found: 207.1024.

2-Methylbut-3-en-2-yl furan-2-carboxylate (6b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with 2-furoic acid (**6a**) (33.6 mg, 0.300 mmol, 100 mol%), [Ir(cod)Cl]₂ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs₂CO₃ (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (24.5 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 °C for a period of 16 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:30) provided **6b** (44 mg, 0.244 mmol) as a clear oil in 81% yield.


TLC (SiO₂): $R_f = 0.30$ (ethyl acetate:hexanes, 1:30).

¹H NMR (300 MHz, CDCl₃): δ 7.54 (dd, J = 1.8, 0.9 Hz, 1H), 7.11 (dd, J = 3.6, 0.9 Hz, 1H), 6.48 (dd, J = 3.3, 1.8 Hz, 1H), 6.18 (dd, J = 17.4, 10.8 Hz, 1H), 5.27 (d, J = 17.4 Hz, 1H), 5.13 (d, J = 10.8 Hz, 1H), 1.66 (s, 6H).

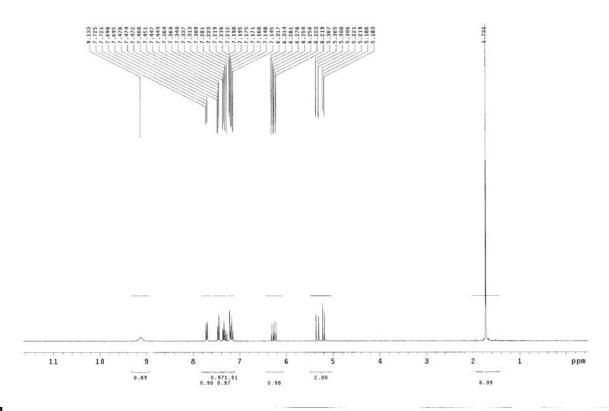

¹³C NMR (75 MHz, CDCl₃): δ 157.9, 146.1, 145.9, 142.4, 117.5, 113.4, 111.9, 82.3, 26.8.

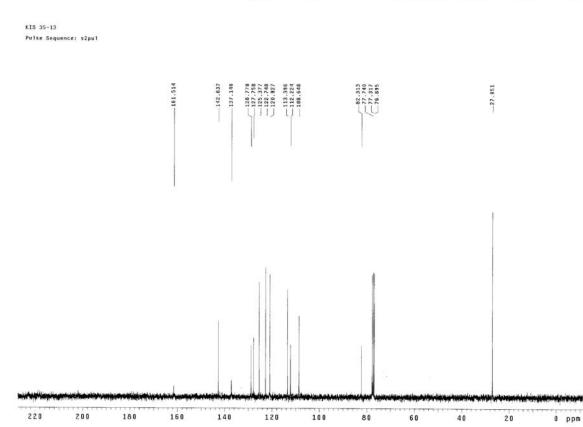
<u>FTIR</u> (neat): υ 2980, 2930, 1705, 1525, 1469, 1456, 1417, 1360, 1269, 1233, 1200, 1166, 1134, 1092, 1076, 1035, 923, 862, 823, 751, 718 cm⁻¹.

HRMS Calcd. for C₁₂H₁₃O₃ (M+1): 181.0865, Found: 181.0869.

2-Methylbut-3-en-2-yl 1*H*-indole-2-carboxylate (7b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with indole-2-carboxylic acid (**7a**) (48.3 mg, 0.300 mmol, 100 mol%), $[Ir(cod)Cl]_2$ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs_2CO_3 (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (24.5 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 $^{\circ}$ C for a period of 8 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:15) provided **7b** (63 mg, 0.275 mmol) as a clear syrup in 92% yield.


TLC (SiO₂): $R_f = 0.32$ (ethyl acetate:hexanes, 1:15).


<u>1H NMR</u> (300 MHz, CDCl₃): δ 9.13 (br, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.46 (d, J = 7.2 Hz, 1H), 7.33 (t, J = 8.1 Hz, 1H), 6.21 (s, 1H), 7.17 (t, J = 7.8 Hz, 1H), 6.26 (dd, J = 17.7, 10.8 Hz, 1H), 5.33 (d, J = 17.7 Hz, 1H), 5.19 (d, J = 10.8 Hz, 1H), 1.73 (s, 6H).

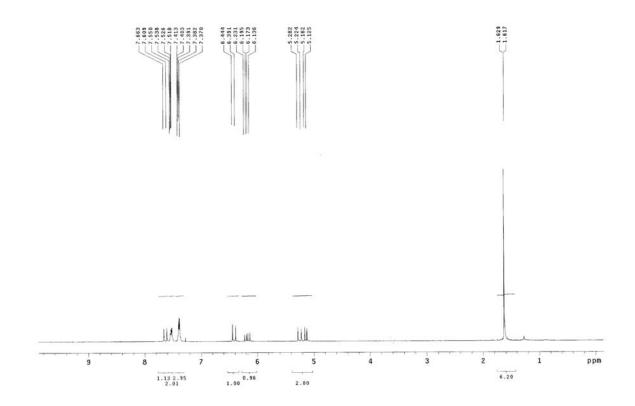
¹³C NMR (75 MHz, CDCl₃): δ 161.5, 142.6, 137.1, 128.8, 127.7, 125.4, 122.7, 120.9, 113.4, 112.2, 108.6, 82.3, 27.1.

FTIR (neat): υ 3342, 2977, 1685, 1619, 1577, 1527, 1413, 1381, 1341, 1313, 1262, 1206, 1125, 973, 921, 824, 775, 749, 669 cm⁻¹.

