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This document contains all the general ReaxFF-potential functions. In the current ReaxFF 

code all the energy contributions in this document are calculated regardless of system 

composition. All parameters that do not bear a direct physical meaning are named after the 

partial energy contribution that they appear in. For example, pval1 and pval2 are parameters in the 

valence angle potential function. Parameters with a more direct physical meaning, like the 

torsional rotational barriers (V1, V2, V3) bear their more recognizable names. 

 

1. Overall system energy 

Equation (1) describes the ReaxFF overall system energy. 
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Below follows a description of the partial energies introduced in equation (1). 

2. Bond Order and Bond Energy 

A fundamental assumption of ReaxFF is that the bond order BO’ij between a pair of atoms can 

be obtained directly from the interatomic distance rij as given in Equation (2). In calculating the 

bond orders, ReaxFF distinguishes between contributions from sigma bonds, pi-bonds and 

double pi bonds.  
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Based on the uncorrected bond orders BO’, derived from Equation 1, an uncorrected 
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overcoordination Δ’ can be defined for the atoms as the difference between the total bond order 

around the atom and the number of its bonding electrons Val.  
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ReaxFF then uses these uncorrected overcoordination definitions to correct the bond orders 

BO’ij using the scheme described in Equations (4a-f). To soften the correction for atoms bearing 

lone electron pairs a second overcoordination definition Δ’boc  (equation 3b) is used in equations 

4e and 4f. This allows atoms like nitrogen and oxygen, which bear lone electron pairs after 

filling their valence, to break up these electron pairs and involve them in bonding without 

obtaining a full bond order correction. 
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A corrected overcoordination Δi can be derived from the corrected bond orders using equation 

(5). 
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Equation (6) is used to calculate the bond energies from the corrected bond orders BOij. 

  

! 

Ebond = "De

# $ BOij

# $ exp pbe1 1" BOij

#( )
pbe 2( )% 

& ' 
( 
) * 
"De

+ $ BOij

+ "De

++ $ BOij

++   (6) 

 

 

3. Lone pair energy 

Equation (8) is used to determine the number of lone pairs around an atom.  Δi
e is determined 

in Equation (7) and describes  the difference between the total number of outer shell electrons (6 

for oxygen, 4 for silicon, 1 for hydrogen) and the sum of bond orders around an atomic center.   
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For oxygen with normal coordination (total bond order=2, Δi
e=4), equation (8) leads to 2 lone 

pairs.  As the total bond order associated with a particular O starts to exceed 2, equation (8) 

causes a lone pair to gradually break up, causing a deviation Δi
lp, defined in equation (9), from 

the optimal number of lone pairs nlp,opt (e.g. 2 for oxygen, 0 for silicon and hydrogen). 
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This is accompanied by an energy penalty, as calculated by equation (10).  
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4. Overcoordination 

For an overcoordinated atom (Δi>0), equations (11a-b) impose an energy penalty on the 

system.  The degree of overcoordination Δ is decreased if the atom contains a broken-up lone 

electron pair. This is done by calculating a corrected overcoordination (equation 11b), taking the 

deviation from the optimal number of lone pairs, as calculated in equation (9), into account.  
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5. Undercoordination 

For an undercoordinated atom (Δi<0), we want to take into account the energy contribution 

for the resonance of the π-electron between attached under-coordinated atomic centers.  This is 

done by equations 12 where Eunder is only important if the bonds between under-coordinated 

atom i and its under-coordinated neighbors j partly have π-bond character. 
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6. Valence Angle Terms 

6.1 Angle energy. Just as for bond terms, it is important that the energy contribution from 

valence angle terms goes to zero as the bond orders in the valence angle goes to zero. Equations 

(13a-g) are used to calculate the valence angle energy contribution. The equilibrium angle Θo for 

Θijk depends on the sum of π-bond orders (SBO) around the central atom j as described in 

Equation (13d). Thus, the equilibrium angle changes from around 109.47 for sp3 hybridization 

(π-bond=0) to 120 for sp2 (π-bond=1) to 180 for sp (π-bond=2) based on the geometry of the 

central atom j and its neighbors. In addition to including the effects of π-bonds on the central 

atom j, Equation (13d) also takes into account the effects of over- and under-coordination in 

central atom j, as determined by equation (13e), on the equilibrium valency angle, including the 

influence of a lone electron pair. Valangle is the valency of the atom used in the valency and 

torsion angle evaluation. Valangle is the same as Valboc used in equation (3c) for non-metals. The 

functional form of Equation (13f) is designed to avoid singularities when SBO=0 and SBO=2.  

