Supporting Information for: 1 2 Effects of Pharmaceutically Active Compounds on Activated Sludge Microorganisms 3 Shuyi Wang, Ryan Holzem[†], Claudia.K. Gunsch^{*} 4 Department of Civil and Environmental Engineering, Duke University, Box 90287, 5 Durham, NC 27708, USA 6 7 Number of pages: 5 8 9 Number of tables: 1 Number of figures: 0 10 11 *Correspondence author phone: 919-660-5208; fax: 919-660-5219; e-mail: 12 ckgunsch@duke.edu 13 14 [†] Present address: Department of Environmental Engineering, University of Wisconsin, 15 1415 Engineering Dr, Madison, WI 53706 16

17

Relationship Between OD_{600} and Cell Mass. Cell mass measurements were derived from OD_{600} measurements using the standard curve shown in Figure S1. The standard curve was prepared by vacuum filtering 10 mL cell cultures with known OD_{600} values through dry Whatman filter membranes (0.2 μ M). Membranes were placed in aluminum planchettes, dried at 105 °C for 4 hours, cooled to room temperature in a desiccator and weighed on a four-place balance. All measurements were performed in triplicates.

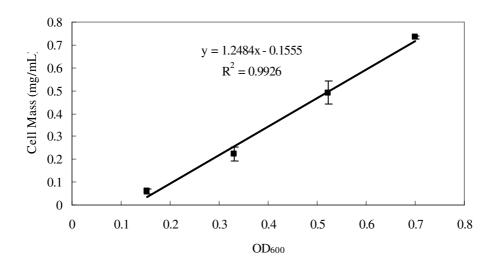


Figure S1. Standard curve of OD600 and cell mass.

Specific Oxygen Uptake Rate (SOUR) Measurements. SOUR measurements were obtained using standard methods (*1*). Briefly, 10 mL of inoculum sludge (i.e., Day 0) and 10 μ M PhACs were added in 300-mL bottles filled with basal medium. The DO levels were measured using a pre-inserted DO probe (YSI model 50B, Yellow Springs, Ohio) over a 20 min period. VSS was measured using standard methods (*1*). SOUR measurements were performed at a final PhAC concentration of 10 μ M in 0.2% (v/v)

ethanol. Triplicate tests were performed for each PhAC.

DNA Extraction. One hundred μ L biomass samples were obtained by centrifuging 1 min at 16,300×g RCF at room temperature using a Spectrafuge 24D microcentrifuge (Eppendorf, Inc., Woodbridge, New Jersey). If DNA extraction was not performed immediately, the cell pellets were stored at -80 °C in a Revco Ultima Ultra-Cold Freezer (Thermo Electron Corporation, Marietta, Ohio). DNA was extracted using Mo Bio Ultra CleanTM microbial DNA kits (Carlsbad, California). The extraction was performed following the manufacturer's instructions without any modifications. The purified DNA was eluted in sterile water and stored at -20°C (GE® Upright Freezer, Louisville, Kentucky) for PCR amplification. DNA quality was assessed by measuring the A₂₆₀/A₂₈₀ ratio using a ND-1000 Spectrophotometer (Nanodrop®, Wilmington, Delaware). Only samples with ratios between 1.8 and 1.9 were used (2).

Polymerase Chain Reaction (PCR). The first PCR product was amplified using the bacterial forward primer 8F and the universal reverse primer 1492R (*3*). The final PCR amplicon was obtained using the I-341-fGC and I-533r primers (*4*). A summary of the primers sequences is shown in Table 2. All PCR amplifications were performed using a GeneAmp[®] PCR System 9700 (Applied Biosystems, Foster City, CA). All reagents were obtained from the Eppendorf Master*Taq*[®] kit (Hamburg, Germany) and used following the manufacturer's instructions. The program for the first PCR amplification consisted of a 30-sec denaturation step at 94°C, followed by a 30-sec

annealing step at 52°C and a 30-sec extension step at 72°C (30 cycles). Touch-down PCR was used for the second PCR amplification. The first two cycles consisted of a 30-sec denaturation step at 94°C, a 30-sec annealing step at 52°C and a 30-sec extension step at 72°C. The next 30 cycles consisted of a 30-sec denaturation step at 94°C, a 30-sec annealing step at 47°C and a 30-sec extension step at 72°C.

Table S1. Primer sequences for DGGE analysis. ^a Numbers correspond to the nucleotide positions in *Escherichia.coli*; F or f, forward primer; R or r, reverse primer. ^b I, inosine.

Primer ^a	Sequence (5'-3') ^b
8F	AGAGTTTGATCCTGGCTCAG
1492R	GGTTACCTTGTTACGACTT
I-341-fGC	CGCCCGCCGCGCGCGGGGGGGGGGGGGGGGGGGGGGGGG
I-533r	TIACCGIIICTICTGGCAC

Denaturing Gradient Gel Electrophoresis (DGGE). All PCR amplifications were loaded on an 8% (w/v) polyacrylamide gel with a denaturing gradient ranging from 20 to 55% urea-formamide (100% denaturing solution corresponded to 40% (v/v) deionized formamide and 7 M urea). The gel was run at 57°C under a voltage of 50 V for 18 h and then stained with 1X SYBR Gold (Molecular Probes, Eugene, OR). Sequencing was performed on excised bands using the I-533r primer. DNA sequence analysis was performed using the BLAST server of the National Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov).

References:

- (1) Eaton A.D.; Clesceri L.S.; Rice E.W.; A.E., G., Standard methods for the examination of water and wastewater (21st Edition). **2005**, 2:79-80.
- (2) Glasel, J. A., Validity of Nucleic Acid Purities Monitored by A260/A280 Absorbance Ratios. *Biotechniques* **1995**, *18*, (62-63).
- Weisburg, W. G.; Barns, S. M.; Pelletier, D. A.; Lane, D. J., 16s Ribosomal DNA Amplification for Phylogenetic Study. *Journal of Bacteriology* 1991, *173*, (2), 697-703.
- (4) Watanabe, K.; Kodama, Y.; Harayama, S., Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. *Journal of Microbiological Methods* **2001**, *44*, (3), 253-262.