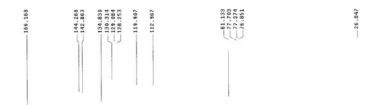
HRMS (CI) Calcd. for C₁₄H₁₆NO₂ [M+1]: 230.1181, Found: 230.1186.

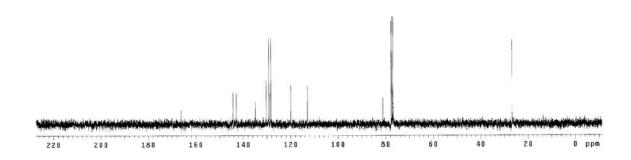
2-Methylbut-3-en-2-yl cinnamate (8b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with *trans*-cinnamic acid (**8a**) (44.4 mg, 0.300 mmol, 100 mol%), [Ir(cod)Cl]₂ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs₂CO₃ (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (24.5 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 °C for a period of 16 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:20) provided **8b** (53 mg, 0.245 mmol) as a clear oil in 82% yield.


TLC (SiO₂): $R_f = 0.28$ (ethyl acetate:hexanes, 1:20).

¹H NMR (300 MHz, CDCl₃): δ 7.63 (d, J = 15.9 Hz, 1H), 7.55-7.51 (m, 2H), 7.42-7.37 (m, 2H), 6.41 (d, J = 15.9 Hz, 1H), 6.18 (dd, J = 17.4, 11.1 Hz, 1H), 5.25 (d, J = 17.4 Hz, 1H), 5.14 (d, J = 11.1 Hz, 1H), 1.62 (s, 6H).

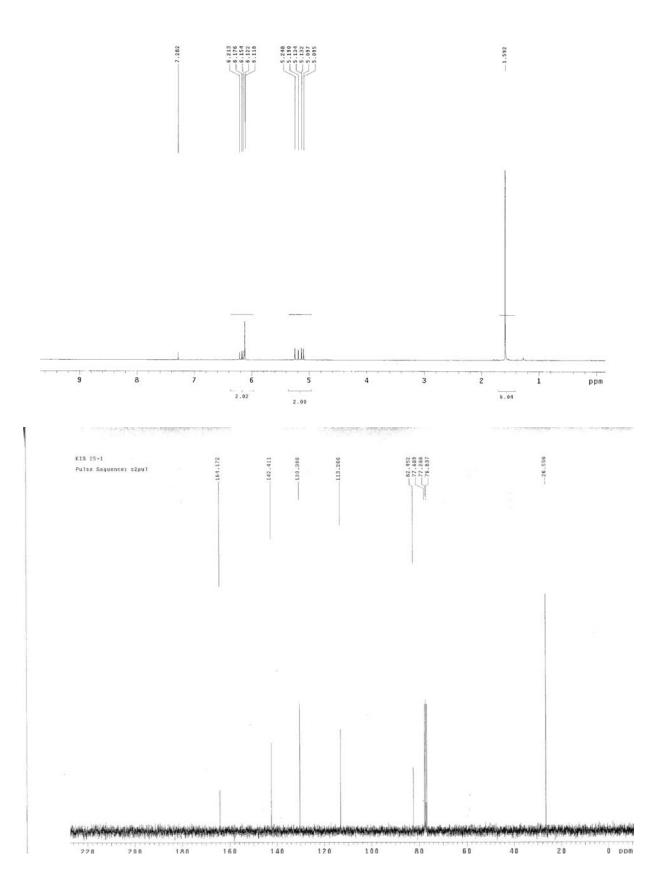

¹³C NMR (75 MHz, CDCl₃): δ 166.2, 144.3, 142.9, 134.8, 130.3, 129.1, 128.3, 119.9, 112.9, 81.1, 26.8.


FTIR (neat): υ 2980, 1712, 1637, 1449, 1378, 1364, 1328, 1314, 1281, 1203, 1186, 1126, 979, 768, 685 cm⁻¹.

HRMS (CI) Calcd. for C₁₄H₁₇O₂ [M+1]: 217.1229, Found: 217.1231.

Bis(2-methylbut-3-en-2-yl) maleate (9b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with maleic acid (**9a**) (34.8 mg, 0.300 mmol, 100 mol%), [Ir(cod)Cl]₂ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs₂CO₃ (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (49 mg, 0.720 mmol, 240 mol%). The reaction mixture was allowed to stir at 60 °C for a period of 36 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:10) provided **9b** (62 mg, 0.246 mmol) as a clear oil in 82% yield.


TLC (SiO₂): $R_f = 0.28$ (ethyl acetate:hexanes, 1:10).

¹H NMR (300 MHz, CDCl₃): δ 6.16 (dd, J = 17.4, 11.1 Hz, 2H), 6.12 (s, 2H), 5.22 (d, J = 17.4 Hz, 2H), 5.11 (d, J = 11.1 Hz, 2H), 1.59 (s, 12H).

¹³C NMR (75 MHz, CDCl₃): δ 164.2, 142.4, 130.3, 113.2, 82.4, 26.5.

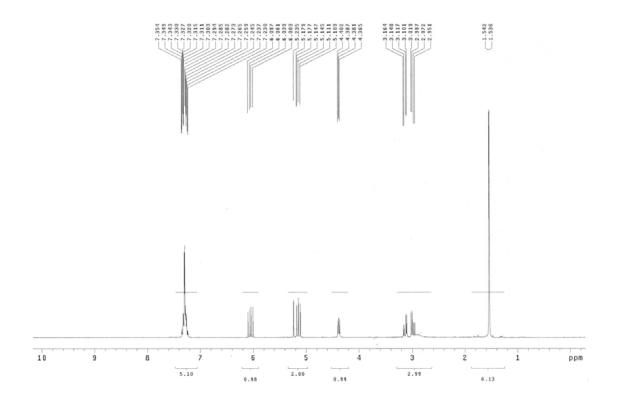
FTIR (neat): υ 2983, 2934, 1731, 1644, 1470, 1414, 1394, 1365, 1263, 1218, 1121, 979, 922, 835, 807 cm⁻¹.

