Au-Catalyzed Cyclization of Monoallylic Diols

Aaron Aponick,* Chuan-Ying Li, and Berenger Biannic
Department of Chemistry, University of Florida, Gainesville, Florida 32611
aponick@chem.ufl.edu

Supporting Information

General:

All reactions were carried out under an atmosphere of nitrogen unless otherwise specified. Anhydrous solvents were transferred via syringe to flame-dried glassware, which had been cooled under a stream of dry nitrogen. Anhydrous tetrahydrofuran (THF), acetonitrile, ether, dichloromethane, pentane were dried using a mBraun solvent purification system.

Analytical thin layer chromatography (TLC) was performed using $250 \mu \mathrm{~m}$ Silica Gel $60 \mathrm{~F}_{254}$ pre-coated plates (EMD Chemicals Inc.). Flash column chromatography was performed using 230-400 Mesh 60A Silica Gel (Whatman Inc.). The eluents employed are reported as volume:volume percentages. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded using Varian Unity Inova 500 MHz and Varian Mercury 300 MHz spectrometers. Chemical shift (δ) is reported in parts per million (ppm) downfield relative to tetramethylsilane (TMS, 0.0 ppm) or CDCl_{3} (7.26 ppm). Coupling constants (J) are reported in Hz . Multiplicities are reported using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad; Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded using a Varian Unity Mercury 300 spectrometer at 75 MHz . Chemical shift is reported in ppm relative to the carbon resonance of $\mathrm{CDCl}_{3}(77.00 \mathrm{ppm})$. Infrared spectra were obtained on a Bruker Vector 22 IR spectrometer at $4.0 \mathrm{~cm}^{-1}$ resolution and are reported in wavenumbers. High resolution mass spectra (HRMS) were obtained by Mass Spectrometry Core Laboratory of University of Florida, and are reported as m / e (relative ratio). Accurate masses are reported for the molecular ion $(\mathrm{M}+$) or a suitable fragment ion.

(\boldsymbol{E})-7-oxohept-5-enyl acetate (4a). A solution of hex-5-enyl acetate ($170.1 \mathrm{mg}, 1 \mathrm{mmol}$) and crotonaldehyde ($350.1 \mathrm{mg}, 5 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to a solution of Grubbs $2^{\text {nd }}$ generation catalyst ($25.5 \mathrm{mg}, 0.03 \mathrm{mmol}, 3 \mathrm{~mol} \%$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The mixture was stirred at reflux for 2 hours and then cooled to rt. Silica gel (200 mg) was
added and the reaction mixture was stirred open to air for 30 min . The solvent was removed and the crude product was purified by flash chromatography (50% $\mathrm{EtOAc} / \mathrm{Hexanes}$) to give the product as a yellow oil ($116.8 \mathrm{mg}, 92 \%$) that satisfactorily matched all previously reported data. ${ }^{1}$

(\boldsymbol{E})-1-cyclohexylhept-2-ene-1,7-diol (4). A solution of cyclohexylmagnesium bromide (2 M in $\mathrm{Et}_{2} \mathrm{O}, 1.120 \mathrm{~mL}, 3.3$ eq.) was added dropwise to a solution of $\mathbf{4 a}(100 \mathrm{mg}, 0.78$ $\mathrm{mmol})$ in dry THF $(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred 2 h and then quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (6 mL of a saturated aqueous solution), diluted with water (30 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, concentrated, and purified by flash chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to give the product as a colorless oil ($146.9 \mathrm{mg}, 71 \%$). $\mathrm{R}_{\mathrm{f}}=0.12$ ($20 \% \mathrm{EtOAc} /$ hexanes); IR (neat) $3356,2924,2852,1449,1003,433 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.59$ (dt, $J=6.3$, $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=6.9,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.06(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-0.88(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.7$, 132.1, 77.84, 62.93, 43.88, 32.40, 32.18, 29.0, 28.9, 26.7, 26.3, 26.2, 25.6; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{2}(\mathrm{M}-\mathrm{H})^{+}$211.1693, found 211.1704.

(E)-2-(2-cyclohexylvinyl)-tetrahydropyran (5). Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added to an aluminum foil covered test tube containing $\mathrm{PPh}_{3} \mathrm{AuCl}(1.3 \mathrm{mg}, 0.003 \mathrm{mmol})$, $\mathrm{AgOTf}(0.7$ $\mathrm{mg}, 0.003 \mathrm{mmol}$) and activated MS-4 $\AA(25 \mathrm{mg})$. After stirring for 10 minutes, a solution of diol $4(56.1 \mathrm{mg}, 0.26 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added. After TLC analysis showed the reaction to be complete (40 min), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short plug of silica. The solution of crude product was concentrated, and then purified by flash chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to give the product as a colorless oil ($48.6 \mathrm{mg}, 96 \%$). $\mathrm{R}_{\mathrm{f}}=0.81$ ($5 \% \mathrm{EtOAc} /$ hexanes); IR (neat) 2925, 2851, 1448, 1085, $968,412 \mathrm{~cm}^{-1} ; \quad{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.59(\mathrm{dd}, J=6.3,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (dd, 6.3, $15.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.98(\mathrm{dt}, J=2.7,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=6.0,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.45(\mathrm{dt}, J=2.4,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-0.97(\mathrm{~m}, 17 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.8$, 128.9, 78.7, 68.6, 40.5, 32.9, 33.0, 32.5, 26.4, 26.3, 26.1, 23.7; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+} 195.1754$, found 195.1749.

(\boldsymbol{E})-1-phenylhept-2-ene-1,7-diol (6). To a solution of Grubb's catalyst $2^{\text {nd }}$ generation (3 $\mathrm{mol} \%, 25.5 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ in a flamed dried flask was added solution of 1-phenylprop-2-en-1-ol ($134.0 \mathrm{mg}, 1 \mathrm{mmol}$) and hex-5-enyl acetate ($284.0 \mathrm{mg}, 2 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The mixture was stirred at reflux for 6 hours, cooled to r.t, and then filtered through a short plug of silica. The solvent was removed and the crude product was purified by flash chromatography ($15 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to give (E)-7-hydroxy-7-phenylhept-5-enyl acetate as a colorless oil(109 mg, 44\%).

