SUPPORTING INFORMATION

Large neutral amino acid transporter enables brain

drug delivery via prodrugs

Mikko Gynther, \dagger Krista Laine \dagger, Jarmo Ropponen \dagger, Jukka Leppänen \dagger, Anne Mannila \dagger, Tapio Nevalainen \dagger, Jouko Savolainen \ddagger, Tomi Järvinen \dagger and Jarkko Rautio \dagger Department of Pharmaceutical Chemistry, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland
${ }^{\dagger}$ Department of Pharmaceutical Chemistry.
${ }^{\dagger}$ Fennopharma Ltd.

Contents:

Title page. S1
Combustion analyses: Table S1 S2
General synthetic procedures for compounds 2-5
S2-S9
In situ inhibition studies for compounds 2-5
S9-S10

Table S1. Combustion Analysis for Compounds 1-5.

Compd	Anal. Calcd			Found			
	Formula	\mathbf{C}	\mathbf{H}	\mathbf{N}	\mathbf{C}	\mathbf{H}	\mathbf{N}
$(\mathbf{1})$	$\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{5} \bullet \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$	63.63	5.55	2.97	63.73	5.29	3.35
$(\mathbf{2})$	$\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{5} \bullet \mathrm{HCl} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}$	66.79	2.88	5.90	66.48	3.10	6.08
$(\mathbf{3})$	$\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{4} \bullet 1 / 5 \mathrm{H}_{2} \mathrm{O}$	74.13	5.82	3.46	73.73	5.92	3.49
$(\mathbf{4})$	$\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{5} \bullet \mathrm{HCl}$	63.71	6.79	3.10	63.87	6.82	3.33
$(\mathbf{5})$	$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4}$	71.91	6.86	3.81	71.45	7.02	3.71

Experimental detail of synthesis of compounds 2-5

2-(3-Benzoyl-phenyl)-propionic acid 2-hydroxy-ethyl ester

Ketoprofen ($1.71 \mathrm{~g}, 6.70 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.20 \mathrm{~g}, 8.71 \mathrm{mmol})$ were stirred with DMF (40 $\mathrm{mL})$ at $60^{\circ} \mathrm{C}$. Bromoethanol ($1.09 \mathrm{~g}, 8.71 \mathrm{mmol}$) was added and mixture was stirred over night at $60^{\circ} \mathrm{C}$. Mixture was cooled and water (125 mL) was added and washed with ethyl acetate $(5 * 25 \mathrm{~mL})$. Combined organic phases was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by flash chromatography (petrolether:ethylacetate 1:1), $\mathrm{R}_{f}=0.31$. Yield $1.60 \mathrm{~g}(80 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.54\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.60(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 3.77(2 \mathrm{H}, \mathrm{t}, J=4.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 3.85\left(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.17-4.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 7.42-7.50(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.54-$ $7.60(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.65-7.66(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.78-7.80(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.5$,
$45.3,60.9,66.5,128.3,128.6,129.1,129.2,130.1,131.5,132.6,137.3,137.9,140.8,174.4$, 196.7. MS: m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}]^{+}=298.3$ Found $299.1[\mathrm{M}+1]^{+}$.
(S)-2-tert-Butoxycarbonylamino-3-phenyl-propionic acid propionyloxy]-ethyl ester

Alcohol ($0.60 \mathrm{~g}, 2.01 \mathrm{mmol}$), BOC-L-phenyl alanine ($0.56 \mathrm{~g}, 2.11 \mathrm{mmol}$) and DMAP (0.02 $\mathrm{g}, 0.20 \mathrm{mmol})$ were dissolved to dichloromethane (25 mL). DCC ($0.54 \mathrm{~g}, 2.61 \mathrm{mmol}$) was added and mixture was stirred at R.T. under argon over night. Formed solid was filtered and filtrate was evaporated and purified by flash chromatography (hexane:ethyl acetate $4: 1$), $\mathrm{R}_{f}=0.14$. Combined fractions were evaporated and dried in vacuo. Yield of clear viscous oil was 1.02 g (93 \%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.55\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.92-3.07(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}-\mathrm{Bz}\right), 3.82\left(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.18-4.34\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.55(1 \mathrm{H}, \mathrm{q}, J=6.6$ $\left.\mathrm{Hz}, \mathrm{CHCH}_{2}\right), 4.97(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{NH}), 7.08-7.09(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.20-7.31(3 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.41-7.49(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.53-7.55(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.57-7.60$ (1H, m, ArH), 7.64-7.66 $(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.76-7.78(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.5,28.3,38.2,45.2,54.3,62.4$, $62.7,79.9,127.1,128.3,128.5,128.6,129.15,129.20,129.3,130.1,131.5,132.5,135.9,137.5$, 138.0, 140.5, 155.1, 171.6, 173.8, 196.4. MS: m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NO}_{7}[\mathrm{M}]^{+}=545.6$ Found $545.8[\mathrm{M}]^{+} ;[\mathrm{M}+\mathrm{Na}]^{+}=568.6$. Found $568.1[\mathrm{M}+\mathrm{Na}]^{+}$.