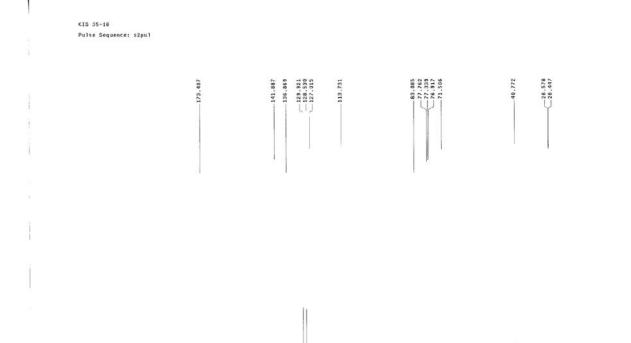
HRMS (CI) Calcd. for C₁₄H₂₁O₄ [M+1]: 253.1440, Found: 253.1444.

2-Methylbut-3-en-2-yl 2-(S)-hydroxy-3-phenylpropanoate (10b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with (–)-3-phenyllactic acid (**10a**) (49.9 mg, 0.300 mmol, 100 mol%), [Ir(cod)Cl]₂ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs₂CO₃ (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (24.5 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 $^{\circ}$ C for a period of 24 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:6) provided **10b** (52 mg, 0.222 mmol) as a clear oil in 74% yield.

<u>TLC (SiO₂)</u>: $R_f = 0.30$ (ethyl acetate:hexanes, 1:6).


 $[\alpha]_{D}^{24}$ -31.0° (c 1.0, CH₂Cl₂).


<u>1H NMR</u> (300 MHz, CDCl₃): δ 7.35-7.23 (m, 5H), 6.04 (dd, J = 17.4, 10.8 Hz, 1H), 5.20 (d, J = 17.4 Hz, 1H), 5.12 (d, J = 10.8 Hz, 1H), 4.38 (dd, J = 6.3, 4.5 Hz, 1H), 3.13 (dd, J = 14.1, 4.8 Hz, 1H), 2.98 (dd, J = 14.1, 6.3 Hz, 1H), 2.90 (br, 1H), 1.54 (s, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 173.4, 141.9, 136.8, 129.92, 128.5, 127.0, 113.7, 83.1, 71.5, 40.8, 26.6, 26.4.

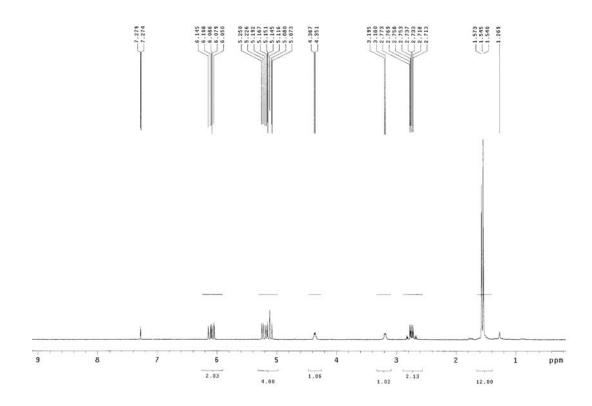
<u>FTIR</u> (neat): υ 3493, 3029, 2981, 2930, 1731, 1496, 1454, 1414, 1380, 1365, 1264, 1203, 1161, 1127, 1093, 927, 750, 700 cm⁻¹.

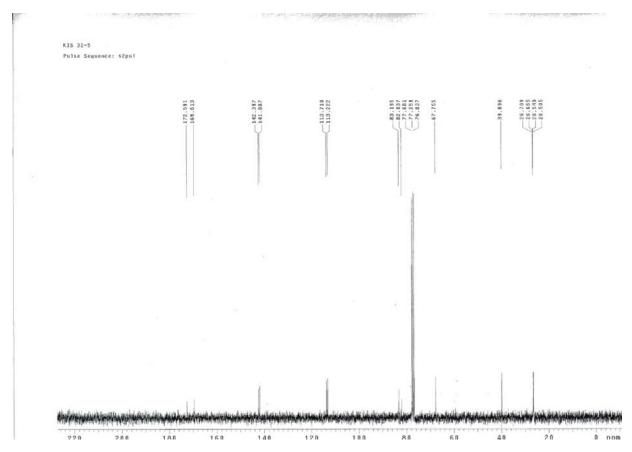
HRMS (CI) Calcd. for C₁₄H₁₉O₃ [M+1]: 235.1334, Found: 235.1337.

Bis(2-methylbut-3-en-2-yl) 2-(S)-hydroxysuccinate (11b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with (–)-malic acid (11a) (40.2 mg, 0.300 mmol, 100 mol%), $[Ir(cod)Cl]_2$ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs_2CO_3 (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (49 mg, 0.720 mmol, 240 mol%). The reaction mixture was allowed to stir at 60 °C for a period of 36 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:6) provided 11b (62 mg, 0.229 mmol) as a clear oil in 77% yield.

<u>TLC (SiO₂)</u>: $R_f = 0.28$ (ethyl acetate:hexanes, 1:6).


