Development of Peptidomimetics with a Vinyl Sulfone Warhead as Irreversible Falcipain-2 Inhibitors

Roberta Ettari, ${ }^{*{ }^{\nabla}}$ Emanuela Nizi, ${ }^{\#}$ Maria Emilia Di Francesco, ${ }^{\#}$ Marie-Adrienne Dude, ${ }^{\$}$ Gabriele Pradel, ${ }^{\$}$ Radim Vičík, ${ }^{\perp}$ Tanja Schirmeister, ${ }^{\perp}$ Nicola Micale, ${ }^{\nabla}$ Silvana Grasso, ${ }^{\triangleright}$ and Maria Zappalà ${ }^{\nabla}$
${ }^{\square}$ Dipartimento Farmaco-Chimico, University of Messina, Viale Annunziata, 98168 Messina, Italy,
\# Department of Medicinal Chemistry IRBM, MRL Rome, Via Pontina Km30.600, 00040 Pomezia, Roma, Italy
\$ Research Center for Infectious Diseases, University of Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
${ }^{\perp}$ Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

Contents: Experimental details for the synthesis of compound 10.
Elemental analyses for final compounds 2a-2d and 3a-3d.

Scheme ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{LiOH}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$-rt, 6 h ; (b) i - $\mathrm{BuOCOCl}, \mathrm{NMM}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$ $\mathrm{rt}, 30 \mathrm{~min}$, then 2-aminobenzophenone, reflux, $20 \mathrm{~min}, \mathrm{rt}, 12 \mathrm{~h}$; (c) $\mathrm{HCl} / \mathrm{MeOH}$, reflux, 5 h , then $\mathrm{NaHCO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 12 \mathrm{~h}$; (d) TBS-Cl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}-\mathrm{rt}, 12 \mathrm{~h}$; (e) $\mathrm{NaH}, \mathrm{BrCH}_{2} \mathrm{COOEt}, 0$ ${ }^{\circ} \mathrm{C}$ - rt, 5 h ; (f) $\mathrm{LiOH}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}, 6 \mathrm{~h}$.
(R)-2,2-Dimethyl-oxazolidine-3,4-dicarboxylic acid 3-tert-butyl ester (S2). To a solution of (R)-2,2-dimethyloxazolidine-3,4-dicarboxylic acid 3-tert-butyl ester 4-methyl ester (S1) (5g, 19 $\mathrm{mmol})$ in a mixture methanol/water ($1 / 1 \mathrm{v} / \mathrm{v}, 95 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$ was added $\mathrm{LiOH}(910 \mathrm{mg}, 38 \mathrm{mmol})$ and the resulting mixture was stirred at room temperature until disappearance of starting material (TLC monitoring). The solvent was concentrated under reduced pressure and a 10% aqueous solution of citric acid was added to the resulting residue until $\mathrm{pH}=5$. The aqueous layer was extracted with EtOAc (2 X 100 mL), the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give the acid $\mathbf{S 2}$ which was used for the next step without further purification ($4.7 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.40-1.68 (m, 15H), 4.10-4.25 (m, 2H), $4.46(\mathrm{~m}, 1 \mathrm{H})$, 9.25 (bs, 1H).
(R)-4-(2-Benzoyl-phenylcarbamoyl)-2,2-dimethyl-oxazolidine-3-carboxylic acid tert-butyl ester (S3). To a solution of acid $\mathbf{S} 2(4.7 \mathrm{~g}, 19 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(95 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added N methyl morpholine ($2.31 \mathrm{~mL}, 21 \mathrm{mmol}$) followed by isobutyl chloroformate ($2.72 \mathrm{~mL}, 21 \mathrm{mmol}$). After 30 min., a solution of 2-aminobenzophenone ($3.74 \mathrm{~g}, 19 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$) was added to the refluxing reaction mixture dropwise over 20 min . After stirring for 12 h at room temperature, the reaction mixture was washed with with $0.1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$, aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and
water (100 mL). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give a residue which was purified by flash chromatography (petroleum ether/EtOAc 95/5) to give the product $\mathbf{S 2}(6.4 \mathrm{~g}, 80 \%)$. RP-HPLC-MS: gradient D , retention time 3.95 min . MS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ $425.1[\mathrm{M}+\mathrm{H}]^{+}(100 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.20-1.87 (m, 15H), 4.16-4.37(m, 2H), 4.48 $(\mathrm{m}, 1 \mathrm{H}), 7.10(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.72(\mathrm{~m}, 7 \mathrm{H}), 8.69(\mathrm{~m}, 1 \mathrm{H}), 11.30(\mathrm{bs}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $22.98,23.98,25.96,26.91,28.18,66.73,67.00,121.41,122.46,128.16,129.95,132.35,133.17$, 133.88, 198.51.
(\boldsymbol{R})-3-Hydroxymethyl-5-phenyl-1,3-dihydrobenzo $[e][1,4]$ diazepin-2-one (S4). To a solution of $\mathbf{S 3}(6.4 \mathrm{~g}, 15.2 \mathrm{mmol})$ in $\mathrm{MeOH}(70 \mathrm{~mL})$ was added 6 N aq. $\mathrm{HCl}(12.5 \mathrm{~mL}, 75 \mathrm{mmol})$. The resulting mixture was refluxed for 5 h and the solvent was then removed under reduced pressure. The residue was partitioned between EtOAc (200 mL) and ss. $\mathrm{NaHCO}_{3}(2 \times 200 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was taken up in $\mathrm{MeOH}(70 \mathrm{~mL})$ and stirred at room temperature until complete conversion into the desired product (12 h). The solvent was removed under reduced pressure and the residue was purified by flash chromatography (EtOAc/petroleum ether 6/4), to give product as $\mathbf{S 3}$ as a white solid ($3.8 \mathrm{~g}, 95 \%$). RP-HPLC-MS: gradient E, retention time 3.36 min . MS (ESI $\left.{ }^{+}\right) ~ m / z 267.1[\mathrm{M}+\mathrm{H}]^{+}(100 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.88(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 7.13-$ 7.55 (m, 9H), 8.65 (bs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): 63.04, 65.98, 122.29, 124.45, 128.75, 129.26, 130.91, 131.27, 131.62, 132.23, 133.19, 140.26, 140.27, 172.07, 172.38.
(R)-3-(tert-Butyl-dimethyl-silanyloxymethyl)-5-phenyl-1,3-dihydro-benzo[e] [1,4]diazepin-