Boc-protected derivative ($0.94 \mathrm{~g}, 1.72 \mathrm{mmol}$) was dissolved to ethyl acetate (35 mL) and HCl gas was added to the mixture over 30 minutes. The solvent was evaporated and the product was dried in vacuo. Yield of white solid was $0.78 \mathrm{~g}(95 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.51\left(3 \mathrm{H}, \mathrm{dd}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.24-3.39\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{Bz}\right), 3.82(1 \mathrm{H}$, $\left.\mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.06-4.37\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}+\mathrm{COCHCH}_{2}\right), 7.17-7.25(5 \mathrm{H}, \mathrm{bs}, \mathrm{ArH})$, 7.38-7.47(3H, m, ArH), 7.51-7.62 (3H, m, ArH), 7.73-7.75 (3H, m, ArH), 8.82 (3H, bs, $\left.\mathrm{N} \mathrm{H}_{3} \mathrm{Cl}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.4,18.7,36.1,45.0,45.1,54.2,62.1,63.7,63.8,127.7,128.3$, $128.6,128.8,128.9,129.0,129.04,129.2,129.5,130.1,130.04,131.56,131.6,132.5,132.55$, 133.65, 133.67, 137.3, 137.9, 140.54, 140.56, 168.40, 168.41, 173.7, 196.43, 196.47. MS: m/z calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{5}[\mathrm{M}]^{+}=445.52$ Found $446.1[\mathrm{M}+1]^{+}$.

2-Amino-3-phenyl-propionic acid methyl ester

L-Phenylalanine methylester hydrochloride ($1.00 \mathrm{~g}, 4.64 \mathrm{mmol}$) was dissolved to tetrahydrofurane (15 mL). Triethylamine ($0.47 \mathrm{~g}, 4.64 \mathrm{mmol}$) was added and mixture was stirred at R.T. for 3 h. Formed solid was filtered and filtrate was evaporated and dried in vacuo. Yield of clear viscous oil was quantitative.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 2.84\left(1 \mathrm{H}, \mathrm{dd}, J=7.9 \mathrm{~Hz}, 13.5 \mathrm{~Hz}, \mathrm{CH}_{a}\right), 3.07(1 \mathrm{H}$, dd, $\left.J=5.1 \mathrm{~Hz}, 13.5 \mathrm{~Hz}, \mathrm{CH}_{b}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.69-3.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCO}\right), 7.16-7.30$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 41.0,51.8,55.7,126.7,128.4,129.1,137.1,175.2$.

2-[2-(3-Benzoyl-phenyl)-propionylamino]-3-phenyl-propionic acid methyl ester

Ketoprofen ($1.10 \mathrm{~g}, 4.34 \mathrm{mmol}$), L-phenylalanine methyl ester ($0.74 \mathrm{~g}, 4.13 \mathrm{mmol}$) and DMAP ($0.05 \mathrm{~g}, 0.413 \mathrm{mmol}$) were dissolved to dichloromethane (25 mL). DCC ($0.98 \mathrm{~g}, 4.75$ mmol) was added and mixture was stirred at R.T. under argon over night. Formed solid was filtered and filtrate was evaporated and purified by flash chromatography (hexane:ethyl acetate 3:1). Combined fractions were evaporated and dried in vacuo. Yield of clear viscous oil was 1.6 $\mathrm{g}(88 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.51\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 3.60(1 \mathrm{H}, \mathrm{q}, J=$ 7.1 Hz, CH-CH3 3$), 3.70\left(3 \mathrm{H}, \mathrm{d}, J=18,5 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 4.80-4.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCO}\right), 5.87(1 \mathrm{H}$, bs, $\mathrm{N} H)$, 6.77-7.22 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42-7.78(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 18.2, 18.4, $37.61,37.62,46.81,46.83,52.31,52.34,52.9,53.1,127.04,127.12,128.33,128.36,128.46$, 128.56, 128.77, 128.85, 129.10, 129.13, 129.15, 129.19, 129.24, 130.05, 130.07, 131.47, $131.61,132.53,132.56,135.39,135.65,137.4,138.04,138.08,140.97,141.0,171.75,171.85$, 172.79, 173.09, 196.37, 196.41. MS: m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{4}[\mathrm{M}]^{+}=415.49$ Found 416.0 $[\mathrm{M}+1]^{+}$.