 $\left[\alpha\right]_{D}^{24} + 45.0^{\circ} (c \ 0.2, \text{CH}_{2}\text{Cl}_{2}).$


¹H NMR (300 MHz, CDCl₃): δ 6.15-6.05 (m, 2H), 5.25-5.07 (m, 2H), 4.35 (br d, J = 4.8 Hz, 1H), 3.18 (d, J = 4.8 Hz, 1H), 2.79 (dd, J = 16.5, 4.5 Hz, 1H), 2.69 (dd, J = 16.5, 6.0 Hz, 1H), 1.57 (s, 6H), 1.54 (s, 6H).

13C NMR (75 MHz, CDCl₃): δ 172.6, 169.6, 142.4, 141.9, 113.7, 113.2, 83.2, 82.0, 67.7, 39.9, 26.7, 26.6, 26.5, 26.5.

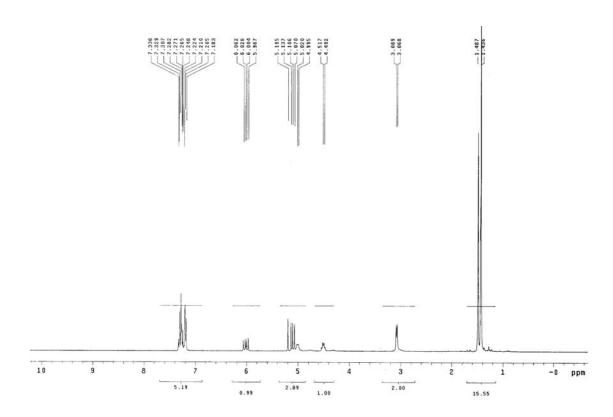
FTIR (neat): υ 3501, 2982, 2934, 1733, 1652, 1558, 1471, 1456, 1416, 1380, 1273, 1199, 1161, 1125, 1048, 989, 925, 842, 750 cm⁻¹.

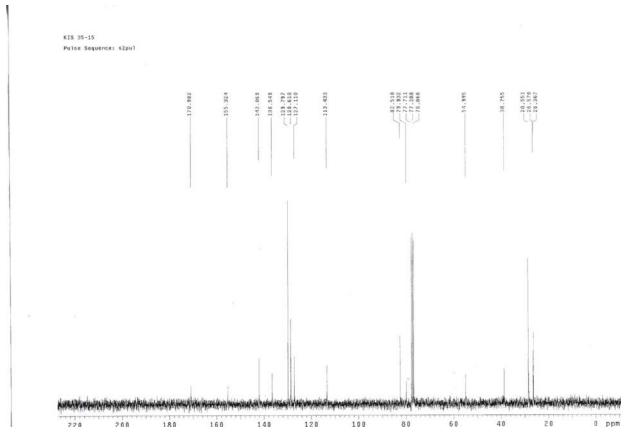
HRMS (CI) Calcd. for C₁₄H₂₃O₅ [M+1]: 271.1545, Found: 271.1550.

2-Methylbut-3-en-2-yl 2-(S)-(tert-butoxycarbonylamino)-3-phenylpropanoate (12b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with (S)-2-(tert-butoxycarbonylamino)-3-phenylpropanoic acid¹ (**12a**) (79.6 mg, 0.300 mmol, 100 mol%), [Ir(cod)Cl]₂ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs₂CO₃ (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (24.5 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 °C for a period of 24 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:8) provided **12b** (74 mg, 0.221 mmol) as a clear syrup in 74% yield.

TLC (SiO₂): $R_f = 0.28$ (ethyl acetate:hexanes, 1:8).


 $\left[\alpha\right]_{D}^{24} + 15.0^{\circ} (c \ 1.0, \text{CH}_{2}\text{Cl}_{2}).$


¹H NMR (300 MHz, CDCl₃): δ 7.34-7.18 (m, 5H), 6.01 (dd, J = 17.4, 10.8 Hz, 1H), 5.16 (d, J = 17.4 Hz, 1H), 5.08 (d, J = 10.8 Hz, 1H), 5.01 (d, J = 7.5 Hz, 1H), 4.50 (dd, J = 7.5, 6.3 Hz, 1H), 3.07 (d, J = 6.3 Hz, 2H), 1.48 (s, 6H), 1.43 (s, 9H).

¹³C NMR (75 MHz, CDCl₃): δ 170.9, 155.3, 142.1, 136.5, 129.8, 128.6, 127.1, 113.4, 82.5, 79.9, 55.0, 38.7, 28.5, 26.6, 26.4.

<u>FTIR</u> (neat): υ 3438, 3369, 3088, 3064, 3029, 2979, 2933, 1736, 1724, 1691, 1679, 1528, 1452, 1413, 1390, 1365, 1256, 1214, 1127, 1079, 1055, 1014, 992, 752, 700 cm⁻¹.

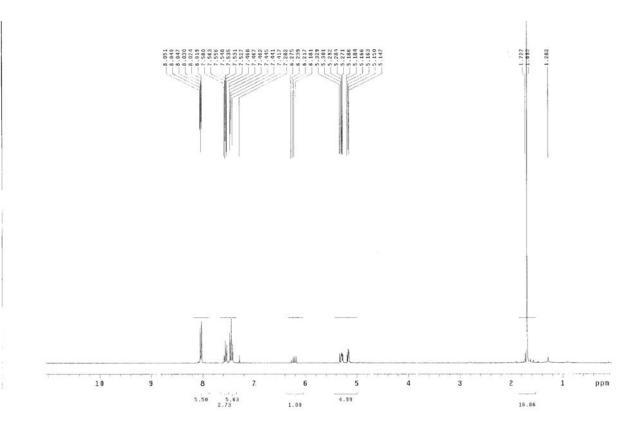
HRMS (CI) Calcd. for C₁₉H₂₈NO₄ [M+1]: 334.2018, Found: 334.2017.

