Supporting Information Binder, Crone, Haug, Menz, Kirsch

Direct Carbocyclization of Aldehydes with Alkynes: Combining Gold Catalysis with Aminocatalysis

Jörg T. Binder, Benedikt Crone, Timm T. Haug, Helge Menz, and Stefan F. Kirsch,*
Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany

Supporting Information

Representative experimental procedures for catalytic formation of $\mathbf{2}$ and $\mathbf{3}$, and copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{3 a}-\mathbf{3 g}, \mathbf{2 h}-\mathbf{2 k}, 5,8$, and 9 .

General experimental details: All commercially available chemicals were used without further purification. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on Bruker 500 MHz FT-NMR, 360 MHz FT-NMR and 250 MHz FT-NMR spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 90.6 MHz . Chemical shifts are reported in ppm relative to solvent signal. Multiplicity is indicated as follows: s (singlet); d (doublet); t (triplet); m (multiplet); dd (doublet of doublets). High resolution mass spectra and EI were determined on a Finnigan MAT 95S and MAT 8200. Flash chromatography was performed with E. Merck silica gel $(43-60 \mu \mathrm{~m})$. The eluent used is reported in parentheses ($\mathrm{P}=$ pentanes). Thin-layer chromatography (TLC) was performed on precoated glass-backed plates (Merck Kieselgel $60 \mathrm{~F}_{254}$), and components were visualized by observation under UV light or by treating the plates with $\mathrm{KMnO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$ followed by heating.
All formyl alkynes $\mathbf{1}$ were obtained following a general approached as described by others. ${ }^{1}$

[^0]
General Procedures for the Cyclization Reactions

General Procedure 1 (Synthesis of $\mathbf{2 h}$; Table 2, entry 7): A solution of $\mathbf{1 h}(100 \mathrm{mg}, 0.42$ $\mathrm{mmol})$ and $\left(c-\mathrm{C}_{6} \mathrm{H}_{11}\right)(i-\mathrm{Pr}) \mathrm{NH}(20 \mathrm{~mol} \%, 12 \mathrm{mg})$ in $\mathrm{CDCl}_{3}(0.4 \mathrm{~mL})$ was added to $\left[\left(\mathrm{Ph}_{3} \mathrm{PAu}\right)_{3} \mathrm{O}\right] \mathrm{BF}_{4}(7.5 \mathrm{~mol} \%, 45 \mathrm{mg})$, and the reaction vial was sealed, protected from light, and stirred at $70{ }^{\circ} \mathrm{C}$ for 18 h (until ${ }^{1} \mathrm{H}$ NMR analysis of the reaction mixture indicated complete conversion). The mixture was concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (pentanes/EtOAc 95:5) gave 2h as a colorless oil ($71 \mathrm{mg}, 0.30 \mathrm{mmol}, 71 \%$). $R_{\mathrm{f}}=0.48$ (pentanes/ EtOAc 90:10).

General Procedure 2 (Synthesis of 3a; Table 1, entry 5): A solution of $\mathbf{1 a}$ ($90 \mathrm{mg}, 0.40 \mathrm{mmol}$) and $(i-\mathrm{Pr})_{2} \mathrm{NH}\left(20 \mathrm{~mol} \%, 8 \mathrm{mg}\right.$; added as a 0.1 M stock solution) in $\mathrm{CDCl}_{3}(0.4 \mathrm{~mL})$ was added to a mixture of $\mathrm{AgSbF}_{6}(11 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3} \mathrm{AuCl}(16 \mathrm{mg}, 10 \mathrm{~mol} \%)$, and the reaction vial was sealed, protected from light, and stirred at $70^{\circ} \mathrm{C}$ for 6 h (until TLC analysis of the reaction mixture indicated complete conversion). The mixture was concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (pentanes $/ \mathrm{Et}_{2} \mathrm{O} 70: 30$) gave 3a as a colorless oil ($74 \mathrm{mg}, 0.33 \mathrm{mmol}, 82 \%$). $R_{\mathrm{f}}=0.2$ (pentanes/ EtOAc 60:40).

Compound Characterization Data

Dimethyl 3-formyl-4-methylcyclopent-3-ene-1,1-dicarboxylate (3a)
${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.14(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 9.93(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.0,38.8,47.8,53.2,56.8,135.2,157.5,171.9,187.2$; LRMS (EI): 226 (35\%) [$\left.\mathrm{M}^{+}\right], 195$ (46\%), 168 (100\%), 135 (93\%), 107 (98\%), 79 (76\%); HRMS 226.0840 [226.0841 calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$].

4,4-Bis((tert-butyldiphenylsilyloxy)methyl)-2-methylcyclopent-1-enecarbaldehyde (3b)

${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.03(\mathrm{~s}, 18 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 2 \mathrm{H})$, 3.58-3.66 (m, 4 H), 7.20-7.36 (m, 8 H), 7.38-7.44 (m, 4 H), 7.59-7.66 (m, 8 H), 9.91 (s, 1 H) ; ${ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4,19.5,27.1,36.1,46.0,47.7,66.8,127.8,129.8$, 133.6, 133.7, 135.8, 136.9, 160.8, 188.2; LRMS (EI): 589 (50\%) [M $\left.{ }^{+}{ }_{-} \mathrm{C}_{4} \mathrm{H}_{9}\right], 333$ (32\%), 257 (21\%), 197 (37\%), 135 (100\%), 91 (28\%); HRMS 589.2600 [589.2594 calcd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{Si}$ $\left.\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)\right]$.