The oil was dissolved in 3 mL MeOH , and then mixed with 1 mL aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($91 \mathrm{mg}, 0.66 \mathrm{mmol}$). The mixture stirred at room temperature for 9 h , diluted with 10 mL water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and then purified by flash chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to give a colorless oil ($57 \mathrm{mg}, 63 \%$). IR (neat) $3356,3029,2933,1453,970 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.76-5.59(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, J$ $=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.55-1.39(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,132.6,132.0,128.4,127.4,126.1,75.0,62.6,32.1,31.8,25.1$. HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 229.1199$, found 229.1213.

(E)-2-styryl-tetrahydro-2H-pyran (7). Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to an aluminum foil covered test tube containing $\mathrm{PPh}_{3} \mathrm{AuCl}(1.0 \mathrm{mg}, 0.002 \mathrm{mmol}), \mathrm{AgOTf}(0.5 \mathrm{mg}, 0.002$ mmol) and activated MS-4 (17 mg). After stirring for 10 minutes, a solution of the (E)-1-phenylhept-2-ene-1,7-diol $6(43.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added. The reaction mixture was stirred at r.t. under nitrogen for 30 minutes. After TLC analysis showed the reaction to be complete it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short plug of silica. The solution was concentrated, and the crude product purified by flash chromatography ($2 \% \mathrm{EtOAc} /$ hexanes) to give the product as a colorless oil ($35.0 \mathrm{mg}, 89 \%$) that satisfactorily matched all previously reported data. ${ }^{2}$

1-cyclohexylhex-5-en-1-ol (8a). To a solution of cyclohexane carbaldehyde ($1.12 \mathrm{~g}, 10$ $\mathrm{mmol})$ in dry THF (20 mL) at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of pent-4-enylmagnesium bromide (prepared from 5-bromopent-1-ene ($1.49 \mathrm{~g}, 10 . \mathrm{mmol}$),
$\mathrm{Mg}(252 \mathrm{mg}, 10.5 \mathrm{mmol})$, THF (20 mL)). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 60 min and then quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. After separation, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and then purified by flash chromatography ($10 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to give the product as a colorless oil ($1.0 \mathrm{~g}, 55 \%$) that satisfactorily matched all previously reported data. ${ }^{3 \mathrm{a}}$

(\boldsymbol{E})-7-cyclohexyl-7-hydroxyhept-2-enal ($\mathbf{8 b}$). To a solution of Grubb's catalyst $2^{\text {nd }}$ generation ($3 \mathrm{~mol} \%, 25.5 \mathrm{mg}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ in a flamed dried flask was added solution of 1-cyclohexylhex-5-en-1-ol $\mathbf{8 a}(182.2 \mathrm{mg}, 1 \mathrm{mmol})$ and crotonaldehyde (350.5 $\mathrm{mg}, 5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The mixture was stirred at reflux for 11 hours, cooled to r.t. and then filtered through a short plug of silica. The solvent was removed and the crude product was purified by flash chromatography ($10 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to give the product as a colorless oil $(166 \mathrm{mg}, 79 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.50(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{dt}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{ddt}, J=15.6,8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.33$ $(\mathrm{m}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 2 \mathrm{H}), 1.80-0.91(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.0$, $158.8,132.8,75.5,43.6,33.2,32.6,29.0,27.7,26.3,26.1,26.0,24.1$.

(\boldsymbol{E})-7-cyclohexylhept-2-ene-1,7-diol (8). To a solution of
(E)-7-cyclohexyl-7-hydroxyhept-2-enal $\mathbf{8 b}(166 \mathrm{mg}, 0.79 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$
was added $\mathrm{NaBH}_{4}(36 \mathrm{mg}, 0.95 \mathrm{mmol})$ over 1 minute. After stirring at $0^{\circ} \mathrm{C}$ for 30 minutes, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added, and then 10 mL water. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extract was dried over MgSO_{4} and then purified by flash chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to give the product as a colorless oil ($145 \mathrm{mg}, 86 \%$). IR (neat) 3383, 2924, 1670, 1449, 969. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.74-5.58(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.32((\mathrm{~m}$, $1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.80-0.95(\mathrm{~m}, 17 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.5,129.2$, 75.8, 63.2, 43.5, 33.3, 32.1, 29.1, 27.7, 26.4, 26.2, 26.1, 25.3. HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$235.1669, found 235.1649.

Cis-2-cyclohexyl-6-vinyl-tetrahydro-2H-pyran (9). ${ }^{3 b}$ Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to an aluminum foil covered test tube containing $\mathrm{PPh}_{3} \mathrm{AuCl}(1.0 \mathrm{mg}, 0.002 \mathrm{mmol})$, $\operatorname{AgOTf}(0.5 \mathrm{mg}, 0.002 \mathrm{mmol})$ and activated MS-4 $\AA(17 \mathrm{mg})$. After stirring for 10 minutes, the mixture was cooled to $-50^{\circ} \mathrm{C}$ and a solution of diol $\mathbf{8}(42.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added. After TLC analysis showed the reaction to be complete (8h), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short plug of silica. The solution of crude product was concentrated, and then purified by flash chromatography (1% $\mathrm{EtOAc} / \mathrm{hexanes}$) to give the product as a colorless oil ($30.8 \mathrm{mg}, 80 \%$). Data for major product (Cis): IR (neat) 2926, 2853, 1645, 1450, 1076, $918 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.86$ (ddd, $J=17.4,10.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dt}, J=17.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dt}, J=10.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.71(\mathrm{~m}, 2 \mathrm{H})$, 1.63-0.96 (m, $15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.9,113.9,82.1,78.2,43.2,31.7,29.3,28.7,27.9$, 26.7, 26.3, 26.2, 23.7. HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$217.1563, found 217.1571.