2-one ($\mathbf{S 5}$). To a solution of alcohol $\mathbf{S 4}(3.8 \mathrm{~g}, 14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(140 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added imidazole ($2.1 \mathrm{~g}, 31 \mathrm{mmol}$) and TBS-Cl $(5.3 \mathrm{~g}, 35 \mathrm{mmol})$. After stirring for 12 h at room temperature the mixture was washed with water ($2 \times 150 \mathrm{~mL}$), the organic phase was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromatography ($\mathrm{EtOAc} /$ petroleum ether $1 / 9$) to afford the title compound as an oil ($5.3 \mathrm{~g}, 98 \%$). RP-HPLC-MS: gradient E, retention time 7.18 min . $\mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z} \quad 381.2[\mathrm{M}+\mathrm{H}]^{+}(100 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.17(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 3.76(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}$, $J=10.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=10.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.53(\mathrm{~m}, 9 \mathrm{H}), 9.60(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $-5.18,18.52,25.99,63.76,65.25,121.32,123.22,127.66,128.10,129.77$, 130.17, 131.10, 131.51, 138.37, 139.27, 169.63, 171.01.

(R)-[3-(tert-Butyl-dimethyl-silanyloxymethyl)-2-oxo-5-phenyl-2,3-dihydro-

benzo $[e][1,4]$ diazepin-1-yl]-acetic acid ethyl ester (S6). To a suspension of NaH ($401 \mathrm{mg}, 16.7$ $\mathrm{mmol})$ in dry DMF $(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of $\mathbf{S 5}(5.3 \mathrm{~g}, 13.9 \mathrm{mmol})$ in dry DMF (20 mL) and the resulting mixture was allowed to warm to room temperature over 1 h . Ethyl
bromoacetate $(3.49 \mathrm{~g}, 20 \mathrm{mmol})$ was then added dropwise via syringe over 5 min and the resulting mixture was further stirred for 12 h at room temperature. The reaction mixture was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with EtOAc $(150 \mathrm{~mL})$.The organic layer was separated, washed with water ($2 \times 150 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromatography ($\mathrm{EtOAc} /$ petroleum ether $2 / 8$) to afford product $\mathbf{S 6}$ as an oil ($6.4 \mathrm{~g}, 99 \%$). RP-HPLC-MS: gradient D , retention time 5.64 min . MS (ESI^{+}) $m / z 467.2[\mathrm{M}+\mathrm{H}]^{+}(100 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.14(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $1.17(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.85(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{dd}, J=10.0,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.54-4.61 (m, 3H), 7.18-7.65 (m, 9H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CHCl}_{3}$): -5.26, 13.95, 18.40, 25.90, $49.53,61.42,63.95,65.07,121.48,124.34,128.08,129.58,129.88,130.21,130.29,131.42,138.72$, 142.32, 168.55, 168.90, 169.02.
(R)-[3-(tert-Butyl-dimethyl-silanyloxymethyl)-2-oxo-5-phenyl-2,3-dihydro-
benzo $[e][1,4]$ diazepin-1-yl]-acetic acid (10). Title compound $10(5.9 \mathrm{~g}, 99 \%)$ was obtained treating ester $\mathbf{S 6}$ ($6.4 \mathrm{~g}, 13 \mathrm{mmol}$) as described for compound $\mathbf{S 2}$. RP-HPLC-MS: gradient D, retention time 4.55 min . MS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / z 439.2[\mathrm{M}+\mathrm{H}]^{+}(100 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.12 (s, 3 H), 0.14 (s, $3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 3.83(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=10.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.60(\mathrm{~m}, 3 \mathrm{H}), 6.60$ (bs, 1H), 7.18-7.60 (m, 9H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CHCl}_{3}$): -5.23, 18.44, 25.93, 49.16, 63.83, 65.00, $121.58,124.65,128.16,129.65,130.03,130.35,130.44,131.66,138.66,142.08,169.14,169.56$, 173.12.

2 a	$\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$	Calcd	C	59.49	H	4.47	N	7.30
		Found	C	59.34	H	4.65	N	7.45
2b	$\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$	Calcd	C	59.96	H	4.64	N	7.17
		Found	C	60.15	H	4.47	N	7.05
2c	$\mathrm{C}_{43} \mathrm{H}_{36} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$	Calcd	C	62.28	H	4.38	N	6.76
		Found	C	62.08	H	4.20	N	6.90
2d	$\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}$	Calcd	C	61.50	H	4.46	N	6.52
		Found	C	61.75	H	4.60	N	6.30
3 a	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$	Calcd	C	54.34	H	3.95	N	8.45
		Found	C	54.44	H	3.85	N	8.54
3b	$\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$	Calcd	C	54.99	H	4.17	N	8.27
		Found	C	55.18	H	4.07	N	8.15
3c	$\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$	Calcd	C	57.97	H	3.89	N	7.73
		Found	C	57.85	H	3.78	N	7.96
3d $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}$		Calcd	C	57.26	H	4.00	N	7.42
		Found	C	57.07	H	4.09	N	7.65