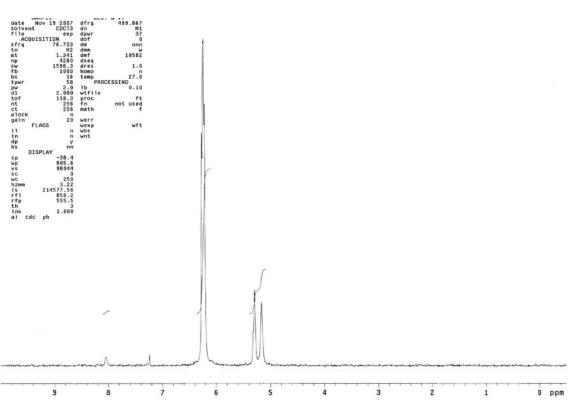
Experimental Details for Mechanistic Studies

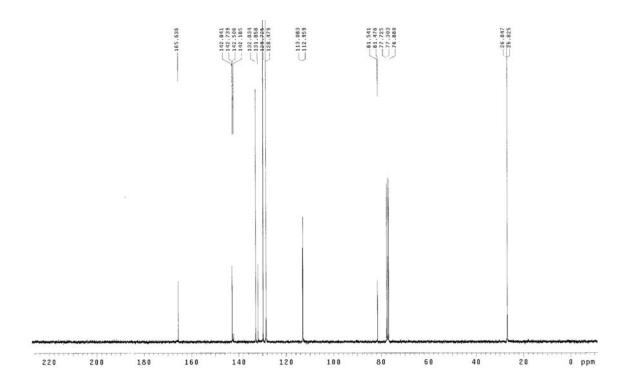
3-Deuterio-2-methylbut-3-en-2-yl benzoate $((O^{-2}H)-1a)$

Benzoic acid-d ((O- 2 H)- $\mathbf{1a}$, 98% deuterium incorporation) was purchased from Aldrich. To an oven-dried reaction vessel under one atmosphere of argon gas charged with benzoic acid-d ((O- 2 H)- $\mathbf{1a}$) (369 mg, 3.000 mmol, 100 mol%), [Ir(cod)Cl]₂ (20 mg, 0.030 mmol, 1 mol%), BIPEHP (31 mg, 0.060 mmol, 2 mol%) and Cs₂CO₃ (19.5 mg, 0.060 mmol, 2 mol%) was added 1,2-dichloroethane (30 mL, 0.1 M) followed by 1,1-dimethylallene (245 mg, 3.600 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 $^{\circ}$ C for a period of 24 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:30) provided the title compound (400 mg, 2.090 mmol) as a clear oil in 70% yield.

TLC (SiO₂): $R_f = 0.30$ (ethyl acetate:hexanes, 1:30).


<u>1H NMR</u> (300 MHz, CDCl₃): δ 8.03 (d, J = 6.9 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 6.22 (dd, J = 17.4, 10.8 Hz, 0.36H), 5.33-5.14 (m, 1.77H), 1.69 (s, 6H).


 2 H NMR (77 MHz, CHCl₃): δ 8.04 (s, 0.02²H), 6.22 (m, 1.0²H), 5.29 (s, 0.15²H), 5.16 (s, 0.15²H).


¹³C NMR (75 MHz, CDCl₃): δ 165.6, 142.8, 142.7, 142.5, 142.2, 132.8, 131.8, 129.7, 128.5, 113.1, 112.9, 81.5, 81.5, 26.8, 26.8.

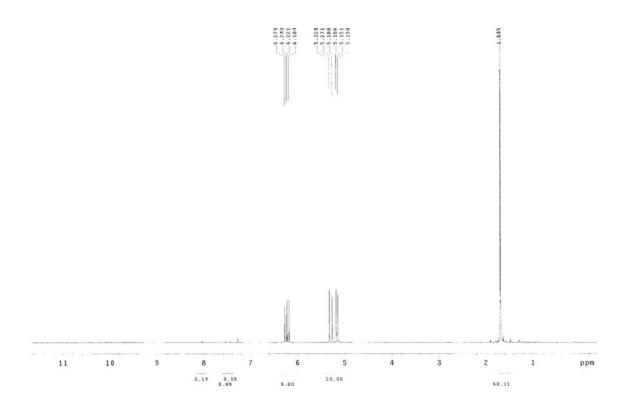
<u>FTIR</u> (neat): υ 2981, 1715, 1450, 1379, 1365, 1313, 1285, 1237, 1202, 1134, 1108, 1069, 1026, 921, 846, 711 cm⁻¹.

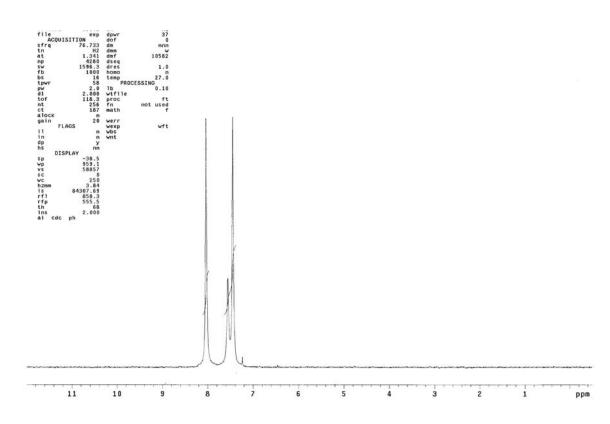
HRMS (CI) Calcd. for C₁₂H₁₄²HO₂ [M+1]: 192.1135, Found: 192.1134.

