Supporting Information

Mild Synthesis of Organophosphorus Compounds: Reaction of Phosphorus Containing Carbenoids with Organoboranes.

Monika I. Antczak and Jean-Luc Montchamp*
Department of chemistry, Box 298860, Texas Christian University, Fort Worth, Texas 76129

LIST OF CONTENTS: Page
General Chemistry 2
Reagent and Solvents 2
General procedure for the reaction of halomethylphosphorus anions (4b-4g) with organoboranes 2
General procedure for the reaction of halomethylphosphorus anions $(\mathbf{4 i}, \mathbf{4} \mathbf{j})$ with organoboranes 2
General procedure for the reaction of diphenyl (chloromethyl)phosphine- borane $\mathbf{4 k}$ with $(\text { alkyl })_{3} \mathrm{~B}$ 3
Experimental procedures and spectroscopic data 3-17
Reference 17
Spectra 18-206

General Chemistry. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a $300-\mathrm{MHz}$ spectrometer. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported (in parts per million) relative to internal tetramethylsilane $\left(\mathrm{Me}_{4} \mathrm{Si}, \delta=0.00 \mathrm{ppm}\right)$ with CDCl_{3} or in $\mathrm{D}_{2} \mathrm{O}(\delta=4.75 \mathrm{ppm}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 MHz . Chemical shifts for ${ }^{13} \mathrm{C}$ NMR spectra are reported (in parts per million) relative to $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm}) .{ }^{31} \mathrm{P}$ NMR spectra were recorded at 121 MHz , and chemical shifts reported (in parts per million) relative to external 85% phosphoric acid ($\delta=0.0 \mathrm{ppm}$). ${ }^{11} \mathrm{~B}$ NMR spectra were recorded at 29 MHz , and chemical shifts reported (in parts per million) relative to external $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ (δ $=0.0 \mathrm{ppm}$). Radial chromatography was carried out with chromatotron using 1, 2, or 4 mm layers of silica gel $60 \mathrm{PF}_{254}$ containing gypsum. Silica gel (200-300 mesh, Natland International Corporation) was used for flash chromatography. Ethyl acetate/hexanes mixtures were used as the eluent for chromatographic purifications. TLC plates were visualized by immersion in anisaldehyde stain (by volume: 93% ethanol, 3.5% sulfuric acid, 1% acetic acid, and 2.5% anisaldehyde) followed by heating. Mass spectrometry was provided by the Mass Spectrometry Facility of the University of South Carolina.

Reagents and Solvents. All reactions were conducted under nitrogen and all glassware was flamed before use. $\mathrm{Bu}_{3} \mathrm{~B},(\sec -\mathrm{Bu})_{3} \mathrm{~B}, \mathrm{Et}_{3} \mathrm{~B}, \mathrm{~B}$-benzyl-9-BBN, Alpine-Borane are commercially available. Other organoboranes reagents $\mathrm{Cy}_{3} \mathrm{~B}^{1}$, (heptyl) ${ }_{3} \mathrm{~B}{ }^{1}$, B -octyl-9$\mathrm{BBN}{ }^{1}$ were prepared according to literature procedure. Butyllithium (1.6 M in hexanes) and $\mathrm{HBF}_{4} . \mathrm{Et}_{2} \mathrm{O}$ were obtained from Aldrich and used as received. Tetrahydrofuran (THF) was distilled under N_{2} from sodium benzophenone ketyl, and used immediately. Toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}$ were freshly distilled from CaH_{2}.

General procedure for the reaction of halomethylphosphorus anions (4b-4g) with organoboranes.
A flame-dried, 50 mL , three-necked, round-bottomed flask was purged with nitrogen, charged with $\mathbf{4 b} \mathbf{- 4 g}$ ($4.0 \mathrm{mmol}, 1.0$ equiv) and dry THF (20 mL). The solution was cooled below - $90{ }^{\circ} \mathrm{C}$ (liquid nitrogen/ethanol bath) and n-butyllitium ($2.5 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, $4.0 \mathrm{mmol}, 1.0$ equiv) was added slowly via syringe followed by organoboranes ($4.0 \mathrm{mmol}, 1.0$ equiv) in one portion. The reaction mixture was warmed slowly to rt and then quenched by addition of water. The resulting biphasic mixture was then stirred at reflux for 2 h . After cooling to rt , the layers were separated, the aqueous phase was extracted with EtOAc (3 X), the combined organic layers were dried with MgSO_{4}, and the solvents removed in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc/hexanes) yielded the described compounds.

General procedure for the reaction of halomethylphosphorus anions (4i, 4j) with organoboranes.
A flame-dried, 50 mL , three-necked, round-bottomed flask was purged with nitrogen, charged with $\mathbf{4 i}$ or $\mathbf{4 j}$ ($3.2 \mathrm{mmol}, 1.0$ equiv) and dry THF (15 mL). The solution was cooled below - $90^{\circ} \mathrm{C}$ (liquid nitrogen/ethanol bath) and n-butyllithium ($2.0 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, $3.2 \mathrm{mmol}, 1.0$ equiv) was added slowly via syringe followed by organoboranes ($3.2 \mathrm{mmol}, 1.0$ equiv) in one portion. The reaction mixture was warmed slowly to rt and was quenched by addition of water. The resulting biphasic mixture was stirred for 30 min at rt . The layers were separated, the aqueous phase was extracted with

EtOAc (3 X), the combined organic layers were dried with MgSO_{4}, and solvents removed in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc/hexanes) yielded the described compounds.

General procedure for the reaction of diphenyl (chloromethyl)phosphine-borane 4 k with (Alkyl) ${ }_{3}$ B.

A flame-dried, 50 mL , three-necked, round-bottomed flask was purged with nitrogen, charged with diphenyl (chloromethyl)phosphine-borane $4 \mathbf{k}(2.1 \mathrm{mmol}, 521 \mathrm{mg}, 1.0$ equiv) and dry THF (15 mL). The solution was cooled below - $90{ }^{\circ} \mathrm{C}$ (liquid nitrogen/ethanol bath) and sec-butyllithium ($1.5 \mathrm{~mL}, 1.4 \mathrm{M}$ solution in cyclohexane, 2.1 mmol, 1.0 equiv) was added slowly via syringe followed by (Alkyl) ${ }_{3} \mathrm{~B}(2.1 \mathrm{mmol}, 1.0$ equiv) in one portion. The reaction mixture was warmed slowly to rt and was quenched by addition of water. The resulting biphasic mixture was stirred for 30 min at rt . The layers were separated, the aqueous phase was extracted with EtOAc (3 X), the combined organic layers were dried with MgSO_{4}, and solvents removed in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc/hexanes) yielded the described compounds.
(Diazomethyl)phosphonate $4 \mathbf{a}^{2}$ was prepared according to the literature.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.79(\mathrm{~d}, J=12 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right)$ $\delta 23.6$.