The relative configuration of the major diastereomer was determined by NOE DIFF experiments as follows:

(\boldsymbol{E})-6-cyclohexyl-6-hydroxyhex-2-enal (10a). To a solution of cyclohexane carbaldehyde ($1.68 \mathrm{~g}, 15 \mathrm{mmol}$) in dry THF $(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of but-3-enylmagnesium bromide (prepared from 4-bromobut-1-ene ($2.03 \mathrm{~g}, 15$ $\mathrm{mmol}), \mathrm{Mg}(380 \mathrm{mg}, 15.8 \mathrm{mmol})$, THF (20 mL)). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. After separation, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extract was dried over MgSO_{4} and then purified by flash chromatography (10% $\mathrm{EtOAc} / \mathrm{Hexanes}$) to give 1-cyclohexylpent-4-en-1-ol as a colorless oil ($1.40 \mathrm{~g}, 55 \%$).

To a solution of Grubb's catalyst $2^{\text {nd }}$ generation ($3 \mathrm{~mol} \%, 51.0 \mathrm{mg}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 mL) in a flamed dried flask was added solution of 1-cyclohexylpent-4-en-1-ol ($336 \mathrm{mg}, 2$ $\mathrm{mmol})$ and crotonaldehyde $(700.9 \mathrm{mg}, 10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The mixture was stirred at reflux for 11 hours, cooled to r.t. and then filtered through a short plug of silica.

The solvent was removed and the crude was purified by flash chromatography (10% $\mathrm{EtOAc} / \mathrm{Hexanes}$) to give the product as a colorless oil ($242 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dt}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (ddt, $J=$ $15.6,7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.80-0.92(\mathrm{~m}, 13 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.0,158.8,132.9,75.3,43.8,32.1,29.3,29.1,27.8,26.4$, 26.2, 26.0.

(\boldsymbol{E})-6-cyclohexylhex-2-ene-1,6-diol (10). To a solution of (E)-6-cyclohexyl-6-hydroxyhex-2-enal 10a ($242 \mathrm{mg}, 1.23 \mathrm{mmol}$) in $\mathrm{MeOH}(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(57 \mathrm{mg}, 1.5 \mathrm{mmol})$ over 1 minute. After stirring at $0^{\circ} \mathrm{C}$ for 30 minutes, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ was added, and then 15 mL water. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extract was dried over MgSO_{4} and then purified by flash chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to give the product as a colorless oil ($213 \mathrm{mg}, 88 \%$). IR (neat) 3332, 2924, 1670, 1449, 969. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.74-5.58(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.36-3.30(\mathrm{~m}$, $1 \mathrm{H}), 2.26-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.75-0.94(\mathrm{~m}, 13 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.7$, 129.3, 75.5, 63.4, 43.7, 33.4, 29.1, 28.7, 27.8, 26.5, 26.3, 26.1. HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$221.1512, found 221.1519.

2-cyclohexyl-5-vinyl-tetrahydrofuran (11). Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to an aluminum foil covered test tube containing $\mathrm{PPh}_{3} \mathrm{AuCl}(1.0 \mathrm{mg}, 0.002 \mathrm{mmol})$, $\mathrm{AgOTf}(0.5$ $\mathrm{mg}, 0.002 \mathrm{mmol})$ and activated MS-4 $(17 \mathrm{mg})$. After stirred for 10 minutes, cooled to $-50^{\circ} \mathrm{C}$, a solution of diol $10(39.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added.

After TLC analysis showed the reaction to be complete (10 h), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short plug of silica. The solution of crude product was concentrated, and then purified by flash chromatography ($2 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give the product as a colorless oil ($28.4 \mathrm{mg}, 79 \%$). Data for major product (Cis): IR (neat) 3080, 2924, 2853, $1449,1055,950 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83$ (ddd, $J=17.4,10.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.20(\mathrm{dt}, J=17.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dt}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-0.90(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.7,114.7$, 83.8, 79.6, 43.2, 32.7, 29.9, 29.6, 28.8, 26.6, 26.1, 26.0. HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{19}$ $\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)^{+}$163.1481, found 163.1494.

The relative configuration of the major diastereomer was determined by NOE DIFF
experiments as follows:

Hex-5-enal (12a). ${ }^{4}$ To a solution of 5-hexen-1-ol ($0.9 \mathrm{~mL}, 7.49 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (12 mL) was added pyridinium chlorochromate ($2.45 \mathrm{~g}, 11.4 \mathrm{mmol}$). The resulting dark red solution was stirred for 14 h at room temperature, diluted with pentane (12 mL), filtered through a plug of silica with $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane $(7 \times 25 \mathrm{~mL})$. The filtrate was concentrated to give 5 -hexen-1-al as a clear, colorless oil. The unpurified aldehyde was carried immediately into the next step without further purification.

Ethyl 3-hydroxyoct-7-enoate (12b). To a solution of i - $\mathrm{Pr}_{2} \mathrm{NH}(2.2 \mathrm{~mL}, 15.8 \mathrm{mmol})$ in dry THF (20 mL) was added $n-\operatorname{BuLi}\left(6 \mathrm{~mL}, 2.5 \mathrm{M}\right.$ in hexane) at $-78^{\circ} \mathrm{C}$. The mixture was kept at this temperature for 1 h , then a mixture of ethyl acetate (15 mmol) and dry THF $(10 \mathrm{~mL})$ was added at low temperature. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, a mixture of Hex-5-enal 12a (7.5 mmol) and dry THF (10 mL) was added. After the mixture was stirred for an additional 1 h , saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the aqueous layer was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$), the combined extracts were dried and evaporated in vacuum. The residue was subjected to flash chromatography to furnish the product as a colorless oil ($761 \mathrm{mg}, 55 \%$ for two steps) that satisfactorily matched all previously reported data. ${ }^{5}$

(\boldsymbol{E})-ethyl 3-hydroxy-9-oxonon-7-enoate (12c). To a solution of Grubb's catalyst $2^{\text {nd }}$ generation ($3 \mathrm{~mol} \%, 51.0 \mathrm{mg}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ in a flamed dried flask was added solution of ethyl 3-hydroxyoct-7-enoate $\mathbf{1 2 b}(372 \mathrm{mg}, 2 \mathrm{mmol})$ and crotonaldehyde ($700.9 \mathrm{mg}, 10 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The mixture was stirred at reflux for 11 hours, cooled to r.t. and then filtered through a short plug of silica. The solvent was removed and the crude was purified by flash chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to give the product as a colorless oil ($411 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.37(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dt}, J=15.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{ddt}, J=15.6,7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$
(q, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.95-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.36-2.23(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.35(\mathrm{~m}$, $4 \mathrm{H}), 1.15(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.8,172.4,158.2,132.8$, 67.2, 60.4, 41.3, 35.6, 32.1, 23.5, 13.9.