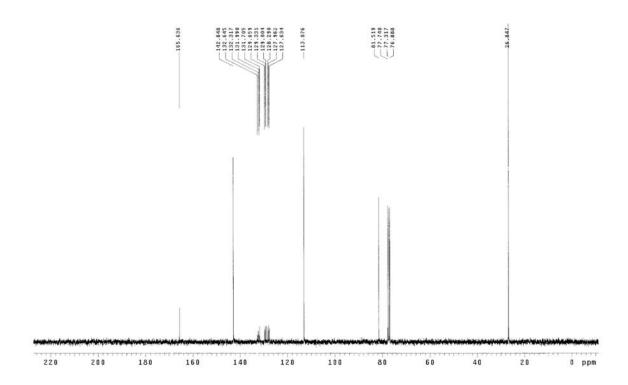
2-Methylbut-3-en-2-yl *pentadeuterio*-benzoate ((²H)₅-1a)

Benzoic- d_5 acid ((2H)₅-**1a**, 99% deuterium incorporation) was purchased from Aldrich. To an oven-dried reaction vessel under one atmosphere of argon gas charged with benzoic- d_5 acid ((2H)₅-**1a**) (38.2 mg, 0.300 mmol, 100 mol%), [Ir(cod)Cl]₂ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs₂CO₃ (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 1,1-dimethylallene (24.5 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 °C for a period of 24 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:30) provided the title compound (48 mg, 0.246 mmol) as a clear oil in 82% yield.

<u>TLC (SiO₂)</u>: $R_f = 0.30$ (ethyl acetate:hexanes, 1:30).

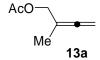

¹H NMR (300 MHz, CDCl₃): δ 6.23 (dd, J = 17.4, 10.8 Hz, 1H), 5.29 (d, J = 17.4 Hz, 1H), 5.16 (d, J = 10.8 Hz, 1H), 1.69 (s, 6H).


 2 H NMR (77 MHz, CHCl₃): δ 8.03 (s, 1.92²H), 7.56 (s, 1.0²H), 7.44 (s, 2.0²H).


¹³C NMR (75 MHz, CDCl₃): δ 165.6, 142.8, 132.6, 132.3, 132.0, 131.7, 129.6, 129.3, 129.0, 128.3, 127.9, 127.6, 113.1, 81.5, 26.8.

<u>FTIR</u> (neat): υ 2981, 1716, 1413, 1382, 1364, 1331, 1252, 1230, 1200, 1165, 1132, 1079, 922, 850 cm⁻¹.

HRMS (CI) Calcd. for C₁₂H₁₄²HO₂ [M+1]: 196.1386, Found: 196.1388.



Experimental Procedure and Spectral Data for the Preparation of Allenes (13a and 14a)

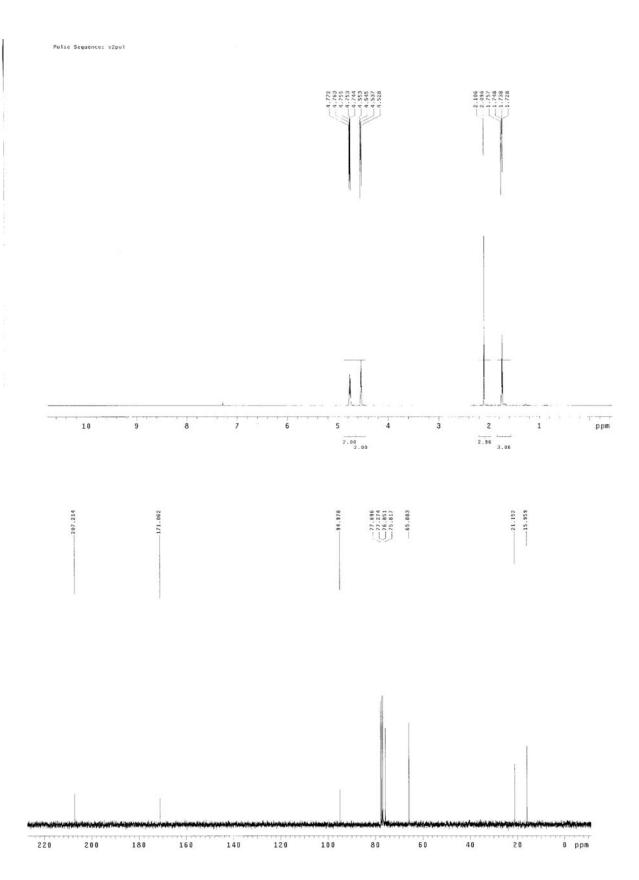
2-Methylbuta-2,3-dienyl acetate (13a)

To a stirred solution of 2-methylbuta-2,3-dien-1-ol⁴ (0.2 g, 2.378 mmol) in anhydrous CH_2Cl_2 (24 mL) was added acetic anhydride (0.27 mL, 2.853 mmol), triethylamine (0.8 mL, 5.706 mmol) and 4-(dimethylamino)pyridine (15 mg, 0.119 mmol) at 0 $^{\circ}$ C under one atmosphere of argon gas. The reaction mixture was stirred for 2 h at 0 $^{\circ}$ C and quenched with H_2O (5 mL). The aqueous layer was extracted with CH_2Cl_2 (10 mL) and the organic layer was washed with H_2O and brine, dried over $MgSO_4$ and concentrated in vacuo. Purification of the product by column chromatography (SiO₂: diethyl ether:pentane, 1:30) provided **13a** (0.21 g, 1.664 mmol) as a clear oil in 70% yield.