Diethyl (chloromethyl)phosphonate 2b. ${ }^{3}$ Anhydrous $\mathrm{Et}_{3} \mathrm{~N}$ ($38.45 \mathrm{~g}, 52.96 \mathrm{~mL}, 0.38$ mol, 2.1 equiv) was added dropwise to the solution of (chloromethyl)phosphonic dichloride ($30.00 \mathrm{~g}, 0.18 \mathrm{~mol}, 1.0$ equiv) in dry THF (300 mL) at $0^{\circ} \mathrm{C}$. Absolute ethanol $(17.49 \mathrm{~g}, 22.14 \mathrm{~mL}, 0.38 \mathrm{~mol}, 2.1$ equiv) was added dropwise and the mixture stirred at rt , for 10 h . The precipitate was filtered and the filtrate evaporated. Purification of the crude product by distillation at $105-110 \quad{ }^{\circ} \mathrm{C} / 10$ torr gave diethyl (chloromethyl)phosphonate ($28.20 \mathrm{~g}, 0.17 \mathrm{~mol}, 94 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.23$ (quin, $J=7 \mathrm{~Hz}, 4 \mathrm{H}$), 3.57 (d, $J=10 \mathrm{~Hz}, 2 \mathrm{H}$), $1.38(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 63.4\left(\mathrm{~d}, J_{\mathrm{POC}}=6 \mathrm{~Hz}\right), 33.4(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=160 \mathrm{~Hz}\right), 16.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 19.8$.

Dibenzyl (chloromethyl)phosphonate $4 \mathbf{c}^{4}$ was prepared according to the literature. Anhydrous $\mathrm{Et}_{3} \mathrm{~N}$ ($10.30 \mathrm{~mL}, 73.9 \mathrm{mmol}, 3.0$ equiv) was added dropwise to the solution of chloromethylphosphonic dichloride ($4.1 \mathrm{~g}, 24.5 \mathrm{mmol}, 1.0$ equiv) in dry THF (200 mL) at $0^{\circ} \mathrm{C}$. Benzyl alcohol ($5.60 \mathrm{~mL}, 53.9 \mathrm{mmol}, 2.2$ equiv) was added dropwise and the mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and then at rt , for 4 h . The precipitate was filtered, the filtrate evaporated. Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 1:1, v/v) yielded dibenzyl (chloromethyl)phosphonate ($6.05 \mathrm{~g}, 19.5$ mmol, 80\%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.35-7.37(\mathrm{~m}, 10 \mathrm{H}), 4.05-5.18(\mathrm{~m}, 4 \mathrm{H}), 3.49(\mathrm{~d}, J=$ $11, \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 135.8,128.0,127.9,69.1\left(\mathrm{~d}, J_{\mathrm{POC}}=7\right.$ $\mathrm{Hz}), 33.9\left(\mathrm{~d}, J_{\mathrm{PC}}=160 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 20.8$.

Tri(chloromethyl)phosphonate $\mathbf{4 d}^{5}$ was prepared according to the literature.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.37-4.52(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 92,1\left(\mathrm{~d}, J_{\mathrm{PC}}=198 \mathrm{~Hz}\right), 67.1\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 16.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6\right.$ $\mathrm{Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 6.5$.

Diethyl (1-chloroethyl)phosphonate $4 e^{6}$ and diethyl 1-chloro-benzylphosphonate $4 f^{6}$ were prepared according to literature from diethyl (hydroxyethyl)phosphonate and 1-hydroxy-benzylphosphonate respectively, triphenylphosphine and carbon tetrachloride.
Diethyl (hydroxyethyl)phosphonate ${ }^{7}$ and 1-hydroxy-benzylphosphonate ${ }^{7}$ were prepared according to the literature from diethyl phosphite and the appropriate aldehyde in the presence of $\mathrm{Et}_{3} \mathrm{~N}$.
Diethyl (1-chloroethyl)phosphonate 4e. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.17-4.29(\mathrm{~m}, 4$ H), $4.10\left(\mathrm{dq}, J_{\mathrm{HH}}=7 \mathrm{~Hz}, J_{\mathrm{HP}}=9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.70\left(\mathrm{dd}, J_{\mathrm{HH}}=7 \mathrm{~Hz}, J_{\mathrm{HP}}=16.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.37$ $(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 22.2$.
Diethyl 1-chloro-benzylphosphonate 4f. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.34-7.56(\mathrm{~m}, 5$ H), $4.90(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-4.24(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 134.1,129.0,128.9\left(\mathrm{~d}, J_{\mathrm{PCCC}}=6 \mathrm{~Hz}, 2\right.$ C), $128.5(2 \mathrm{C}), 64.1\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 63.9\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 53.6\left(\mathrm{~d}, J_{\mathrm{PC}}=160 \mathrm{~Hz}\right), 16.4$ $\left(\mathrm{d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 18.3$.

Ethyl [bis(chloromethyl)]phosphinate 4g. ${ }^{8}$ Anhydrous $\mathrm{Et}_{3} \mathrm{~N}(15.68 \mathrm{~g}, 21.60 \mathrm{~mL}, 0.155$ mol, 1.2 equiv) was added dropwise to the solution of bis(chloromethyl)phosphinic chloride ($23.20 \mathrm{~g}, 0.129 \mathrm{~mol}, 1.0$ equiv) in dry THF $(300 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Absolute ethanol ($7.14 \mathrm{~g}, 9.04 \mathrm{~mL}, 0.155 \mathrm{~mol}, 1.2$ equiv) was added dropwise and the mixture stirred at rt , for 4 h . The precipitate was filtered and the filtrate evaporated. Purification of the crude product by distillation at $104-106{ }^{\circ} \mathrm{C} / 1$ torr gave ethyl [bis(chloromethyl)]phosphinate ($20.83 \mathrm{~g}, 0.110 \mathrm{~mol}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 4.16-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=9 \mathrm{~Hz}, 4 \mathrm{H}), 1.36(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 63.2\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 33.3\left(\mathrm{~d}, J_{\mathrm{PC}}=106\right.$ $\mathrm{Hz}), 16.7\left(\mathrm{~d}, J_{\mathrm{POCC}}=5 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 40.7$.