(\boldsymbol{E})-ethyl 3,9-dihydroxynon-7-enote (12). To a solution of (E)-ethyl
3-hydroxy-9-oxonon-7-enoate 12c ($411 \mathrm{mg}, 1.92 \mathrm{mmol}$) in $\mathrm{MeOH}(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was
added $\mathrm{NaBH}_{4}\left(87 \mathrm{mg}, 2.3 \mathrm{mmol}\right.$) over 1 minute, After stirred at $0^{\circ} \mathrm{C}$ for 30 minutes, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ was added, and then 15 mL water. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extract was dried over MgSO_{4} and then purified by flash chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to give the product as a colorless oil ($355 \mathrm{mg}, 86 \%$). IR (neat) 3387, 2934, 2861, 1731, 1300, 972. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.70-5.55(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.04$, (d, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=16.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (dd, $J=16.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.55-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,132.4,129.4,67.8,63.5,60.6,41.3$, 35.8, 31.8, 24.8, 14.1. HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+} 239.1254$, found 239.1262.

Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to an aluminum foil covered test tube containing $\mathrm{PPh}_{3} \mathrm{AuCl}(1.0 \mathrm{mg}, 0.002 \mathrm{mmol}), \operatorname{AgOTf}(0.5 \mathrm{mg}, 0.002 \mathrm{mmol})$ and activated MS-4 $\mathrm{A}(17$ $\mathrm{mg})$. After stirring for 10 minutes, cooled to $-10^{\circ} \mathrm{C}$, a solution of diol $\mathbf{1 2}(43.2 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added. After TLC analysis showed the reaction to be complete (9 h), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short plug of silica. The solution of crude product was concentrated, and then purified by flash chromatography ($50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes) to give the trans and cis products as colorless oil.
Cis-Ethyl 2-(6-vinyl-tetrahydro-2H-pyran-2-yl) acetate (13a). (36.2 mg, 91%). IR (neat) 2982, 2936, 2860, 1737, 1647, 1192. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.82$ (ddd, $J=$ $17.4,10.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dt}, J=17.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dt}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.13 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.87-3.77(\mathrm{~m}, 2 \mathrm{H}), 2.58$ (dd, $J=15.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=$ $15.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,139.2,114.4,78.2,74.3,60.3,41.7$, 31.0, 30.9, 23.2, 14.2. HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$199.1329, found 199.1328.

Trans-Ethyl 2-(6-vinyl-tetrahydro-2H-pyran-2-yl) acetate (13b). (3.1 mg, 8 \%). IR (neat) 2931, 2855, 1738, 1038. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88$ (ddd, $J=17.7,11.1$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dt}, J=17.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dt}, J=11.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.36(\mathrm{~m}$, $1 \mathrm{H}), 4.25-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{dd}, J=14.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (dd, $J=14.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,138.3,116.1,72.5,68.0,60.4,40.4,30.4,28.6,18.6$, 14.2. HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$199.1329, found 199.1339.

(\boldsymbol{E})-6-bromohex-2-enal (14a). To a solution of Grubb's catalyst $2^{\text {nd }}$ generation ($1 \mathrm{~mol} \%$, $84.9 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ in a flamed dried flask was added solution of 5-bromopent-1-ene ($1.49 \mathrm{~g}, 10 \mathrm{mmol}$) and crotonaldehyde ($3.5 \mathrm{~g}, 50 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The mixture was stirred at reflux for 20 hours, cooled to r.t. and then filtered through a short plug of silica. The solvent was removed and the crude was purified by flash chromatography (20% Ether/Hexanes) to give the product as a colorless oil ($1.69 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.51$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.82(\mathrm{dt}, J=$ $15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ (ddt, $J=15.6,8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{dq}$, $J=6.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{dt}, J=14.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.7$, 156.0, 133.7, 32.3, 30.9, 30.5.

(\boldsymbol{E})-6-bromohex-2-en-1-ol (14b). To a solution of (E)-6-bromohex-2-enal 14a (266 mg , $1.5 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL-H ($1.6 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane) over 2 min . After stirring at $-78^{\circ} \mathrm{C}$ for 30 min , a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ was added, followed by 5 mL water and 1 mL 6 N HCl . The aqueous layer was extracted with ether ($3 \times 8 \mathrm{~mL}$). The combined extract was dried over MgSO_{4} and then purified by flash chromatography (50% Ether/Hexanes) to give the product as a colorless oil (253 mg , 95%) that satisfactorily matched all previously reported data. ${ }^{6}$
Crict
(E)-(6-bromohex-2-enyloxy)(tert-butyl)dimethylsilane (14c). To a solution of (E)-6-bromohex-2-en-1-ol 14b ($859 \mathrm{mg}, 4.8 \mathrm{mmol}$) and imidazole ($544 \mathrm{mg}, 8.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added portion-wise $\mathrm{TBDMSCl}(600 \mathrm{mg}, 4.0 \mathrm{mmol})$. The reaction was stirred at r.t. for $1.5 \mathrm{~h}, 10 \mathrm{~mL}$ water was added, and then $1 \mathrm{M} \mathrm{HCl}(4 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined extracts were dried over MgSO_{4} and then purified by flash chromatography (20% Ether/Hexanes) to give the product as a colorless oil ($905 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.63-5.59 (m, 2H), 4.13-4.11 (m, 2H), 3.41 (t, J = 6.6 Hz, 2H), 2.23-2.16 (m, 2H),
1.98-1.89 (m, 2H), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 130.8, 128.7, 63.7, 33.2, 32.1, 30.5, 25.9, 18.4, -5.1.

