
Direct Ligation of Carrier Protein-Bound Thioesters: A Versatile Method for the Characterization of Fatty Acid Tailoring Enzymes during Lipopeptide Biosynthesis

Table S1. Oligonucleotide	pairs used for	or PCR ar	nplification	reactions.
	pulls used it	n i cit ui	Inpinioution	reactions.

Oligonucleotide Primers (5'-3')	Restriction Site	Expression vector	target gene
AAAAAA <u>GGATCC</u> ATGAGTACGGACCCCA AGTCGGTTG	BamHI	nOTev	ACP (Sco3249)
AAAAAA <u>AAGCTT</u> TCACGCCGCTTCCAGA CCCG	HindIII	pQTev	
AAAAAA <u>GAATTC</u> ACGCAACGCGAAGAAG AGCTGGCC	EcoRI	ET2 2a(+)	hxcO
AAAAAA <u>CTCGAG</u> CGGGCGTACTCCGGCC TGCA	XhoI	pET28a(+)	
AAAAAA <u>GAATTC</u> CCGAAGCTGCGGATCG CAGTCG	EcoRI	nET2 8a(+)	hcmO
AAAAAACTCG <u>CTCGAG</u> CGGCGGCGGCAG CGGTG	XhoI	pET28a(+)	ncmO

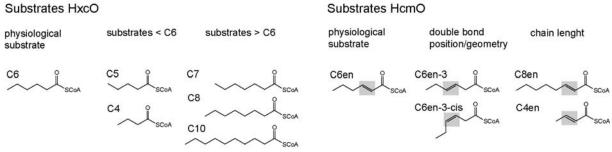


Figure S1. Coomassie stained SDS-PAGE of purified ACP (A, 11.5 kDa), HxcO (B, 66.8 kDa), and HcmO (B, 47.0 kDa).

Figure S2. HPLC Analysis of HxcO and HcmO cofactor and UV-visible spectrum of HcmO. The UV-visible spectrum of HcmO highlights the λ_{max} at 377 and 450 nm.

Direct Ligation of Carrier Protein-Bound Thioesters: A Versatile Method for the Characterization of Fatty Acid Tailoring Enzymes during Lipopeptide Biosynthesis

Figure S3. Acyl-CoA substrates used in this study.

Table S2. MALDI-TOF	analysis of chem	ically synthesized fa	tty acid CoA derivatives.

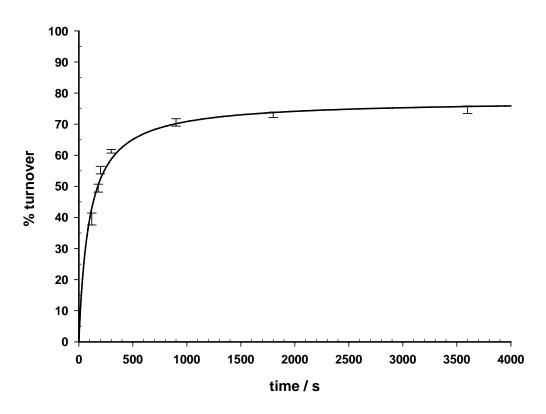
FA-CoA	c.m. [M+H] ⁺	o.m. [M+H] ⁺
C4	838.1	838.2
C5	852.2	852.2
C6	866.2	866.1
C7	880.2	880.2
C8	894.2	894.1
C10	922.2	922.2
C6-EN2	864.2	864.1
C8-EN2	892.2	892.2
C4-EN2 (crotonyl)	836.1	836.2
C6-EN3	864.2	864.2
C6-EN3cis	864.2	864.2

Table S3. MALDI-TOF analysis of chemoenzymatically synthesized CDA derivatives.

	c.m. [M+H] ⁺	o.m. [M+H] ⁺
Hexanoyl-CDA	1466.6	1466.7
Hex-2-enoyl-CDA	1464.5	1464.7

Table S4. [M+H]²⁺ mass fragments of fatty acid-*S*-Ppan-PCP (Lys⁵⁷-Arg⁷¹) subjected to MS².

Chain length	Saturated fatty acid	Unsaturated fatty acid	Epoxidized fatty acid
C4	1032.5	1030.5	1038.5
C5	1039.5	1037.5	1045.5
C6	1046.5	1044.5	1052.5
C7	1053.5	1051.5	1059.5
C8	1060.5	1058.5	1068.5
C10	1074.5	1072.5	1080.5


Direct Ligation of Carrier Protein-Bound Thioesters: A Versatile Method for the Characterization of Fatty Acid Tailoring Enzymes during Lipopeptide Biosynthesis Assays with acyl-CoA substrates

Reaction mixtures for the detection of HxcO oxidation/epoxidation products were prepared using 250 μ M hexanoyl-CoA substrate, 5-50 μ M HxcO and 100 μ M FAD in assay buffer. Reaction mixtures for the detection of HcmO epoxidation product were prepared using 250 μ M hexenoyl-CoA substrate, 10 μ M HxcO, 250 μ M FAD and 250 μ M NAD(P)H in assay buffer. Incubations were carried out at different temperatures and several periods of time.

Assays with chemoenzymatically synthesized CDA substrates

HxcO Assay: The reaction mixture contained 100 μ M hexanoyl-CDA, 20 μ M enzyme and 60 μ M FAD in a total volume of 75 μ L. After incubation at 25 °C for 30 min the reaction was quenched by the addition of 15 μ L formic acid and directly analyzed by LC-ESI-MS.

HcmO Assay: The reaction mixture contained 100 μ M hex-2-enoyl-CDA, 20 μ M enzyme, 60 μ M FAD, 100 μ M NAD(P)H in a total volume of 75 μ L. After incubation at 25 °C for 30 min the reaction was quenched by the addition of 15 μ L formic acid and directly analyzed by LC-ESI-MS.

Figure S4. Kinetics of (2R,3S)-2,3-epoxyhexanoic-S-Ppan-ACP formation mediated by HxcO. Samples were trypsinized at different time points following initiation of the enzymatic reactions, and were then fractionated and analyzed by HPLC-MS². The percentage of HxcO reaction product tethered to the ACP is plotted as a function of time.