Bis(chloromethyl)phosphinic chloride ${ }^{9}$ was prepared according to the literature. A mixture of $\mathrm{H}_{3} \mathrm{PO}_{2}(30.50 \mathrm{~g}, 0.32 \mathrm{~mol}, 50 \%$ aqueous solution), 17.5 mL concentrated HCl and 14.5 g of paraformaldehyde was stirred at $40-45{ }^{\circ} \mathrm{C}$ until a clear solution was obtained and then refluxed for 30 h . Evaporation under reduced pressure gave crude bis(hydroxymethyl)phosphinic chloride, which was used in next step without purification.
To a 176.0 g of refluxing SOCl_{2} was added slowly with stirring crude bis(hydroxymethyl)phosphinic chloride ($30.00 \mathrm{~g}, 0.25 \mathrm{~mol}$). After completion of the addition, refluxing was continued for 3 h until gas evolution ceased. Purification of the crude product by distillation b.p. $80-85{ }^{\circ} \mathrm{C} / 0.1$ torr gave bis(chloromethyl)phosphinic chloride ($32.38 \mathrm{~g}, 0.18 \mathrm{~mol}, 72 \%$).

Diethyl (chloromethyl)phosphonothioate $\mathbf{4 h}{ }^{10}$ was prepared according to the literature from (chloromethyl)phosphonic dichloride and sodium ethoxide.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.14-4.27(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 64.0\left(\mathrm{~d}, J_{\mathrm{POC}}=6 \mathrm{~Hz}\right), 41.0\left(\mathrm{~d}, J_{\mathrm{PC}}=124 \mathrm{~Hz}\right.$), $16.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 85.5$.

Diethoxy-(chloromethyl)phosphine-borane 4i. To a solution of dichloro(chloromethyl)phosphine ($66.1 \mathrm{mmol}, 10.00 \mathrm{~g}, 1.0$ equiv) in dry THF (150 mL), was added absolute ethanol ($132.1 \mathrm{mmol}, 6.10 \mathrm{~g}, 7.70 \mathrm{~mL}, 2.0$ equiv) under nitrogen. The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(132.1 \mathrm{mmol}, 18.4 \mathrm{~mL}, 2.0$ equiv) was slowly added. After the solution has been stirred for 10 min at rt , it was again cooled to $0^{\circ} \mathrm{C}$ and borane-methyl sulfide $(36.5 \mathrm{~mL}$ of a 2.0 M solution in THF, $73 \mathrm{mmol}, 1.1$ equiv) was added. The solution was allowed to warm up to rt and stirring was continued for 15 min . The precipitate was removed by filtration, the filtrate diluted with EtOAc and washed with water (1 X). The resulting organic layer was dried with MgSO_{4}, and the solvent removed in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 1:99, v/v) yielded diethoxy-(chloromethyl)phosphine-borane $4 \mathbf{i}$ ($62.5 \mathrm{mmol}, 11.5 \mathrm{~g}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.03-4.26(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~d}, J=3 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 6 \mathrm{H}), 0.50\left(\mathrm{qd}, J_{\mathrm{BH}}=96 \mathrm{~Hz}, J_{\mathrm{PBH}}=16 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta$ $64.5\left(\mathrm{~d}, J_{\mathrm{POC}}=4 \mathrm{~Hz}\right), 37.5\left(\mathrm{~d}, J_{\mathrm{PC}}=55 \mathrm{~Hz}\right), 16.5\left(\mathrm{~d}, J_{\mathrm{POCC}}=5 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $121.47 \mathrm{MHz}) \delta 137.5\left(\mathrm{q}, J_{\mathrm{PB}}=76 \mathrm{~Hz}\right) ;{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}, 28.88 \mathrm{MHz}\right) \delta-44.2\left(\mathrm{dq}, J_{\mathrm{BP}}\right.$ $\left.=76 \mathrm{~Hz}, J_{\mathrm{BH}}=96 \mathrm{~Hz}\right)$; HRMS calcd. for $\mathrm{C}_{5} \mathrm{H}_{19} \mathrm{BClNO}_{2} \mathrm{P},\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$202.0937, found 202.0935 .

Dichloro-(chloromethyl)phosphine ${ }^{11}$ was prepared by the sulfur exchange reaction as reported in the literature.
The mixture of chloromethylphosphonothioic dichloride ($17.50 \mathrm{~g}, 96.2 \mathrm{mmol}, 1.0$ equiv) and dichlorophenylphosphine ($19.80 \mathrm{~g}, 110.6 \mathrm{mmol}, 1.15$ equiv) was heated at $175^{\circ} \mathrm{C}$ under an atmosphere of nitrogen in the sealed tube for 3 h . It was then cooled and distilled. The fraction collected boiling at $67-132{ }^{\circ} \mathrm{C}$ at 100 torr was then carefully fractioned under atmospheric pressure (128-132 ${ }^{\circ} \mathrm{C}$) to give dichloro(chloromethyl)phosphine ($10.24 \mathrm{~g}, 68.3 \mathrm{mmol}, 71 \%$).
${ }^{31} \mathrm{P}$ NMR (36 MHz) $\delta 165$.
(Chloromethyl)phosphonothioic dichloride ${ }^{11}$ was prepared according to the literature. A mixture of posphorus pentasulfide $(8.05 \mathrm{~g}, 18.1 \mathrm{mmol}, 0.12$ equiv) and chloromethylphosphonic dichloride $(25.00 \mathrm{~g}, 150.7 \mathrm{mmol}, 1.0$ equiv) was heated to reflux at $174-179{ }^{\circ} \mathrm{C}$ under nitrogen for 6 h , and then distilled at $50^{\circ} \mathrm{C} / 10$ torr to give (chloromethyl)phosphonothioic dichloride ($102.5 \mathrm{mmol}, 18.64 \mathrm{~g}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.29(\mathrm{~d}, J=3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta$ $41.0\left(\mathrm{~d}, J_{\mathrm{PC}}=87 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 75.1$.
(Chloromethyl)phosphonic dichloride ${ }^{12}$ was prepared according to the literature. Dichloromethane ($34.98 \mathrm{~g}, 0.4 \mathrm{~mol}, 25.7 \mathrm{~mL}, 1.0$ equiv), phosphorus trichloride (54.93 g , $0.4 \mathrm{~mol}, 34.89 \mathrm{~mL}, 1.0$ equiv) and aluminium chloride ($53.34 \mathrm{~g}, 0.4 \mathrm{mmol}, 1.0$ equiv) were mixed and heated at $100{ }^{\circ} \mathrm{C}$ in the sealed tube for 24 h . After cooling to rt , the reaction mixture was dissolved in dichloromethane and the solution was cooled to about -
$20{ }^{\circ} \mathrm{C}$. Water ($79.2 \mathrm{~mL}, 4.4 \mathrm{~mol}, 11.0$ equiv) was then added in small portions with vigorous stirring. The solution was filtered, the solvent removed in vacuo and the residue distilled at $50{ }^{\circ} \mathrm{C} / 0.5$ torr to give (chloromethyl)phosphonic dichloride ($33.28 \mathrm{~g}, 0.2 \mathrm{~mol}$, 50 \%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.17(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta$ $45.5\left(\mathrm{~d}, J_{\mathrm{PC}}=117 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 39.2$.