(E)-1-(benzyloxy)-8-(tert-butyldimethylsilyloxy)oct-6-en-2-ol (14d). To a solution of $t-\mathrm{BuLi}\left(1.2 \mathrm{~mL}, 1.7 \mathrm{M}\right.$ in pentane) in ether $(0.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a solution of (E)-(6-bromohex-2-enyloxy)(tert-butyl)dimethylsilane 14 c in 0.5 mL ether. After stirring for 0.5 h at $-78^{\circ} \mathrm{C}$, a mixture of 2-(benzyloxy)acetaldehyde ($150 \mathrm{mg}, 1.0 \mathrm{mmol}$) and dry ether (1.0 mL) was added. After the mixture was stirred for 45 minutes, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 mL) and water (3 mL) was added and the aqueous layer was extracted with ether ($3 \times 10 \mathrm{~mL}$), the combined extracts were dried over MgSO_{4}, and evaporated in vacuum. The residue was subjected to flash chromatography to furnish the product as a colorless oil ($117 \mathrm{mg}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.68-5.48$ $(\mathrm{m}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=9.3$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=9.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.41$ $(\mathrm{m}, 4 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.9,130.8,129.6$, $128.4,127.8,127.7,74.6,73.3,70.2,64.0,32.6,32.1,26.0,25.0,18.4,-5.1$.

(E)-8-(benzyloxy)oct-2-ene-1,7-diol (14). p- Toluenesulfonic acid hydrate (13.9 mg , 0.073 mmol) was added to a solution of (E)-1-(benzyloxy)-8-(tert-butyldimethylsilyloxy) oct-6-en-2-ol 14d ($267 \mathrm{mg}, 0.73 \mathrm{mmol}$) in dry methanol (7.3 mL). After 20 min , analysis of the reaction by TLC indicated that the starting material had been consumed. The reaction mixture was then diluted with ether $(30 \mathrm{~mL})$ and washed sequentially with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine ($2 \times 10 \mathrm{~mL}$). The organic layer was dried over MgSO_{4} and the solvent removed in vacuo. Flash chromatography (40% Ethyl acetate/Hexane) afforded the product as a colorless oil ($150 \mathrm{mg}, 82 \%$). IR (neat) 3384, 2929, 2860, 1496, 1090, 735. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H})$, $5.73-5.58(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=$ $9.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.32 (dd, $J=9.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (br s, 1 H), 2.10-2.04 (m, 2 H), $1.63-1.25(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.9,132.7,129.3,128.4,127.8,127.7$, 74.6, 73.3, 70.2, 63.7, 32.5, 32.1, 25.0. HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)^{+}$ 233.1536, found 233.1537.

Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to an aluminum foil covered test tube containing $\mathrm{PPh}_{3} \mathrm{AuCl}(1.0 \mathrm{mg}, 0.002 \mathrm{mmol}), \mathrm{AgOTf}(0.5 \mathrm{mg}, 0.002 \mathrm{mmol})$ and activated MS-4 $\mathrm{A}(17$ $\mathrm{mg})$. After stirring for 10 minutes, cooled to $-50^{\circ} \mathrm{C}$, a solution of diol $\mathbf{1 4}(50.0 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added. After TLC analysis showed the reaction to be complete (24 h), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short plug of silica. The solution of crude product was concentrated, and then purified by flash chromatography ($50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes) to give the trans and cis products as colorless oil.
Cis-2-(benzyloxymethyl)-6-vinyl-tetrahydro-2H-pyran (15a). (39.8 mg, 86\%) IR (neat) 2934, 2857, 1496, 1089, 735, 698. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.25(\mathrm{~m}, 5 \mathrm{H})$, 5.89 (ddd, $J=17.4,10.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dt}, J=17.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dt}, J=10.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=16.8,12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.59(\mathrm{~m}, 1 \mathrm{H})$, $3.54(\mathrm{dd}, J=9.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=9.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 1 \mathrm{H})$, 1.67-1.50 (m, 3H), 1.40-1.25 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.4,138.4,128.3$, 127.7, 127.5, 114.6, 78.3, 76.8, 73.6, 73.4, 31.3, 28.0, 23.1. HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}(\mathrm{M}-\mathrm{H})^{+} 231.1385$, found 231.1374 .

The relative configuration of the major diastereomer was determined by NOE DIFF experiments as follows:

Trans-2-(benzyloxymethyl)-6-vinyl-tetrahydro-2H-pyran (15b). (5.2 mg, 11\%) IR (neat) 2933, 2858, 1454, 1102, 735, 698. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.26$ (m, $5 \mathrm{H}), 5.95$ (ddd, $J=17.7,11.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dt}, J=17.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dt}, J=$ $11.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=15.3,12.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.42-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.90(\mathrm{~m}, 1 \mathrm{H})$, $3.54(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=10.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.37(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.43,138.42,128.3,127.6,127.5,116.1,73.3,72.8,72.6$, 70.1, 28.7, 27.6, 18.5. HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}(\mathrm{M}-\mathrm{H})^{+}$231.1385, found 231.1381 .

Ethyl 5-(2-oxocyclohexyl) pent-2-enoate (16a). A solution of 1-N-pyrrolidylcyclohexene ($4.8 \mathrm{~mL}, 30 \mathrm{mmol}$) in anhydrous ether (23 mL) was cooled to $-7^{\circ} \mathrm{C}$. With efficient stirring and cooling in an ice-salt bath, acrolein ($1.71 \mathrm{~g}, 30.5 \mathrm{mmol}$)
in 2 mL of ether was added over 100 min . The temperature was kept between -7 and $-2^{\circ} \mathrm{C}$ during the addition, and then was kept at $0^{\circ} \mathrm{C}$ for another hour, when 1.0 mL of water was added. After the solution was stirred for 20 min ., 4.9 mL of 6 N hydrochloric acid was added to bring the pH to $5-6$. The ether layer was separated, washed with a saturated sodium bicarbonate solution, dried over MgSO_{4} and concentrated. The crude 3-(2-oxocyclohexyl)propanal was used in next step directly.