Methyl ester ($0.2 \mathrm{~g}, 0.48 \mathrm{mmol}$), was dissolved to methanol water mixture ($15 \mathrm{~mL}: 15 \mathrm{~mL}$) and $1 \mathrm{M} \mathrm{LiOH}(4 \mathrm{~mL})$ was added. Mixture was stirred at R.T. until reaction was completed. Mixture was acidified with 12 M HCl and methanol was evaporated. Product was extracted with diethyl ether $(3 * 10 \mathrm{~mL})$ and a combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated and formed solid was dried in vacuo. Yield of the white solid was $0.145 \mathrm{~g}(76 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.47\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.92-3.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 3.49(1 \mathrm{H}, \mathrm{q}$, $\left.J=7.0 \mathrm{~Hz}, \mathrm{CH}-\mathrm{CH}_{3}\right), 3.64-3.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCO}\right), 4.83-4.94(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 6.60-7.16(5 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.34-7.76(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 10.65(1 \mathrm{H}, \mathrm{bs}, \mathrm{COOH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 17.8,18.1,36.98$, $37.0,46.12,46.21,52.71,52.94,126.6,126.73,128.05,128.10,128.13,128.2,128.43,128.47$, $128.94,128.99,129.01,129.07,129.24,129.88,129.90,131.34,131.57,132.41,132.48$, $135.34,135.61,137.0,137.47,137.51,140.67,141.20,173.32,173.44,173.61,173.97,196.57$, 196.71. MS: m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{4}[\mathrm{M}]^{+}=401.47$ Found $401.9[\mathrm{M}]^{+} ;\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]^{+}=419.52$ Found $419.0\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]^{+}$.
(S)-2-tert-Butoxycarbonylamino-4-methyl-pentanoic acid propionyloxy]-ethyl ester

Alcohol ($0.60 \mathrm{~g}, 2.01 \mathrm{mmol}$), BOC-L-leucine ($0.49 \mathrm{~g}, 2.11 \mathrm{mmol}$) and DMAP ($0.02 \mathrm{~g}, 0.20$ $\mathrm{mmol})$ were dissolved to dichloromethane (25 mL). DCC ($0.54 \mathrm{~g}, 2.61 \mathrm{mmol}$) was added and mixture was stirred at R.T. under argon over night. Formed solid was filtered and filtrate was evaporated and purified by flash chromatography (petrol ether:ethyl acetate $4: 1$), $\mathrm{R}_{f}=0.15$. Combined fractions were evaporated and dried in vacuo. Yield of clear viscous oil was 0.97 g (94\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.91\left(3 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.43(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.55\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.50-1.58(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.65-1.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.83$ $\left(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.21-4.38\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.91(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{~N} H)$, 7.43-7.51 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.54-7.56(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.59-7.62(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.67-7.69(1 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 7.76-7.82(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 18.5,21.8,22.8,24.8,28.3,41.6,45.2$, $52.0,62.5,62.6,79.9,128.3,128.6,129.2,130.1,131.5,132.5,137.5,138.0,140.6,155.1$, 173.2, 173.8, 196.5. MS: m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NO}_{7}[\mathrm{M}]^{+}=511.6$ Found $511.8[\mathrm{M}]^{+} ;[\mathrm{M}+\mathrm{Na}]^{+}$ $=534.6$. Found $534.1[\mathrm{M}+\mathrm{Na}]^{+}$.

(S)-2-Amino-4-methyl-pentanoic acid 2-[2-(3-benzoyl-phenyl)-propionyloxy]-ethyl ester

 hydrochloride (4)

Boc-protected compound ($0.895 \mathrm{~g}, 1.75 \mathrm{mmol}$) was dissolved to ethyl acetate (35 mL) and HCl gas was added to the mixture over 30 minutes. The solvent was evaporated and the product was dried in vacuo. Yield of white solid was $0.66 \mathrm{~g}(92 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.53\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 1.76-1.81 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} H$), 1.89-1.98 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $3.84\left(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 4.02-4.06$
$\left(1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}\left(\mathrm{NH}_{3} \mathrm{Cl}\right) \mathrm{CH}_{2}\right), 4.21-4.45\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 7.42-7.49(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.53-$ $7.66(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.75-7.79(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 8.91\left(3 \mathrm{H}, \mathrm{bs}, \mathrm{CHNH}_{3} \mathrm{Cl}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $18.5,22.1,22.4,24.5,39.6,45.3,51.8,62.2,63.9,128.5,128.7,129.2,129.3,130.2,131.7$, 132.7, 137.5, 138.1, 140.7, 169.4, 173.9, 196.6. MS: m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{5}[\mathrm{M}]^{+}=411.5$ Found $412.1[\mathrm{M}+1]^{+}$.