Diethoxy (1-chloroethyl)phosphine-borane $\mathbf{4 j}$. A flame-dried, 50 mL , three-necked, round-bottomed flask was purged with nitrogen, charged with diethoxy (chloromethyl)phosphine-borane ($4.0 \mathrm{mmol}, 736 \mathrm{mg}, 1.0$ equiv) and dry THF (20 mL). The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and n-butyllithium ($3.0 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, $4.8 \mathrm{mmol}, 1.2$ equiv) was added slowly via syringe. The reaction mixture was stirred at $78{ }^{\circ} \mathrm{C}$ for 5 min , then iodomethane ($4.8 \mathrm{mmol}, 681 \mathrm{mg}, 1.2$ equiv) was added. The reaction was warmed slowly to rt and was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$. The layers were separated and the aqueous phase was extracted with EtOAc (3 X). The combined organic layers were dried with MgSO_{4}, and solvents removed in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 1:99, v/v) yielded diethoxy (1-chloroethyl)phosphine-borane $\mathbf{4 j}$ ($3.60 \mathrm{mmol}, 713 \mathrm{mg}, 90 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.10-4.24(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=$ $7 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 0.50\left(\mathrm{qd}, J_{\mathrm{BH}}=94 \mathrm{~Hz}, J_{\mathrm{PBH}}=16 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 64.6,37.5\left(\mathrm{~d}, J_{\mathrm{PCC}}=58 \mathrm{~Hz}\right), 18.3,16.5 ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121.47\right.$ $\mathrm{MHz}) \delta 141.4\left(\mathrm{q}, J_{\mathrm{PB}}=75 \mathrm{~Hz}\right) ;{ }^{11} \mathrm{~B} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 28.88 \mathrm{MHz}\right) \delta-44.4\left(\mathrm{dq}, J_{\mathrm{BP}}=75 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{BH}}=94 \mathrm{~Hz}\right) ;$ HRMS calcd. for $\mathrm{C}_{6} \mathrm{H}_{21} \mathrm{BClNO}_{2} \mathrm{P}$, $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$216.1092, found 216.1089.
(Chloromethyl)diphenylphosphine ${ }^{13}$ was prepared according to the literature.
(Chloromethyl)diphenylphosphine-borane 4k. A solution of KOH ($53.5 \mathrm{mmol}, 3.00 \mathrm{~g}$, 5.0 equiv) in $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ was mixed with a solution of $n-\mathrm{Bu}_{4} \mathrm{NCl}(1.8 \mathrm{mmol}, 500 \mathrm{mg}$, 0.17 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and toluene (5 mL). Diphenylphosphine (10.7 mmol , $2.00 \mathrm{~g}, 1.0$ equiv) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was then added under nitrogen to the emulsion, under vigorous stirring, over 2 h . The reaction mixture was stirred for 14 h at rt, washed with $\mathrm{H}_{2} \mathrm{O}$, the organic layer separated and transferred to the round-bottomed flask. $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}(2.0 \mathrm{M}$ solution in THF, $8.0 \mathrm{~mL}, 16 \mathrm{mmol}, 1.5$ equiv) was then added and the reaction mixture was stirred at rt , for 1 h . The solvent was removed in vacuo and the residue diluted with EtOAc then washed with water. The organic layer was dried with MgSO_{4}, and the solvent removed in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 1:9, v/v) yielded (chloromethyl)diphenylphosphine-borane $\mathbf{4 k}(9.6 \mathrm{mmol}, 2.38 \mathrm{~g}, 90 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.40-7.70(\mathrm{~m}, 10 \mathrm{H}), 4.09(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.7\left(\mathrm{q}, J_{\mathrm{BH}}\right.$ $=100 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 133.1\left(\mathrm{~d}, J_{\mathrm{PCCC}}=10 \mathrm{~Hz}, 4 \mathrm{C}\right), 132.3(\mathrm{~d}$, $\left.J_{\mathrm{PCCCC}}=2.5 \mathrm{~Hz}, 2 \mathrm{C}\right), 129.9\left(\mathrm{~d}, J_{\mathrm{PC}}=55 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{PCC}}=10 \mathrm{~Hz}, 4 \mathrm{C}\right), 126.4\left(\mathrm{~d}, J_{\mathrm{PC}}\right.$ $=57 \mathrm{~Hz}), 37.1\left(\mathrm{~d}, J_{\mathrm{PC}}=32 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 24.6\left(\mathrm{~d}, J_{\mathrm{PB}}=60 \mathrm{~Hz}\right)$; $\left.{ }^{11} \mathrm{~B} \mathrm{NMR} \mathrm{CDCl}_{3}, 28.88 \mathrm{MHz}\right) \delta-39.8\left(\mathrm{dd}, J_{\mathrm{BP}}=60 \mathrm{~Hz}, J_{\mathrm{BH}}=100 \mathrm{~Hz}\right)$; HRMS calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BClNP},\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}-\mathrm{H}_{2}\right]$ 264.0880, found 264.0888.