<u>TLC (SiO₂)</u>: $R_f = 0.26$ (diethyl ether:pentane, 1:30).

¹H NMR (300 MHz, CDCl₃): δ 4.75 (sextet, J = 2.7 Hz, 2H), 4.54 (t, J = 2.4 Hz, 2H), 2.09 (s, 3H), 1.73 (t, J = 3.0 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 207.21, 171.06, 94.97, 75.81, 65.88, 21.15, 15.95.


FTIR (neat): υ 2942, 1965, 1765, 1443, 1371, 1231, 1027, 853 cm⁻¹.

HRMS (CI) Calcd. for C₇H₁₁O₂ [M+1]: 127.0759, Found: 127.0762.

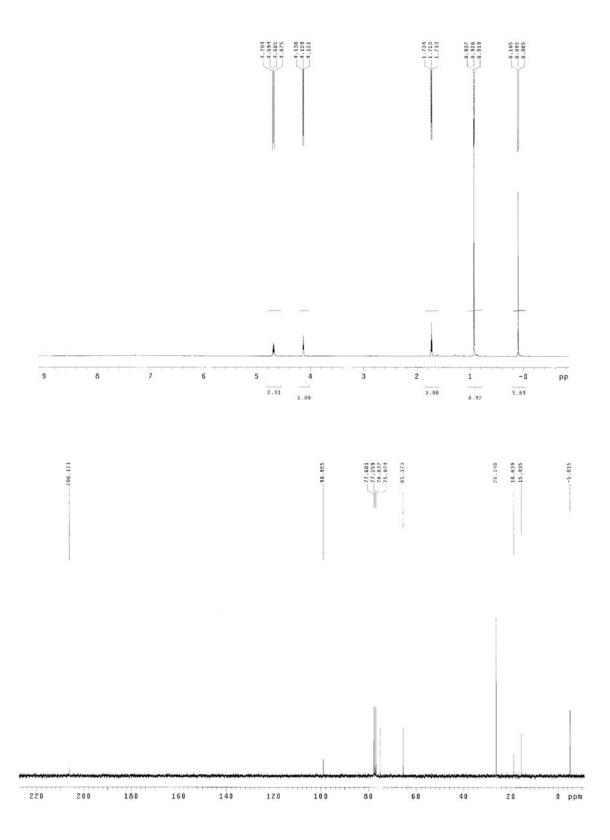
S29

_

⁴ For the preparation of 2-methylbuta-2,3-dien-1-ol, see: Cook, S. P.; Danishefsky, S. J. *Org. Lett.* **2006**, *8*, 5693–5695.

tert-Butyldimethyl(2-methylbuta-2,3-dienyloxy)silane (14a)

To a stirred solution of 2-methylbuta-2,3-dien-1-ol⁴ (0.2 g, 2.378 mmol) in anhydrous CH₂Cl₂ (24 mL) was added *tert*-butyldimethylsilyl chloride (0.43 g, 2.853 mmol), triethylamine (0.8 mL, 5.706 mmol) and 4-(dimethylamino)pyridine (15 mg, 0.119 mmol) at 0 °C under one atmosphere of argon gas. The reaction mixture was stirred for 4 h at room temperature and quenched with H₂O (5 mL). The aqueous layer was extracted with CH₂Cl₂ (10 mL) and the organic layer was washed with H₂O and brine, dried over MgSO₄ and concentrated in vacuo. Purification of the product by column chromatography (SiO₂: diethyl ether:pentane, 1:100) provided **14a** (0.36 g, 1.815 mmol) as a clear oil in 76% yield.


TLC (SiO₂): $R_f = 0.30$ (diethyl ether:pentane, 1:100).

¹H NMR (300 MHz, CDCl₃): δ 4.68 (sextet, J = 3.0 Hz, 2H), 4.12 (t, J = 2.7 Hz, 2H), 1.72 (t, J = 3.0 Hz, 3H), 0.92 (s, 9H), 0.95 (s, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 206.12, 98.95, 75.07, 65.37, 26.14, 18.63, 15.43, –5.01.

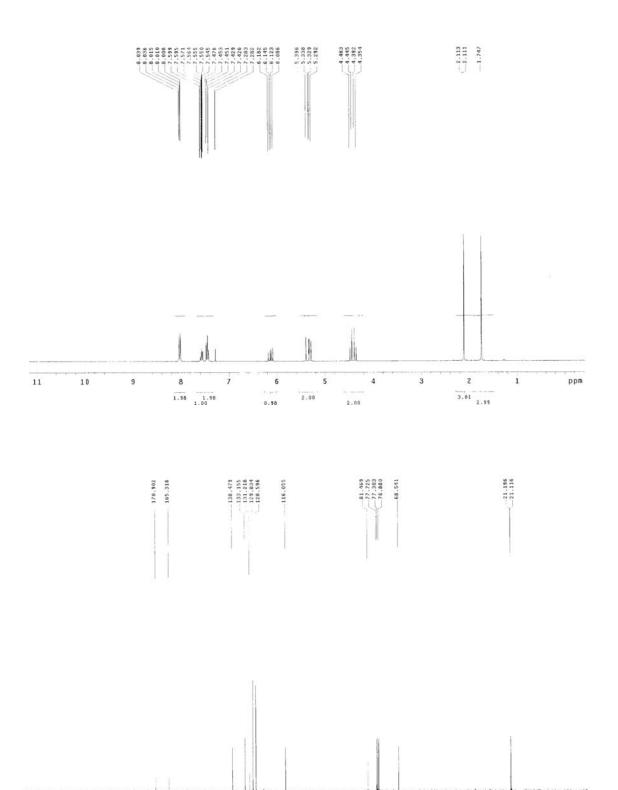
FTIR (neat): υ 2929, 2857, 1963, 1463, 1256, 1077, 839, 775 cm⁻¹.