To a solution of the above crude aldehyde in 15 mL of MeCN at $0^{\circ} \mathrm{C}$ was added Ethyl (triphenylphosphoranyliden)acetate ($3.98 \mathrm{~g}, 11.4 \mathrm{mmol}$), the mixture was stirred at r.t for 5 h . The solvent was removed in vacuo and the solid was repeatedly washed with ether. The etheral layer was concentrated in vacuo, and then purified by flash chromatography (10% Ethyl acetate/hexanes) to give the E and Z mixture ($E / Z=10 / 1$) as colorless oil ($1.31 \mathrm{~g}, 20 \%$ for two steps) that satisfactorily matched all previously reported data. ${ }^{7}$

Trans-(E)-2-(5-hydroxypent-3-enyl) cyclohexanol (16). To a solution of Ethyl 5-(2-oxocyclohexyl) pent-2-enoate $\mathbf{1 6 a}(1.31 \mathrm{~g}, 5.8 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL-H ($18.4 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane) over 5 minutes. After stirring at $-78^{\circ} \mathrm{C}$ for 2 h, the reaction mixture was poured into $6 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ and the aqueous layer was extracted with ether ($4 \times 10 \mathrm{~mL}$). The combined extract was dried over MgSO_{4} and then purified by flash chromatography (25% Ether/Hexanes) to give the products as colorless oil. The diols are partially separable, and 298 mg of Trans-(E)-2-(5-hydroxypent-3-enyl) cyclohexanol 16 was obtained. IR (neat) 3331, 2926, 2855, 1670, 1448, 969. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.68-5.52(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.17-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.80$ (br s, 2H), 2.16-1.55 (m, 7H), 1.23-0.78 (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.0$, 128.9, 74.3, 63.2, 44.1, 35.6, 31.5, 30.0, 29.0, 25.3, 24.8. HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}$ $\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)^{+}$167.1430, found 167.1427.

Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to an aluminum foil covered test tube containing $\mathrm{PPh}_{3} \mathrm{AuCl}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{AgOTf}(2.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ and activated MS-4 $(17$
$\mathrm{mg})$. After stirring for 10 minutes, cooled to $-78^{\circ} \mathrm{C}$, a solution of diol $\mathbf{1 6}(36.8 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added. After TLC analysis showed the reaction to be complete (10 h), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short plug of silica. The solution of crude product was concentrated, and then purified by flash chromatography ($20 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes) to give the trans and cis products as colorless oil.
($2 \mathbf{R}^{*}, \mathbf{4 a S}{ }^{*}, \mathbf{8 a} \boldsymbol{R}^{*}$)-2-vinyl-octahydro-2H-chromene (17a). (23.7 mg, 71.4%) IR (neat) $2925,2854,1462,1377,1080 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87$ (ddd, $J=17.4,10.5$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dt}, J=17.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dt}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}$, $1 \mathrm{H}), 3.02-2.94(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.01(\mathrm{~m}, 13 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.5,114.7$, 81.8, 78.5, 41.5, 32.6, 32.2, 31.7, 30.7, 25.8, 25.1. HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}$ $(\mathrm{M}-\mathrm{H})^{+} 165.1274$, found 165.1271 .

The relative configuration of the major diastereomer was determined by NOE DIFF experiments as follows:

($\mathbf{2} \mathbf{S}^{*}, \mathbf{4 a} \mathbf{S}^{*}, \mathbf{8 a} \mathbf{R}^{*}$)-2-vinyl-octahydro-2H-chromene (17b). (2.6 mg, 7.8%) IR (neat) 2930, 2856, 1727, 1448, 1286. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.01$ (ddd, $J=17.4,11.4$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dt}, J=11.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dt}, J=17.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.45(\mathrm{~m}$, $1 \mathrm{H}), 3.23(\mathrm{dt}, J=9.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.14(\mathrm{~m}, 13 \mathrm{H})$. HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}$ $(\mathrm{M}-\mathrm{H})^{+}$165.1274, found 165.1264 .

7-(tert-butyldimethylsilyloxy)-1-cyclohexylhept-2-yn-1-ol (18a). A solution of $n-\mathrm{BuLi}$ in hexane $2.5 \mathrm{M}(1.04 \mathrm{~mL}, 2.6 \mathrm{mmol})$ was added dropwise over 10 minutes at $-78^{\circ} \mathrm{C}$ to a solution of tert-butyl(hex-5-ynyloxy)dimethylsilane ${ }^{8}$ ($500.8 \mathrm{mg}, 2.36 \mathrm{mmol}$) in dry THF (35 mL). The reaction was then stirred at the same temperature for 45 minutes and a solution of cyclohexane carboxaldehyde ($344.2 \mathrm{mg}, 3.07 \mathrm{mmol}$) in dry THF (3 mL) was added. The mixture was allowed to warm to $-30^{\circ} \mathrm{C}$ and stirred for 30 minutes, quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (20 mL of a saturated aqueous solution), diluted with water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The organic layers were dried over MgSO_{4} and then purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ Hexanes) to give the product as a colorless oil ($697.2 \mathrm{mg}, 91 \%$). $\mathrm{R}_{\mathrm{f}}=0.42$ ($10 \% \mathrm{EtOAc} /$ hexanes); IR (neat) 3333, 3011,

2852, $1446 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-0.95(\mathrm{~m}, 15 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 2.20-0.91(\mathrm{~m}, 19 \mathrm{H})$, $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 86.2,80.5,67.6,62.9,44.5$, $32.1,28.8,28.3,26.6,26.1,25.4,19.7,18.7,18.5$, -5.1 ; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}-\mathrm{H})^{+}$323.2401, found 323.2398.

(Z)-1-cyclohexylhept-2-ene-1,7-diol (18). Lindlar catalyst (5\% palladium on calcium carbonate, poisoned with lead, 30 mg) was added to a solution of $\mathbf{1 8 a}(150.2 \mathrm{mg}, 0.46$ $\mathrm{mmol})$ in a mixture of $\mathrm{EtOAc} /$ pyridine/1-hexene $(10: 1: 1,250 \mu \mathrm{~L})$. The reaction mixture was stirred 16 h under $\mathrm{H}_{2}(1 \mathrm{~atm})$. After filtration over celite and removal of the solvent, crude product was recovered as a colorless oil which was used for the next step without further purification.
A solution of HF pyridine ($550 \mu \mathrm{~L}$) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of the silane obtained above ($116.1 \mathrm{mg}, 0.35 \mathrm{mmol}$) in dry THF $(4 \mathrm{~mL})$. The reaction was stirred for 2 hours at the same temperature and NaHCO_{3} saturated (30 mL of a saturated aqueous solution) was added dropwise. After dilution in water (20 mL), the crude product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4} and the solvent removed by vacuum. Flash chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afforded the product as a colorless oil ($58.4 \mathrm{mg}, 78 \%$). $\mathrm{R}_{\mathrm{f}}=0.12(20 \% \mathrm{EtOAc} / \mathrm{hexanes})$; IR (neat) $3330,2924,2852,1449 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.42(\mathrm{dt}, J=7.2$, $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=9,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=6.3 \mathrm{~Hz}$, 2H), 2.06 (q, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-0.81(\mathrm{~m}, 19 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.7$, 131.6, 72.1, 62.9, 44.2, 32.4, 29.0, 28.8, 27.7, 26.7, 26.3, 26.2, 26.1; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{2}(\mathrm{M}-\mathrm{H})^{+}$211.1693, found 211.1704.