Dimethyl pentylphosphonate (3a-H, Scheme 2). ${ }^{14}$ A flame-dried, 25 mL , three-necked, round-bottomed flask was purged with nitrogen, charged with dimethyl (diazomethyl)phosphonate $\mathbf{4 a}(2.0 \mathrm{mmol}, 300 \mathrm{mg}, 1.0$ equiv) and dry THF (10 mL). $\mathrm{Bu}_{3} \mathrm{~B}(2.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $2.0 \mathrm{mmol}, 1.0$ equiv) was then added in one portion. An exothermic reaction ensued and nitrogen evolved. The reaction was then stirred at rt for 1 h , and quenched by addition of water. The resulting biphasic mixture was heated at reflux for 2 h . After cooling to rt , the layers were separated, the aqueous phase was extracted with EtOAc (3 X), the combined organic layers were dried with MgSO_{4}, and the solvents removed in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc/hexanes, 1:1, v/v) yielded dimethyl pentylphosphonate 3a-H ($1.72 \mathrm{mmol}, 310 \mathrm{mg}, 86 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.74(\mathrm{~d}, J=11 \mathrm{~Hz}, 6 \mathrm{H}), 1.31-1.80(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 52.5\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 33.0\left(\mathrm{~d}, J_{\mathrm{PCCC}}=17\right.$ $\mathrm{Hz}), 24.9\left(\mathrm{~d}, J_{\mathrm{PC}}=140 \mathrm{~Hz}\right), 22.4,22.2\left(\mathrm{~d}, J_{\mathrm{PCC}}=5 \mathrm{~Hz}\right), 14.0 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 121.47\right.$ $\mathrm{MHz}) \delta$ 36.3.

Monodeuterated dimethyl pentylphosphonate (3a-D, Scheme 2). A flame-dried, 25 mL , three-necked, round-bottomed flask was purged with nitrogen, charged with dimethyl (diazomethyl)phosphonate 4b ($2.0 \mathrm{mmol}, 300 \mathrm{mg}, 1.0$ equiv) and dry THF (10 $\mathrm{mL}) . \mathrm{Bu}_{3} \mathrm{~B}(2.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $2.0 \mathrm{mmol}, 1.0$ equiv) was then added in one portion. An exothermic reaction ensued and nitrogen evolved. The reaction was then stirred at rt for 1 h , then quenched by addition of $\mathrm{D}_{2} \mathrm{O}$. The resulting biphasic mixture was stirred for 12 h at rt . The layers were separated and the aqueous phase was extracted with EtOAc (3 X), the combined organic layers were dried with MgSO_{4}, and the solvents removed in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc/hexanes $1: 1, \mathrm{v} / \mathrm{v}$) yielded dimethyl pentylphosphonate 3a-D (1.6 mmol , $290 \mathrm{mg}, 80 \%$). Deuterium incorporation 98%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.74(\mathrm{~d}, J=11 \mathrm{~Hz}, 6 \mathrm{H}), 1.24-1.75(\mathrm{~m}, 7 \mathrm{H}), 0.89(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 52.5\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 33.0\left(\mathrm{~d}, J_{\mathrm{PCCC}}=17\right.$ $\mathrm{Hz}), 24.9\left(\mathrm{dt}, J_{\mathrm{PC}}=140 \mathrm{~Hz}, J_{\mathrm{DC}}=19 \mathrm{~Hz}\right), 22.4,22.1\left(\mathrm{~d}, J_{\mathrm{PCC}}=5 \mathrm{~Hz}\right), 14.0 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 36.4$; $\mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$calcd. for $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{DO}_{3} \mathrm{P}$, ($[\mathrm{M}]^{+}$) 182.1056, found 182.1056.

Diethyl pentylphosphonate (3b-H, Scheme 3). ${ }^{15}$ The title compound was prepared from diethyl (chloromethyl)phosphonate 4b ($4.0 \mathrm{mmol}, 746 \mathrm{mg}, 1.0$ equiv) and $\mathrm{Bu}_{3} \mathrm{~B}$ $(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes, 1:1, v/v) yielded diethyl pentylphosphonate 3b-H ($3.84 \mathrm{mmol}, 800 \mathrm{mg}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.03-4.16(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.77(\mathrm{~m}, 8 \mathrm{H}), 1.32(\mathrm{t}, J=7$ $\mathrm{Hz}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 61.6\left(\mathrm{~d}, J_{\mathrm{POC}}=6 \mathrm{~Hz}\right)$, $33.0\left(\mathrm{~d}, J_{\mathrm{PCCC}}=17 \mathrm{~Hz}\right), 25.5\left(\mathrm{~d}, J_{\mathrm{PC}}=140 \mathrm{~Hz}\right), 22.3,22.2\left(\mathrm{~d}, J_{\mathrm{PCC}}=5 \mathrm{~Hz}\right), 16.6\left(\mathrm{~d}, J_{\mathrm{POCC}}\right.$ $=6 \mathrm{~Hz}), 14.1 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 33.8$.

Monodeuterated diethyl pentylphosphonate (3b-D, Scheme 3). The title compound was prepared from diethyl (chloromethyl)phosphonate $\mathbf{4 b}(4.0 \mathrm{mmol}, 746 \mathrm{mg}, 1.0$ equiv) and $\mathrm{Bu}_{3} \mathrm{~B}(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{mmol}, 1.0$ equiv). The reaction
mixture was quenched by addition of $\mathrm{D}_{2} \mathrm{O}$ at rt . The resulting biphasic mixture was stirred for 12 h at rt . Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 1:1, v/v) yielded diethyl pentylphosphonate 3b-D ($3.56 \mathrm{mmol}, 745 \mathrm{mg}$, 89 \%). Deuterium incorporation 95%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.02-4.17(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.66(\mathrm{~m}, 7 \mathrm{H}), 1.35(\mathrm{t}, J=7$ $\mathrm{Hz}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 61.6\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right)$, $32.9\left(\mathrm{~d}, J_{\mathrm{PCCC}}=17 \mathrm{~Hz}\right), 25.9\left(\mathrm{~d}, J_{\mathrm{PC}}=140 \mathrm{~Hz}\right), 22.4,22.3\left(\mathrm{~d}, J_{\mathrm{PCC}}=5 \mathrm{~Hz}\right), 16.7\left(\mathrm{~d}, J_{\mathrm{POCC}}\right.$ $=6 \mathrm{~Hz}), 14.0 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 33.8$; HRMS (EI^{+}) calcd. for $\mathrm{C}_{9} \mathrm{D}_{21} \mathrm{DO}_{3} \mathrm{P},\left([\mathrm{M}]^{+}\right) 210.1369$, found 210.1367.