The angles in Equations (13a)-(13g) are in radians. 
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SBO2 = 0 if SBO " 0

SBO2 = SBO
pval 9  if 0 < SBO <1

SBO2 = 2 # (2 # SBO)
pval 9  if 1< SBO < 2

SBO2 = 2 if SBO > 2

 (13f) 
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6.2 Penalty energy. To reproduce the stability of systems with two double bonds sharing an 

atom in a valency angle, like allene, an additional energy penalty, as described in Equations 

(14a) and (14b), is imposed for such systems. Equation (9b) deals with the effects of 

over/undercoordination in central atom j on the penalty energy. 
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6.3 Three-body conjugation term. The hydrocarbon ReaxFF potential contained only a four-

body conjugation term (see section 7.2), which was sufficient to describe most conjugated 

hydrocarbon systems. However, this term failed to describe the stability obtained from 

conjugation by the –NO2-group. To describe the stability of such groups a three-body 

conjugation term is included (equation 15). 
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7. Torsion angle terms  

7.1 Torsion rotation barriers. Just as with angle terms we need to ensure that dependence of 

the energy of torsion angle ωijkl accounts properly for BO → 0 and for BO greater than 1.  This is 

done by Equations (16a)-(16c).  
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7.2 Four body conjugation term. Equations (17a-b) describe the contribution of conjugation 

effects to the molecular energy. A maximum contribution of conjugation energy is obtained 

when successive bonds have bond order values of 1.5 as in benzene and other aromatics. 
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8. Hydrogen bond interactions 

Equation (18) described the bond-order dependent hydrogen bond term for a X-H—Z system 

as incorporated in ReaxFF.  
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9. Correction for C2 

ReaxFF erroneously predicts that two carbons in the C2-molecule form a very strong (triple) 

bond, while in fact the triple bond would get de-stabilized by terminal radical electrons, and for 

that reason the carbon-carbon bond is not any stronger than a double bond. To capture the 

stability of C2 we introduced a new partial energy contribution (EC2). Equation (19) shows the 

potential function used to de-stabilize the C2 molecule: 
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where Δi is the level of under/overcoordination on atom i as obtained from subtracting the 

valency of the atom (4 for carbon) from the sum of the bond orders around that atom and kc2 the 

force field parameter associated with this partial energy contribution.  

 

11. Triple bond energy correction. 

To describe the triple bond in carbon monoxide a triple bond stabilization energy is used, 

making CO both stable and inert. This energy term only affects C-O bonded pairs. Equation (20) 

shows the energy function used to describe the triple bond stabilization energy. 
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12. Nonbonded  interactions  

In addition to valence interactions which depend on overlap, there are repulsive interactions at 

short interatomic distances due to Pauli principle orthogonalization and attraction energies at 

long distances due to dispersion.  These interactions, comprised of van der Waals and Coulomb 

forces, are included for all atom pairs, thus avoiding awkward alterations in the energy 

description during bond dissociation. 

12.1 Taper correction. To avoid energy discontinuities when charged species move in and 

out of the non-bonded cutoff radius ReaxFF employs a Taper correction, as developed by de Vos 
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Burchart (1995). Each nonbonded energy and derivative is multiplied by a Taper-term, which is 

taken from a distance-dependent 7th order polynomial (equation 21)). 
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The terms in this polynomal are chosen to ensure that all 1st, 2nd and 3rd derivatives of the non-

bonded interactions to the distance are continuous and go to zero at the cutoff boundary. To that 

end, the terms Tap0 to Tap7 in equation (21) are calculated by the scheme in equation (22), where 

Rcut is the non-bonded cutoff radius. 
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12.2 van der Waals interactions. To account for the van der Waals interactions we use a 

distance-corrected Morse-potential (Equations. 23a-b). By including a shielded interaction 

(Equation 23b) excessively high repulsions between bonded atoms (1-2 interactions) and atoms 

sharing a valence angle (1-3 interactions) are avoided.  
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12.3 Coulomb Interactions 

As with the van der Waals-interactions, Coulomb interactions are taken into account between 

all atom pairs.  To adjust for orbital overlap between atoms at close distances a shielded 

Coulomb-potential is used (Equation 24). 
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Atomic charges are calculated using the Electron Equilibration Method (EEM)-approach.  

The EEM charge derivation method is similar to the QEq-scheme; the only differences, apart 

from parameter definitions, are that EEM does not use an iterative scheme for hydrogen charges 

(as in QEq) and that QEq uses a more rigorous Slater orbital approach to account for charge 

overlap.  

 


