Supplementary material

Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid

Marcelo J. Monteiro, Fernanda F. C. Bazito, Leonardo J. A. Siqueira,

Mauro C. C. Ribeiro and Roberto M. Torresi

	ηο / cP	B/K	To/K	В/То
BMMITFSI	0.20 ± 0.05	763±50	178±20	4.3
+ 1 M LiTFSI	0.21±0.04	733±34	197±10	3.7
+ 2 M LiTFSI	0.28 ± 0.02	718±17	208±10	3.5

Table 1s - VTF equation parameters of viscosity data. Errors reported here are the standard errors of the non-linear least-squares fit to experimental data.

Figure 1s - DSC curves of BMMITFSI with two different LiTFSI concentrations.

	σο /S cm ⁻¹	B/K	To/K	В/То
BMMITFSI	1.0±0.3	722±70	165±10	4.4
+ 1 M LiTFSI	1.0±0.5	888±120	164±9	5.4
+ 2 M LiTFSI	1.0±0.4	1000±100	169±10	5.9

Table 2s - VTF equation parameters of conductivity data. Errors reported here are the standard errors of the non-linear least-squares fit to experimental data.

	$(10^{-20} \text{ J Å}^{-2})$	r _{eq} (Å)
N3 – C7	153.01	1.477
N3 – C2	278.19	1.34
N3-C4	278.19	1.39
C4 – C5	285.15	1.37
C2 – C11	154.75	1.53
N1 – C5	278.19	1.39
N1 – C2	279.19	1.34
N1 – C6	153.01	1.477
C7-C8	139.10	1.53
C8-C9	154.75	1.534
C9-C10	154.75	1.534
C-S	327.240	1.818
S-N	517.110	1.570
C-F	614.120	1.323
S-O	885.540	1.442

Molecular dynamic parameters used in the simulation

Table 3s

	k_{θ} (kJ mol ⁻¹ rad ⁻²)	$ heta_{eq}$
C2-N3-C7	90.42	125.8
C4-N3-C7	90.42	125.8
C2-N3-C4	90.42	108.3
N3-C4-C5	90.42	107.2
N3-C2-N1	90.42	109.1
N1-C2-C11	90.42	125.9
N3-C2-C11	90.42	125.9
C4-C5-N1	90.42	107.2
C2-N1-C5	90.42	108.3
C2-N1-C6	90.42	125.9
C5-N1-C6	90.42	125.9
N3-C7-C8	97.38	112.6
C7-C8-C9	40.62	111.6
C8-C9-C10	40.62	111.6
F-C-F	129.730	107.1
F-C-S	115.220	111.8
C-S-N	135.540	100.2
S-N-S	111.460	125.6
C-S-O	144.510	102.6
O-S-O	160.960	118.5
O-S-N	131.060	113.6

Table 4s

	$k_{\psi,n} (10^{-20} \mathrm{J}\mathrm{\AA}^{-2})$	Ν	δ (ângulo)
C6-N1-C5-C4	9.73	1	0
C7-N3-C4-C5	9.73	1	0
C7-N3-C2-N1	9.73	1	0
C6-N1-C2-N3	9.73	1	0
C4-N3-C2-N1	9.73	2	180
N3-C2-N1-C5	9.73	2	180
N3-C4-C5-N1	9.73	2	180
C5-C4-N3-C2	9.73	2	180
C2-N1-C5-C4	9.73	2	180
C2-N3-C7-C8	0.06977	1	180
C4-N3-C7-C8	0.13953	1	0
С7-С8-С9-С10	0.10465	1	0
C5-N1-C2-C11	9.73	0	0
C4-N3-C2-C11	9.73	0	0
C–S–N–S	2.7200	1	0
C–S–N–S	-0.8650	2	180
C–S–N–S	-0.2650	3	0
S-N-S-O	-0.0012	3	180
F-C-S-N	0.1100	3	0
F-C-S-O	0.1200	3	0

Table 5s

Atom	Epsilon	Sigma	Charge
Atom	(10^{-20} J)	(Å)	(<i>e</i>)
N1	0.10615	3.58	-0.154
C2	0.066229	4.27	0.522
N3	0.10615	3.58	-0.317
C4	0.066229	4.27	0.217
C5	0.066229	4.27	0.168
C6	0.129319	4.153	0.435
C7	0.073705	4.296	0.555
C8	0.073705	4.296	-0.192
C9	0.073705	4.296	0.114
C10	0.1094262	4.296	-0.173
C11	0.129319	4.153	-0.176
C_{tfsi}	0.034	3.566	0.299
S _{tfsi}	0.134	3.420	0.485
N _{tfsi}	0.106	3.066	-0.426
\mathbf{O}_{tfsi}	0.063	3.082	-0.359
F _{tfsi}	0.037	2.910	-0.118
Li ⁺	0.00001	3.100	1.000