Dibenzyl pentylphosphonate (Table 1, entry 1). ${ }^{16}$ The title compound was prepared from dibenzyl (chloromethyl)phosphonate $\mathbf{4 c}\left(4.0 \mathrm{mmol}, 1.24 \mathrm{~g}, 1.0\right.$ equiv) and $\mathrm{Bu}_{3} \mathrm{~B}$ $(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 1:1, v/v) yielded dibenzyl pentylphosphonate ($3.40 \mathrm{mmol}, 1.13 \mathrm{~g}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.26-7.42(\mathrm{~m}, 10 \mathrm{H}), 4.93-5.14(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.79$, $(\mathrm{m}, 8 \mathrm{H}), 0.85(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 136.4\left(\mathrm{~d}, J_{\mathrm{PCC}}=6 \mathrm{~Hz}\right.$, $2 \mathrm{C}), 128.6(4 \mathrm{C}), 128.4(2 \mathrm{C}), 127.9(4 \mathrm{C}), 67.0\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 32.6\left(\mathrm{~d}, J_{\mathrm{PCCC}}=15 \mathrm{~Hz}\right)$, $25.9\left(\mathrm{~d}, J_{\mathrm{PC}}=140 \mathrm{~Hz}\right), 22.0,13.8 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 35.0$.

Diethyl 1-chloropentylphosphonate (Table 1, entry 2). ${ }^{17}$ A flame-dried, 50 mL , threenecked, round-bottomed flask was purged with nitrogen, charged with diethyl tri(chloromethyl)phosphonate $\mathbf{4 d}(4.0 \mathrm{mmol}, 1.01 \mathrm{~g}, 1.0$ equiv) and dry THF (20 mL). The solution was cooled below - $100{ }^{\circ} \mathrm{C}$ (liquid nitrogen/ethanol bath) and n-butyllithium ($2.5 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, $4.0 \mathrm{mmol}, 1.0$ equiv) was added slowly via syringe followed by $\mathrm{Bu}_{3} \mathrm{~B}(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{mmol}, 1.0$ equiv) in one portion. The reaction mixture was slowly warmed to $-50{ }^{\circ} \mathrm{C}$ and was quenched by addition of water. The resulting biphasic mixture was stirred at reflux for 2 h . The layers were separated, the aqueous phase was extracted with EtOAc (3 X), the combined organic layers were dried with MgSO_{4}, and solvents removed in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 3:7, v/v) yielded diethyl 1-chloropentylphosphonate ($2.8 \mathrm{mmol}, 678 \mathrm{mg}, 70 \%$), 90% purity (10% diethyl 1-butylpentylphosphinate).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.19-4.30(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{td}, J=11 \mathrm{~Hz}, J=3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.28-2.11(\mathrm{~m}, 6 \mathrm{H}), 1.38(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75.45 \mathrm{MHz}) \delta 63.7\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 63.2\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 52.4\left(\mathrm{~d}, J_{\mathrm{PC}}=160 \mathrm{~Hz}\right), 31.8$, $28.6\left(\mathrm{~d}, J_{\mathrm{PCCC}}=12 \mathrm{~Hz}\right), 21.9,16.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=5 \mathrm{~Hz}\right), 13.8 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47\right.$ $\mathrm{MHz}) \delta$ 21.8.

Diethyl 1-butylpentylphosphinate (Table 1, entry 3). ${ }^{18}$ A flame-dried, 50 mL , threenecked, round-bottomed flask was purged with nitrogen, charged with diethyl (trichloromethyl)phosphonate $4 \mathbf{d}(4.0 \mathrm{mmol}, 1.01 \mathrm{~g}, 1.0$ equiv) and dry THF (20 mL). The solution was cooled below - $100^{\circ} \mathrm{C}$ (liquid nitrogen/ethanol bath) and n-butyllithium $(2.5 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, $4.0 \mathrm{mmol}, 1.0$ equiv) was added slowly via syringe followed by $\mathrm{Bu}_{3} \mathrm{~B}(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{mmol}, 1.0$ equiv) in one portion. The reaction mixture was warmed slowly to $-50^{\circ} \mathrm{C}$ and then was cooled down
to $-78{ }^{\circ} \mathrm{C}$ and n-butyllithium ($2.5 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, $4.0 \mathrm{mmol}, 1.0$ equiv) was added slowly. After the addition the reaction mixture was quenched with water at rt The resulting biphasic mixture was stirred at reflux for 2 h . After cooling to rt, the layers were separated, the aqueous phase was extracted with EtOAc (3 X), the combined organic layers were dried with MgSO_{4}, and solvents removed in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc/hexanes $1: 1 \mathrm{v} / \mathrm{v}$) yielded diethyl 1-butylpentylphosphinate ($2.08 \mathrm{mmol}, 549 \mathrm{mg}, 52 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.03-4.14(\mathrm{~m}, 4 \mathrm{H}), 2.10-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.77(\mathrm{~m}$, $12 \mathrm{H}), 1.30(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta$ $61.2\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 35.9\left(\mathrm{~d}, J_{\mathrm{PC}}=138 \mathrm{~Hz}\right), 29.8\left(\mathrm{~d}, J_{\mathrm{PCCC}}=9 \mathrm{~Hz}\right), 28.0\left(\mathrm{~d}, J_{\mathrm{PCC}}=4\right.$ $\mathrm{Hz}), 22.8,16.5\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 14.0 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 36.2$.

Diethyl 1-methyl-pentylphosphonate. (Table 1, entry 4). ${ }^{10-19}$ The title compound was prepared from diethyl (1-chloroethyl)phosphonate $4 \mathbf{e}(4.0 \mathrm{mmol}, 800 \mathrm{mg}, 1.0$ equiv) and $\mathrm{Bu}_{3} \mathrm{~B}(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes $1: 1, \mathrm{v} / \mathrm{v}$) yielded diethyl 1-methyl-pentylphosphonate ($2.52 \mathrm{mmol}, 560 \mathrm{mg}, 63 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.04-4.16(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.79(\mathrm{~m}, 7 \mathrm{H}) 1.26-1.34(\mathrm{t}, J$ $=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.20\left(\mathrm{dd}, J_{\mathrm{HH}}=7 \mathrm{~Hz}, J_{\mathrm{HP}=} 18 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.88-0.93(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 61.6\left(\mathrm{t}, J_{\mathrm{POC}}=6 \mathrm{~Hz}\right), 30.9\left(\mathrm{~d}, J_{\mathrm{PC}}=140 \mathrm{~Hz}\right), 29.8(2$ C), 29.7, 29.6, 22.7, $16.7\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 14.2,13.3\left(\mathrm{~d}, J_{\mathrm{PCC}}=5 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $121.47 \mathrm{MHz}) \delta 36.7$.