2-Amino-4-methyl-pentanoic acid methyl ester

L-Leucine methylester hydrochloride ($1.00 \mathrm{~g}, 5.50 \mathrm{mmol}$) was dissolved to tetrahydrofurane (15 mL). Triethylamine ($0.56 \mathrm{~g}, 5.50 \mathrm{mmol}$) was added and mixture was stirred at R.T. for 3 h . Formed solid was filtered and filtrate was evaporated and dried in vacuo. Yield of clear viscous oil was $0.70 \mathrm{~g}(88 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.85\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.32-1.38$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{a}\right), 1.46-1.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H_{b}\right), 1.66\left(2 \mathrm{H}, \mathrm{bs}, \mathrm{NH}_{2}\right), 1.66-1.74(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.41(1 \mathrm{H}$, dd, $J=4.8 \mathrm{~Hz}, \mathrm{C} H), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.7,22.8,24.6,43.9,51.7,52.6$, 176.9.

2-[2-(3-Benzoyl-phenyl)-propionylamino]-4-methyl-pentanoic acid methyl ester

Ketoprofen ($0.88 \mathrm{~g}, 3.31 \mathrm{mmol}$), L-leucine methyl ester ($0.48 \mathrm{~g}, 3.47 \mathrm{mmol}$) and DMAP $(0.04 \mathrm{~g}, 0.33 \mathrm{mmol})$ were dissolved to dichloromethane $(25 \mathrm{~mL})$. DCC $(0.78 \mathrm{~g}, 3.80 \mathrm{mmol})$ was
added and mixture was stirred at R.T. under argon over night. Formed solid was filtered and filtrate was evaporated and purified by flash chromatography (hexane:ethyl acetate 3:1). Combined fractions were evaporated and dried in vacuo. Yield of clear viscous oil was 1.18 g (94\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.91\left(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.45-1.51$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.55\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.58 .64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.67(1 \mathrm{H}$, $\mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}), 4.58-4.63(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H), 5.80(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{~N} H), 7.46-7.51(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar} H), 7.58-7.62(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.68-7.70(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.75-7.81(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 18.6,21.9,22.7,24.8,41.5,46.8,50.8,52.1,128.3,128.7,129.1,129.2,130.0,132.5$, 137.4, 138.0, 141.3, 173.2, 176.3, 196.5. MS: m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}[\mathrm{M}+1]^{+}=382.48$ Found $382.1[\mathrm{M}]^{+}$.

2-[2-(3-Benzoyl-phenyl)-propionylamino]-4-methyl-pentanoic acid (5)

Methyl ester ($0.48 \mathrm{~g}, 1.26 \mathrm{mmol}$), was dissolved to methanol water mixture ($15 \mathrm{~mL}: 15 \mathrm{~mL}$) and $1 \mathrm{M} \mathrm{LiOH}(4 \mathrm{~mL})$ was added. Mixture was stirred at R.T. until reaction was completed. Mixture was acidified with 12 M HCl and methanol was evaporated. Product was extracted with diethyl ether $\left(3^{*} 10 \mathrm{~mL}\right)$ and a combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated and formed solid was dried in vacuo. Yield of white solid was $0.28 \mathrm{~g}(61 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.89\left(3 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.45-1.51$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H), 1.54\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.57-1.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.70(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}$, $\mathrm{CH}), 4.55-4.59(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H), 6.07(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{~N} H), 7.41-7.49(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.57-7.60$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.64-7.66(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.74-7.78(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.5$, $21.8,22.8,24.9,40.9,46.7,51.0,128.4,128.8,129.26,129.29,130.1,131.7,132.7,137.3$,
138.0, 141.2, 174.2, 176.3, 196.8. MS: m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4}[\mathrm{M}]^{+}=367.45$, Found 385.0 $\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]^{+}$.

In situ inhibition studies for compounds 2-5. The ability of the prodrug to bind into LAT1 was studied with the in situ rat brain perfusion technique. The 100% PA product of $\left[{ }^{14} \mathrm{C}\right] \mathrm{L}$ leucine was determined after 30 s perfusion of $0.2 \mu \mathrm{Ci} / \mathrm{mL}\left[{ }^{14} \mathrm{C}\right] \mathrm{L}$-leucine solution. In a competition study [$\left.{ }^{14} \mathrm{C}\right] \mathrm{L}$-leucine ($0.2 \mu \mathrm{Ci} / \mathrm{mL}$) was co-perfused with $70 \mu \mathrm{M}$ concentration of the prodrugs for 30 s . In the presence of 2-5 the PA product of $\left[{ }^{14} \mathrm{C}\right] \mathrm{L}$-leucine was $0.02815 \pm$ $0.0059,0.01910 \pm 0.0063,0.02117 \pm 0.0072,0.02655 \pm 0.0018$, respectively (mean \pm s.d., $n=2$). The addition of the prodrugs did not significantly decrease the uptake of $\left[{ }^{14} \mathrm{C}\right]$ L-leucine.