(E)-2-(2-cyclohexylvinyl)tetrahydro-2H-pyran (5). Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was added to an aluminum foil covered test tube containing $\mathrm{PPh}_{3} \mathrm{AuCl}(0.7 \mathrm{mg}, 0.001 \mathrm{mmol})$, AgOTf $(0.4 \mathrm{mg}, 0.001 \mathrm{mmol})$ and activated MS-4 $4(25 \mathrm{mg})$. After stirring for 10 minutes, a solution of diol $\mathbf{1 8}(21.1 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was added. After TLC analysis showed the reaction to be complete (40 min), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short plug of silica. The solution of crude product was concentrated, and then purified by flash chromatography ($5 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give the product as a
colorless oil ($17.9 \mathrm{mg}, 92 \%$) that satisfactorily matched all reported data above.

(\boldsymbol{E})-1-(6-hydroxyhex-1-enyl)-cyclohexanol (19): A solution of hex-5-en-1-ol (100.2 mg , $1 \mathrm{mmol})$ and 1-vinylcyclohexanol ($252.4 \mathrm{mg}, 2 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to a solution of Grubb's $2^{\text {nd }}$ generation catalyst ($42.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The mixture was stirred at reflux for 1 hour and then cooled to rt. Silica gel (200 mg) was added and the reaction mixture was stirred open to air for 1 hour. The solvent was removed and the crude product was purified by flash chromatography (20% EtOAc/Hexanes) to give the product as a yellow oil ($116.8 \mathrm{mg}, 93 \%$). $\mathrm{R}_{\mathrm{f}}=0.18(20 \%$ EtOAc/hexanes); IR (neat) 3417, 2976, 2932, 2860, 1382, 1120, $423 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.63(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.74-1.26(\mathrm{~m}, 16 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.2,127.8,89.1,81.9,71.5,62.9$, 38.3, 32.3, 32.2, 25.7, 25.6, 22.4, 22.3; HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2}\left(\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right)^{+}$ 163.1487, found 163.1491.

2-(cyclohexylidenemethyl)tetrahydropyran (20). Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added to an aluminum foil covered test tube containing $\mathrm{PPh}_{3} \mathrm{AuCl}(1.3 \mathrm{mg}, 0.003 \mathrm{mmol})$, AgOTf $(0.7 \mathrm{mg}, 0.003 \mathrm{mmol})$ and activated MS-4 $4(25 \mathrm{mg})$. After stirring for 10 minutes, a solution of diol $19(51.5 \mathrm{mg}, 0.26 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added. After TLC analysis showed the reaction to be complete (2.5 h), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short plug of silica. The solution of crude product was concentrated, and then purified by flash chromatography ($5 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give the product as a colorless oil ($42.1 \mathrm{mg}, 91 \%$). $\mathrm{R}_{\mathrm{f}}=0.85$ ($5 \% \mathrm{EtOAc} /$ hexanes); IR (neat) 2929, 2852, 1086, $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.08(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04-3.92 (m, $2 \mathrm{H}), 3.44(\mathrm{dt}, J=11.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.22(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.9,123.4,74.4,68.4,37.1,32.8,29.7,28.6,28.0,26.9,26.0,23.7$; HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}(\mathrm{M}-\mathrm{H})^{+}$179.1427, found 179.1436 .

(E)-1-cyclohexyl-3,7-dimethylocta-2,6-dienyl acetate (21a). A solution of cyclohexylmagnesium bromide (2 M in $\mathrm{Et}_{2} \mathrm{O}, 1.083 \mathrm{~mL}, 1.1 \mathrm{eq}$.) was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of geranial ${ }^{9}(300 \mathrm{mg}, 1.97 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$. The mixture was
stirred 20 minutes and then acetylchloride ($309 \mu \mathrm{~L}, 3.94 \mathrm{mmol}$) was added dropwise. The reaction mixture was warmed to rt and stirred for 2 h , then quenched with water (20 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The organic layers were dried over MgSO_{4}, concentrated, and the crude product was purified by flash chromatography (10% $\mathrm{EtOAc} / \mathrm{Hexanes}$) to give the product as a colorless oil ($477.2 \mathrm{mg}, 87 \%$). $\mathrm{R}_{\mathrm{f}}=0.57(20 \%$ EtOAc/hexanes); IR (neat) 2928, 2854, 1727, 1264, 1247, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 5.24(\mathrm{dd}, \mathrm{J}=7.5,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 7 \mathrm{H}), 1.75-0.85(\mathrm{~m}$, 20 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,140.8,131.8,124.2,122.6,75.5,42.4,39.9$, 29.0, 28.5, 26.6, 26.4, 26.2, 26.0, 25.9, 21.5, 17.9, 17.0; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2}$ $(\mathrm{M}-\mathrm{H})^{+} 277.2185$, found 277.2168 .

(\boldsymbol{E})-1-cyclohexyl-3,7-dimethyloct-2-ene-1,7-diol (21). A solution of meta-chloroperoxybenzoic acid (77% max., $244.7 \mathrm{mg}, 1.09 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of 21a ($276.4 \mathrm{mg}, 0.99 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. After for 3 hours, the reaction mixture was quenched with NaOH (10 mL of a 1 M aqueous solution), diluted with water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and the solvent removed to give the product as a crude colorless oil which was used for the next step without further purification.