HRMS (CI) Calcd. for C₁₁H₂₃OSi [M+1]: 199.1518, Found: 199.1523.

Experimental Procedure and Spectral Data for the Coupling of Benzoic Acid and Allenes (13a and 14a)

1-Acetoxy-2-methylbut-3-en-2-yl benzoate (13b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with benzoic acid (1a) (36.6 mg, 0.300 mmol, 100 mol%), $[Ir(cod)Cl]_2$ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs_2CO_3 (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by 13a (45.4 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 $^{\circ}$ C for a period of 24 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:15) provided 13b (54 mg, 0.218 mmol) as a clear oil in 73% yield.


TLC (SiO₂): $R_f = 0.28$ (ethyl acetate:hexanes, 1:15).

¹H NMR (300 MHz, CDCl₃): δ 8.01 (d, J = 7.5 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 6.13 (dd, J = 17.7, 11.1 Hz, 1H), 5.36 (d, J = 17.7 Hz, 1H), 5.30 (d, J = 11.1 Hz, 1H), 4.46 (d, J = 11.4 Hz, 1H), 4.37 (d, J = 11.4 Hz, 1H), 2.11 (s, 3H), 1.74 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 170.90, 165.31, 138.47, 133.15, 131.21, 129.83, 128.59, 116.05, 81.46, 68.54, 21.19, 21.11.

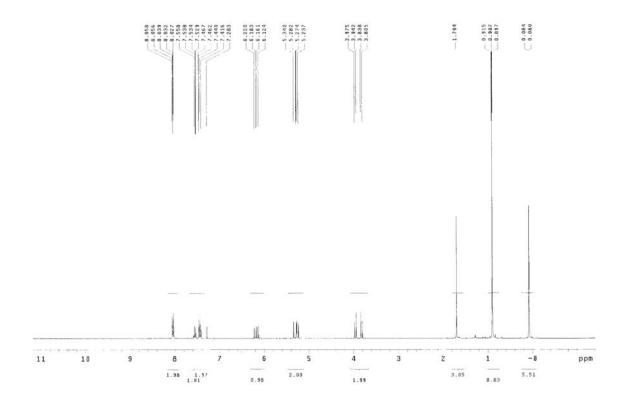
FTIR (neat): υ 2989, 1747, 1720, 1601, 1451, 1414, 1372, 1315, 1278, 1239, 1176, 1112, 1070, 1047, 1026, 991, 928, 882, 852, 712 cm⁻¹.

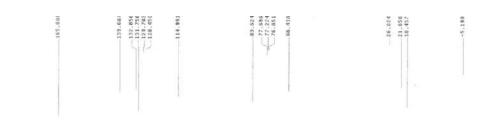
HRMS (CI) Calcd. for C₁₄H₁₇O₄ [M+1]: 249.1127, Found: 249.1127.

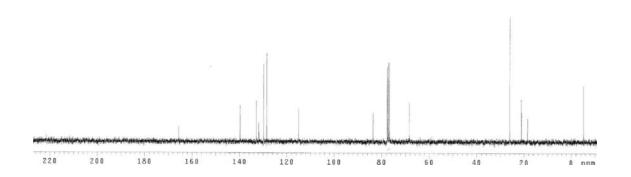
0 ppm

1-(*tert*-Butyldimethylsilyloxy)-2-methylbut-3-en-2-yl benzoate (14b)

To an oven-dried reaction vessel under one atmosphere of argon gas charged with benzoic acid (**1a**) (36.6 mg, 0.300 mmol, 100 mol%), $[Ir(cod)Cl]_2$ (2.0 mg, 0.003 mmol, 1 mol%), BIPEHP (3.1 mg, 0.006 mmol, 2 mol%) and Cs_2CO_3 (1.95 mg, 0.006 mmol, 2 mol%) was added 1,2-dichloroethane (3.0 mL, 0.1 M) followed by **14a** (71.4 mg, 0.360 mmol, 120 mol%). The reaction mixture was allowed to stir at 60 °C for a period of 36 hours, at which point the reaction mixture was evaporated onto silica gel. Purification of the product by column chromatography (SiO₂: ethyl acetate:hexanes, 1:30) provided **14b** (72 mg, 0.225 mmol) as a clear oil in 75% yield.


TLC (SiO₂): $R_f = 0.26$ (ethyl acetate:hexanes, 1:30).


¹H NMR (300 MHz, CDCl₃): δ 8.03 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.2 Hz, 2H), 6.17 (dd, J = 17.7, 11.1 Hz, 1H), 5.31 (d, J = 17.7 Hz, 1H), 5.25 (d, J = 11.1 Hz, 1H), 3.95 (d, J = 9.9 Hz, 1H), 3.81 (d, J = 9.9 Hz, 1H), 1.70 (s, 3H), 0.90 (s, 9H), 0.08 (s, 6H).


13C NMR (75 MHz, CDCl₃): δ 165.60, 139.68, 132.85, 131.75, 129.78, 128.45, 114.99, 83.62, 68.41, 26.02, 21.05, 18.45, -5.19.

<u>FTIR</u> (neat): υ 2954, 2929, 2857, 1720, 1471, 1451, 1314, 1277, 1256, 1113, 1069, 1026, 837, 776, 710 cm⁻¹.

HRMS (CI) Calcd. for C₁₈H₂₉O₃Si [M+1]: 321.1886, Found: 321.1891.

