Supporting Information

Iriomoteolide-3a, a Cytotoxic 15-Membered Macrolide from a Marine Dinoflagellate *Amphidinium* Species

Keiko Oguchi,[†] Masashi Tsuda,^{*,‡} Rie Iwamoto,[†] Yumiko Okamoto,[†] Jun'ichi Kobayashi,[†] Eri Fukushi,[§] Jun Kawabata,[§] Tomoko Ozawa,["] Atsunori Masuda,["] Yoshiaki Kitaya,[±] and Kenji Omasa[¶]

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, Center for Advanced Marine Core Research, Kochi University, Kochi 783-8502, Japan, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan, MARINE FARM, Yanmar Co. Ltd., Oita 873-0421, Japan, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan, and Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan

Contents	page
Table S1	S3
General Methods	S5
Figure S1. ¹ H NMR spectrum of iriomoteolide-3a (1) in CDCl ₃ .	S6
Figure S2. ¹³ C NMR spectrum of iriomoteolide-3a (1) in CDCl ₃ .	S7
Figure S3. ¹ H- ¹ H COSY spectrum of iriomoteolide-3a (1) in CDCl ₃ .	S8
Figure S4. TOCSY spectrum of iriomoteolide-3a (1) in CDCl ₃ .	S9
Figure S5. HMQC spectrum of iriomoteolide-3a (1) in CDCl ₃ .	S10
Figure S6. Phase-sensitive HMBC spectrum of iriomoteolide-3a (1) in	S11
CDCl ₃ .	
Figure S7. NOESY spectrum of iriomoteolide-3a (1) in CDCl ₃ .	S12
Figure S8. ¹ H NMR spectrum of 7,8-O-isopropylidene derivative (2) of	S13
iriomoteolide-3a (1) in CDCl ₃ .	
Figure S9. ¹ H- ¹ H COSY spectrum of 7,8- <i>O</i> -isopropylidene derivative (2) of	S14
iriomoteolide-3a (1) in CDCl ₃ .	
Figure S10. NOESY spectrum of 7,8-O-isopropylidene derivative (2) of	S15
iriomoteolide-3a (1) in CDCl ₃ .	
Figure S11. ¹ H NMR spectrum of 7,8,15-tris-(S)-MTPA ester (3a) of	S16
iriomoteolide-3a (1) in CDCl ₃ .	
Figure S12. ¹ H NMR spectrum of 7,8,15-tris-(R)-MTPA ester (3b) of	S17
iriomoteolide-3a (1) in CDCl ₃ .	
Figure S13. 1H NMR signals for H-7 and H-8 a) of natural iriomoteolide-3a	S18
(1) and b) simulated by NMRPEAK.exe program.	

Table S1. ¹H and ¹³C NMR Data of Iriomoteolide-3a (1) in CDCl_{3.}

position		¹³ C	¹ H		
1	172.6	С			
2	37.7	CH_2	2.38	dd, 2.4, 14.0	
			1.98	dd, 7.8, 14.0	
3	29.8	СН	2.10	m	
4	36.0	CH_2	2.32	ddd, 4.0, 10.0, 13.8	
			1.82	ddd, 4.0, 8.9, 13.8	
5	133.2	СН	5.77	ddd, 4.0, 10.0, 16.3	
6	131.3	СН	5.40	m	
7	76.7^{a}	СН	3.965	m^b	
8	76.6 ^a	СН	3.955	m^b	
9	135.8	СН	5.79	m	
10	132.5	СН	5.25	dd, 9.8, 15.5	
11	59.0	СН	3.00	dd, 2.3, 9.8	
12	57.7	СН	2.90	dt, 9.8, 2.3	
13	34.3	CH_2	2.26	dt, 14.0, 2.3	
			1.48	ddd, 9.8, 10.4, 14.0	
14	72.7	СН	5.11	ddd, 2.3, 3.4, 10.4	
15	70.8	СН	3.60	br dt, 10.0, 3.6	
16	40.6	CH_2	1.39	ddd, 4.0, 10.0, 13.9	
			1.27	ddd, 3.6, 10.7, 13.9	
17	33.3	СН	2.35	m	
18	135.3	СН	5.20	dd, 8.5, 15.5	
19	128.6	СН	5.45	m	

20	35.4	CH_2	2.66 ^c	m
21	129.5	СН	5.38	m
22	125.6	СН	5.40	m
23	17.8	CH ₃	1.64 ^d	d, 6.6
24	20.7	CH ₃	1.01^{d}	d, 6.6
25	21.6	CH_3	1.01^{d}	d, 6.6

 a These signals were interchangeable. b Although these signals were overlapped with each other, J(H-6/H-7), J(H-7/H-8), and J(H-8/H-9) values were approximately 8.6 Hz. c 2H. d 3H.

General Methods.

NMR data in CDCl₃ (99.96% deuteration degree) were obtained using 2.5 mm micro cells for CDCl₃, and measured on a 600 MHz spectrometer equipped with 2.5 mm inverse probe or 500 MHz spectrometer equipped with 2.5 mm dual probe. For the phase-sensitive HMBC spectrum, the mixing time Δ was set to 60 msec. Positive- and negative-mode ESIMS spectra were measured at -80 V as a focus voltage using a sample dissolved in MeOH with flow rate of 200 μ L/min. NMR simulations were carried out using NMRPEAK.exe program by Dr. H. Nakamura.

Figure S1. ¹H NMR spectrum of iriomoteolide-3a (1) in CDCl₃.

Figure S2. ¹³C NMR spectrum of iriomoteolide-3a (1) in CDCl₃.

Figure S3. ¹H-¹H COSY spectrum of iriomoteolide-3a (1) in CDCl₃.

Figure S4. TOCSY spectrum of iriomoteolide-3a (1) in CDCl₃.

Figure S5. HMQC spectrum of iriomoteolide-3a (1) in CDCl₃.

Figure S6. Phase-sensitive HMBC spectrum of iriomoteolide-3a (1) in CDCl₃.

Figure S7. NOESY spectrum of iriomoteolide-3a (1) in CDCl₃.

Figure S8. ¹H NMR spectrum of 7,8-*O*-isopropylidene derivative (2) of iriomoteolide-3a (1) in CDCl₃.

Figure S11. ¹H NMR spectrum of 7,8,15-(S)-MTPA ester (3a) of iriomotelide-3a (1) in CDCl₃.

Figure S12. ¹H NMR spectrum of 7,8,15-(*R*)-MTPA ester (**3b**) of iriomoteolide-3a (**1**) in CDCl₃.

Figure S13. ¹H NMR signals for H-7 and H-8 a) of natural iriomoteolide-3a (1) and b) simulated by NMRPEAK.exe program.