4,4-Bis(methoxymethyl)-2-methylcyclopent-1-enecarbaldehyde (3c)

${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.10(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.51(\mathrm{~m}, 2 \mathrm{H})$, $3.22-3.29(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{~s}, 6 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4,36.8$, 44.8, 46.7, 59.4, 76.6, 136.6, 160.4, 188.3; LRMS (EI): 198 (4\%) [M $\left.{ }^{+}\right], 153$ (67\%), 137 (25\%), 121 (47\%), 45 (100\%); HRMS 198.1257 [198.1256 calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$].

4,4-Bis(benzyloxymethyl)-2-methylcyclopent-1-enecarbaldehyde (3d)

${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.09$ (s, 3 H), $2.50(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 2 \mathrm{H}), 3.37-3.44$ (m, 4 H), $4.51(\mathrm{~s}, 4 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 10 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4$, 36.9, 45.0, 46.9, 73.4, 73.8, 127.6, 127.6, 128.4, 136.7, 138.7, 160.5, 188.3; LRMS (EI): 350 (6%) $\left[\mathrm{M}^{+}\right], 259$ (10\%), 229 (23%), 121 (15%), 91 (100%); HRMS 350.1884 [350.1882 calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$].

4,4-Diacetyl-2-methylcyclopent-1-enecarbaldehyde (3e)

${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.12(\mathrm{~s}, 9 \mathrm{H}), 3.10(\mathrm{~s}, 4 \mathrm{H}), 9.87(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (90.6 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,26.4,35.4,44.4,71.2,134.9,157.7,187.3,203.6$; LRMS (EI): 151 (50\%) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right], 123$ (11\%), 109 (21\%), 81 (26\%), 43 (100%); HRMS 151.0758 [151.0759 calcd for $\left.\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right)\right]$.

Ethyl 1-cyano-3-formyl-4-methylcyclopent-3-enecarboxylate (3f)

${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $2.19(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.44(\mathrm{~m}, 4 \mathrm{H})$, $4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=14.0,14.1,42.2$, 43.8, 49.8, 63.6, 120.2, 134.4, 156.1, 168.4, 186.5; LRMS (EI): 207 (10\%) [$\left.\mathrm{M}^{+}\right], 189$ (8\%), 134 (100%), 106 (36%), 79 (27%); HRMS 207.0897 [207.0895 calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$].

3-Methyl-1 H-indene-2-carbaldehyde (3g)

${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.57(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.38-7.45 (m, 2 H), 7.52-7.55 (m, 1 H), 7.58-7.60 (m, 1 H$), 10.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (90.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.9,35.9,121.8,124.7,127.1,129.3,139.7,144.5,144.9,156.0,187.3$; LRMS (EI): 172 (52\%) [$\left.\mathrm{M}^{+}\right], 143$ (74\%), 128 (100\%), 115 (30\%).; LRMS (EI): 158 (77\%) $\left[\mathrm{M}^{+}\right], 130(73 \%), 129$ (100\%), 115 (60\%).; HRMS: 158.0731 [158.0732 calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}$ $\left.\left(\mathrm{M}^{+}\right)\right]$.

Dimethyl 3-formyl-4-methylenecyclopentane-1,1-dicarboxylate (2h)

${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.26(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-3.07(\mathrm{~m}, 3$ H), 3.73 (s, 3 H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 4.95$ (app. t, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.22 (app. t, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $9.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.8,40.5,41.2,53.1,53.1,56.9,58.1$, $110.9,149.5,171.7,171.9,199.8$; LRMS (EI): 239 (1\%) [M ${ }^{+}$], 209 (19\%), 180 (18\%), 152 (95\%), 93 (100\%); HRMS 209.0815 [209.0814 calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}\right)$].

4,4-Bis(methoxymethyl)-2-methylenecyclopentanecarbaldehyde (2i)

${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.41(\mathrm{~m}, 3$ H), $3.22-3.24(\mathrm{~m}, 4 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 4.87$ (app. t, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.12 (app. t, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $9.32(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.5,39.0,40.3$, 46.1, 56.9, 59.3, 59.4, 76.1, 76.2, 109.9, 152.7, 201.0; LRMS (EI): 212 (1\%) [$\left.{ }^{+}\right], 180$ (5\%), 180 (18%), 152 (8%), 119 (50\%), 107 (100%).