Diethyl 1-phenyl-pentylphosphonate. (Table 1, entry 5). ${ }^{19,20}$ The title compound was prepared from diethyl 1-chloro-benzylphosphonate $\mathbf{4 f}(4.0 \mathrm{mmol}, 1.05 \mathrm{~g}, 1.0$ equiv) and $\mathrm{Bu}_{3} \mathrm{~B}(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes $1: 1, \mathrm{v} / \mathrm{v}$) yielded diethyl 1-phenyl-pentylphosphonate ($2.4 \mathrm{mmol}, 682 \mathrm{mg}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.20-7.34(\mathrm{~m}, 5 \mathrm{H}), 3.66-4.13(\mathrm{~m}, 4 \mathrm{H}), 2.98\left(\mathrm{ddd}, J_{\mathrm{HH}}\right.$ $\left.=4 \mathrm{~Hz}, J_{\mathrm{HH}}=11 \mathrm{~Hz}, J_{\mathrm{PH}}=22 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.90-2.15$, (m, 2 H$), 1.28(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.14-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.09(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75.45 \mathrm{MHz}) \delta 136.3,129.2\left(\mathrm{~d}, J_{\mathrm{PCCC}}=7 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.4(2 \mathrm{C}), 127.0,62.5\left(\mathrm{~d}, J_{\mathrm{POC}}=7\right.$ $\mathrm{Hz}), 61.7\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 44.6\left(\mathrm{~d}, J_{\mathrm{PC}}=138 \mathrm{~Hz}\right), 29.8\left(\mathrm{~d}, J_{\mathrm{PCCC}}=15 \mathrm{~Hz}\right), 28.5,22.3$, $16.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 16.2\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 13.8 ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta$ 30.3 .

Ethyl (chloromethyl)pentylphosphinate. (Table 1, entry 6). The title compound was prepared from ethyl [bis(chloromethyl)]phosphinate $\mathbf{4 g}(4.0 \mathrm{mmol}, 760 \mathrm{mg}, 1.0$ equiv) and $\mathrm{Bu}_{3} \mathrm{~B}(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 1:1, v/v) yielded ethyl (chloromethyl)pentylphosphinate ($3.12 \mathrm{mmol}, 662 \mathrm{mg}, 78 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 4.03-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.32-1.93$ $(\mathrm{m}, 8 \mathrm{H}), 1.30(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right)$ $\delta 61.4\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 34.7\left(\mathrm{~d}, J_{\mathrm{PC}}=91 \mathrm{~Hz}\right), 33.0\left(\mathrm{~d}, J_{\mathrm{PCCC}}=15 \mathrm{~Hz}\right), 25.6\left(\mathrm{~d}, J_{\mathrm{PC}}=100\right.$ $\mathrm{Hz}), 22.3,21.1\left(\mathrm{~d}, J_{\mathrm{PCC}}=4 \mathrm{~Hz}\right), 16.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 14.0 ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121.47\right.$ $\mathrm{MHz}) \delta$ 50.4. HRMS calcd. for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{ClO}_{2} \mathrm{P}, 212.0733$, found 212.0730.

Diethyl pentylphosphonothioate (Table 1, entry 7). A flame-dried, 50 mL , threenecked, round-bottomed flask was purged with nitrogen, charged with diethyl (chloromethyl)phosphonothioate $4 \mathrm{~h}(4.0 \mathrm{mmol}, 808 \mathrm{mg}, 1.0$ equiv) and dry THF (20 mL). The solution was cooled to $-78^{\circ} \mathrm{C}$ (liquid nitrogen/ethanol bath) and n-butyllitium ($2.5 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, $4.0 \mathrm{mmol}, 1.0$ equiv) was added slowly via syringe. After the reaction mixture had been stirred for 10 min at this temperature, it was cooled to $-90^{\circ} \mathrm{C}$ (liquid nitrogen/ethanol bath) and $\mathrm{Bu}_{3} \mathrm{~B}(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{~mL}, 1.0$ equiv) was added in one portion. The reaction solution was warmed slowly to rt and was quenched by addition of water. The resulting biphasic mixture was stirred at rt for 2 h , the layers were separated, the aqueous phase was extracted with EtOAc (3 X), the combined organic layers were dried with MgSO_{4}, and solvents removed in vacuo. Purification of the crude product by chromatography on silica gel ($\mathrm{EtOAc} /$ hexanes $2: 98 \mathrm{v} / \mathrm{v}$) yielded diethyl pentylphosphonothioate ($3.32 \mathrm{mmol}, 774 \mathrm{mg}$, 83 \%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.99-4.23(\mathrm{~m}, 4 \mathrm{H}), 1.21-2.00(\mathrm{~m}, 8 \mathrm{H}), 1.30(\mathrm{t}, J=7$
 $34.8\left(\mathrm{~d}, J_{\mathrm{PC}}=111 \mathrm{~Hz}\right), 32.6\left(\mathrm{~d}, J_{\mathrm{PCCC}}=18 \mathrm{~Hz}\right), 22.7\left(\mathrm{~d}, J_{\mathrm{PCC}}=4 \mathrm{~Hz}\right), 22.4\left(\mathrm{~d}, J_{\mathrm{PCCCC}}=\right.$ $1 \mathrm{~Hz}), 16.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=7 \mathrm{~Hz}\right), 14.1 .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 100.9$; HRMS calcd. for $\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{PS}, 224.1000$, found 224.1000 .