A solution of the epoxide obtained above ($292 \mathrm{mg}, 0.99 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise over 10 min at $0^{\circ} \mathrm{C}$ to a vigorously stirred suspension of lithium aluminum hydride $95 \%(119 \mathrm{mg}, 2.98 \mathrm{mmol})$ in $\mathrm{dry}^{2} \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was allowed to warm to rt and was then stirred at reflux for 45 minutes. The reaction was cooled to $0^{\circ} \mathrm{C}$ and was added successively water $(120 \mu \mathrm{~L}), \mathrm{NaOH}(120 \mu \mathrm{~L}$ of a 15% aqueous solution) and then water ($360 \mu \mathrm{~L}$). After filtration, the solution was dried over MgSO_{4} and purified by flash chromatography (15% to $30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to give the product as a colorless oil ($110.2 \mathrm{mg}, 40 \%$ over 2 steps). IR (neat) 3373, 2923, 2851, 1001, $423 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) 1.91-0.86(\mathrm{~m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.05$, 126.84, 73.08, 71.11, 44.52, 44.39, 43.67, 40.27, 29.49, 29.17, 28.79, 26.79, 26.35, 26.23, 22.63, 16.89. HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{2}(\mathrm{M}-\mathrm{H})^{+} 253.2162$, found 253.2175.

(E)-2-(2-cyclohexylvinyl)-2,6,6-trimethyltetrahydropyran (22). Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5
mL) was added to an aluminum foil covered test tube containing $\mathrm{PPh}_{3} \mathrm{AuCl}(0.9 \mathrm{mg}$, $0.002 \mathrm{mmol})$, $\mathrm{AgOTf}(0.5 \mathrm{mg}, 0.002 \mathrm{mmol})$ and activated MS-4A (25 mg). After stirring for 10 minutes, a solution of diol $21(45.0 \mathrm{mg}, 0.18 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added. After TLC analysis showed the reaction to be complete (6h), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short plug of silica. The solution of crude product was concentrated, and then purified by flash chromatography ($5 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give the product as a colorless oil ($37.2 \mathrm{mg}, 89 \%$). $\mathrm{R}_{\mathrm{f}}=0.81$ ($5 \% \mathrm{EtOAc} /$ hexanes); IR (neat) 2970, 2925, 2852, 1093, 430, $409 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.45(\mathrm{~d}, J=16.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27(\mathrm{dd}, J=15.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-0.81(\mathrm{~m}, 26 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 136.1, 132.0, 73.3, 72.3, 40.7, 37.0, 33.9, 33.1, 32.9, 32.8, 32.5, 27.7, 26.5, 26.3, 17.2; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}(\mathrm{M}-\mathrm{H})^{+}$235.2049, found 235.2062.

2-vinyltetrahydro-2H-pyran (23a). Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added to an aluminum foil covered test tube containing $\mathrm{PPh}_{3} \mathrm{AuCl}(12.0 \mathrm{mg}, 0.025 \mathrm{mmol}$), AgOTf (6.1 mg , $0.025 \mathrm{mmol})$ and activated MS-4 $\AA(25 \mathrm{mg})$. After stirring for 10 minutes, a solution of (E)-hex-1-ene-1,6-diol $23^{10}(75.2 \mathrm{mg}, 0.50 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added. After TLC analysis showed the reaction to be complete (15 min), it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a short plug of silica. The solution of crude product was concentrated, and then purified by flash chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to give the product as a colorless oil that satisfactorily matched previously reported data. ${ }^{11}$

Hept-6-ene-1,5-diol (24). DIBAL-H ($22 \mathrm{~mL}, 1 \mathrm{M}$ in hexane) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of δ-valerolactone ($2.0 \mathrm{~g}, 20 \mathrm{mmol}$) in a mixture of pentane-ether ($34 \mathrm{~mL}, 1: 1$). After 2 h at $-78{ }^{\circ} \mathrm{C}$ vinylmagnesium chloride ($22.0 \mathrm{~mL}, 1 \mathrm{M}$ in THF) was added. The solution was warmed to rt and stirred overnight. Ammonium chloride solution was added (35 mL), and after separation, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$. The combined organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Chromatography of the residue over silica gel (ether) gave 0.87 g of diol (33%) that satisfactorily matched all previously reported data. ${ }^{12}$

References:

1. Morgan, J. P.; Grubbs, R. H. Org. Lett. 2000, 2, 3150.
2. Jang, Y.-J.; Shih, Y.-K.; Liu, J.-Y.; Kuo, W.-Y.; Yao, C.-F. Chem. Eur. J. 2003, 9, 2123.
3. (a) Hon, Y.-S.; Liu, Y.-W.; Hsieh, C.-H. Tetrahedron 2004, 60, 4837. (b) Gallagher, T.
J. Chem. Soc., Chem. Commun. 1984, 1554.
4. Park, P. K.; O’Malley, S. J.; Schmidt, D. R.; Leighton, J. L. J. Am. Chem. Soc. 2006, 128, 2796.
5. Marotta, E.; Foresti, E.; Marcelli, T.; Peri, F.; Righi, P.; Scardovi, N.; Rosini, G. Org. Lett. 2002, 4, 4451.
6. Fraunhoffer, K. J.; Bachovchin, D. A.; White, M. C. Org. Lett. 2005, 7, 223.
7. Pandey G.; Hajra, S.; Ghorai M. K. J. Org. Chem. 1997, 62, 5966.
8. Molander, G. A.; Fumagalli, T. J. Org. Chem. 2006, 71, 6743
9. Zakharova, S.; Fulhorst, M.; Łuczak, L.; Wessjohann, L. ARKIVOC 2004, 13, 79.
10. Chen, S. H.; Hong, B. C.; Su, C.; Sarshar, S. Tetrahedron Lett. 2005, 46, 8899.
11. Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem.. Soc. 2006, 128, 9066.
12. Brunel, Y.; Rousseau, G. J. Org. Chem. 1996, 61, 5793.

Coces

$$
\begin{aligned}
& \text { 12c }
\end{aligned}
$$

Cto

[^0]

OTBS


```
院
```

14c

Cis

BnO

15a

$$
15 b
$$

18a

18a

18

19

20

21a

21a

21

21

22

[^0]: Etooc
 136