4,4-Bis(benzyloxymethyl)-2-methylenecyclopentanecarbaldehyde (2j)

${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.22(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.48(\mathrm{~m}, 3$ H), $3.39(\mathrm{~m}, 4 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.85$ (app. t, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ (app. t, $J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 10 \mathrm{H}), 9.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.5$, $39.1,40.5,46.3,56.9,73.3,73.3,73.4,73.6,109.9,127.5,127.6,128.4,138.8,152.7,200.9$; LRMS (EI): 364 (1\%) [$\left.\mathrm{M}^{+}\right], 273$ (10\%), 107 (35\%), 91 (100\%); HRMS 273.1489 [273.1491 calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$].

2,3-Dihydro-2-methyl-1-methylene- $\mathbf{1 H}$-indene-2-carbaldehyde (2k)

${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.42(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}) 3.53(\mathrm{~d}, J=16.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}) 7.20-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 1 \mathrm{H}), 9.41(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.9,35.9,121.8,124.7,127.1,129.3,139.7,144.5,144.9$, 156.0, 187.3; 172 (52\%) [$\left.\mathrm{M}^{+}\right], 143$ (74\%), 128 (100\%), 115 (30\%); HRMS: 172.0889 [172.0888 calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}\left(\mathrm{M}^{+}\right)$].

Dimethyl 5,6,7,7a-tetrahydro-3-methyl-4-oxo-2H-indene-1,1(4H)-dicarboxylate (5)

${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.11-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.23(\mathrm{~m}, 6$ H), $2.42-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.71(\mathrm{~m}$, 1 H), $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.9$, 23.6, 27.7, 40.8, 46.3, 52.1, 52.4, 52.9, 62.1, 132.1, 149.6, 170.9, 171.9, 199.3; LRMS (EI): 266 (54\%) [M $\left.{ }^{+}\right]$, $206(70 \%), 147(100 \%), 119(26 \%)$; HRMS: 266.1153 [266.1154 calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$].

Dimethyl 4,5,6,6a-tetrahydro-3-methyl-4-oxopentalene-1,1(3aH)-dicarboxylate (8)

${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.46-1.55 (m, 1 H), $1.77-1.78(\mathrm{~m}, 3 \mathrm{H}), 197-2.07(\mathrm{~m}, 1 \mathrm{H})$, 2.18-2.24 (m, 2 H), 3.27-3.29 (m, 1 H), 3.58-3.65 (m, 1 H$), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $5.49-5.51(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.7,24.0,38.6,45.1,52.5,53.0$, 61.4, 69.3, 124.3, 142.4, 170.2, 170.7, 215.2; LRMS (EI): 252 (62\%) [M $\left.{ }^{+}\right], 193$ (100\%), 164 (62\%), 105 (60\%); HRMS: 252.0998 [252.0999 calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)$].

5-Methyl-2-oxa-tricyclo $\left[5.3 .1 .0^{1,5}\right.$] undec-3-ene-6,6-dicarboxylicacid dimethyl ester (9)

${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.32-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 2$ H), 1.65-1.74 (m, 1 H$), 1.80-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.41(\mathrm{~m}, 1 \mathrm{H})$, $2.79-2.82(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.01-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.21(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.9,27.7,34.6,42.7,43.4,52.2$, 52.6, 53.4, 66.6, 93.3, 101.0, 146.2, 170.6, 170.7; LRMS (EI): 266 (81\%) [M $\left.{ }^{+}\right], 234$ (100\%), 206 (95\%), 134 (82\%); HRMS: 266.1156 [266.1154 calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right)\right]$.

Key COSY, HMBC, and NOESY correlations of $\mathbf{9}$ are given in the illustration:

- COSY
$\sim \mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$

$\mathrm{X}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$
\curvearrowleft NOESY

(

$3 g$

	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { ָin } \\ & \stackrel{i n}{5} \end{aligned}$	$\begin{aligned} & \text { BN } \\ & \text { ल్ల } \\ & \text { M్j } \\ & \text { Wip } \end{aligned}$		$\stackrel{\text { O}}{\stackrel{\text { O}}{+}}$	$\begin{aligned} & \bar{\infty} \\ & 0 \\ & \stackrel{0}{6} \\ & \hline \end{aligned}$	$\xrightarrow{\text { N }}$	

5

199.3287
-171.8393
170.8618
149.6055

$\stackrel{\sim}{\infty}$			
¢ิ	NN心以	N	

200	180	160	140	120	$\begin{gathered} 100 \\ (\mathrm{ppm}) \end{gathered}$	80	60	40	20	0	

9

	$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & \stackrel{+}{4} \\ & \stackrel{+}{4} \end{aligned}$	$\begin{aligned} & \text { ষ্ } \\ & \stackrel{\circ}{6} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{M} \\ & \text { ल్య } \end{aligned}$		

BCIII79F1

${ }^{* * *}$ Current Data Parameters *** NAME
EXPNO bciii79f1 PROCNO 11

BCIII79F1
cshmbc CDCI3 \{C:lu\} akbach 16

${ }^{* * *}$ Current	Data	Parameters ***
NAME	$:$	bciiii9f1
EXPNO	$:$	13
PROCNO	$:$	1

[^0]: ${ }^{1}$ Buisine, O.; Aubert, C.; Malacria, M. Chem. Eur. J. 2001, 7, 3517.