Diethoxy pentylphosphonite-borane (Table 1, Entry 8). The title compound was prepared from diethoxy (chloromethyl)phosphine-borane $4 i(3.2 \mathrm{mmol}, 590 \mathrm{mg}, 1.0$ equiv) and $\mathrm{Bu}_{3} \mathrm{~B}(3.2 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $3.2 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 0.5 : $99.5, \mathrm{v} / \mathrm{v}$) yielded diethoxy pentylphosphonite-borane ($2.94 \mathrm{mmol}, 607 \mathrm{mg}, 92 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.95-4.16(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.75(\mathrm{~m}, 8 \mathrm{H}), 1.31(\mathrm{t}, J=7$ $\mathrm{Hz}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.50\left(\mathrm{qd}, J_{\mathrm{BH}}=94 \mathrm{~Hz}, J_{\mathrm{PBH}}=15 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 63.2\left(\mathrm{~d}, J_{\mathrm{POC}}=5 \mathrm{~Hz}\right), 33.0\left(\mathrm{~d}, J_{\mathrm{PCCC}}=14 \mathrm{~Hz}\right), 29.9\left(\mathrm{~d}, J_{\mathrm{PC}}=56\right.$ $\mathrm{Hz}), 22.3,21.4,16.7\left(\mathrm{~d}, J_{\mathrm{POCC}}=5 \mathrm{~Hz}\right), 14.0 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 149.0(\mathrm{q}$, $\left.J_{\mathrm{PB}}=81 \mathrm{~Hz}\right) ;{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}, 28.88 \mathrm{MHz}\right) \delta-43.6\left(\mathrm{dq}, J_{\mathrm{BP}}=81 \mathrm{~Hz}, J_{\mathrm{BH}}=94 \mathrm{~Hz}\right)$; HRMS calcd. for $\mathrm{C}_{9} \mathrm{H}_{28} \mathrm{BNO}_{2} \mathrm{P},\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$224.1951, found 224.1944.

Monodeuterated Diethoxy pentylphosphonite-borane. The title compound was prepared from diethoxy (chloromethyl)phosphine-borane $4 \mathrm{i}(3.2 \mathrm{mmol}, 590 \mathrm{mg}, 1.0$ equiv) and $\mathrm{Bu}_{3} \mathrm{~B}(3.2 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $3.2 \mathrm{mmol}, 1.0$ equiv). The reaction mixture was quenched by addition of $\mathrm{D}_{2} \mathrm{O}$. The resulting biphasic mixture was stirred for 2 h at rt . Purification of the crude product by chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{hexanes} 0.5: 99.5, \mathrm{v} / \mathrm{v}$) yielded diethoxy pentylphosphonite-borane (2.94 mmol , $610 \mathrm{mg}, 92 \%$). Deuterium incorporation 95%.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.95-4.16(\mathrm{~m}, 4 \mathrm{H}), 1.21-1.75(\mathrm{~m}, 7 \mathrm{H}), 1.30(\mathrm{t}, J=7$ $\mathrm{Hz}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.50\left(\mathrm{q}, J_{\mathrm{BH}}=92 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45\right.$ $\mathrm{MHz}) \delta 63.2\left(\mathrm{~d}, J_{\mathrm{POC}}=4 \mathrm{~Hz}\right), 33.0\left(\mathrm{~d}, J_{\mathrm{PCCC}}=14 \mathrm{~Hz}\right), 29.7\left(\mathrm{dt}, J_{\mathrm{PC}}=52 \mathrm{~Hz}, J_{\mathrm{DC}}=19\right.$ $\mathrm{Hz}), 22.3,21.3,16.8\left(\mathrm{~d}, J_{\mathrm{POCC}}=5 \mathrm{~Hz}\right), 14.0 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 149.0(\mathrm{q}$, $\left.J_{\mathrm{PB}}=80 \mathrm{~Hz}\right) .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 28.88 \mathrm{MHz}\right) \delta-43.7\left(\mathrm{dq}, J_{\mathrm{BP}}=80 \mathrm{~Hz}, J_{\mathrm{BH}}=92 \mathrm{~Hz}\right)$; HRMS calcd. for $\mathrm{C}_{9} \mathrm{H}_{27} \mathrm{DBNO}_{2} \mathrm{P},\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$225.2014, found 225.2010.

Diethoxy 1-methylpentylphosphonite-borane (Table 1, Entry 9). The title compound was prepared from diethoxy 1 -chloroethylphosphine-borane $\mathbf{4 j}(3.2 \mathrm{mmol}, 634 \mathrm{mg}, 1.0$ equiv) and $\mathrm{Bu}_{3} \mathrm{~B}(3.2 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $3.2 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 0.5 : $99.5, \mathrm{v} / \mathrm{v}$) yielded diethoxy 1 -methylpentylphosphonite-borane ($2.75 \mathrm{mmol}, 606 \mathrm{mg}, 86$ \%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.91-4.20(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.79(\mathrm{~m}, 7 \mathrm{H}), 1.31(\mathrm{t}, J=7$ $\mathrm{Hz}, 6 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.50\left(\mathrm{q}, J_{\mathrm{BH}}=93 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 63.3\left(\mathrm{~d}, J_{\mathrm{POC}}=5 \mathrm{~Hz}\right), 33.7\left(\mathrm{~d}, J_{\mathrm{PC}}=57 \mathrm{~Hz}\right), 29.5\left(\mathrm{~d}, J_{\mathrm{PCCC}}=\right.$ $12 \mathrm{~Hz}), 28.5\left(\mathrm{~d}, J_{\mathrm{PCC}}=2 \mathrm{~Hz}\right) 22.5,16.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 13.9,12.1 ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $121.47 \mathrm{MHz}) \delta 151.1\left(\mathrm{q}, J_{\mathrm{PB}}=79 \mathrm{~Hz}\right) ;{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}, 28.88 \mathrm{MHz}\right) \delta-44.1\left(\mathrm{dq}, J_{\mathrm{BP}}\right.$ $\left.=79 \mathrm{~Hz}, J_{\mathrm{BH}}=93 \mathrm{~Hz}\right)$.); HRMS calcd. for $\mathrm{C}_{10} \mathrm{H}_{30} \mathrm{BNO}_{2} \mathrm{P}$, $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right):$238.2107, found 238.2105 .

Diphenyl pentylphosphine-borane (Table 1, entry 10). The title compound was prepared from diphenyl (chloromethyl)phosphine-borane $4 \mathbf{k}(2.1 \mathrm{mmol}, 521 \mathrm{mg}, 1.0$ equiv) and $\mathrm{Bu}_{3} \mathrm{~B}(2.1 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $2.1 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 1:9, v / v) yielded diphenyl pentylphosphine-borane ($1.30 \mathrm{mmol}, 352 \mathrm{mg}, 62 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.40-7.70(\mathrm{~m}, 10 \mathrm{H}), 2.14-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.56(\mathrm{~m}$, $6 \mathrm{H}), 0.85(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.50\left(\mathrm{q}, J_{\mathrm{BH}}=98 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right)$ $\delta 132.4\left(\mathrm{~d}, J_{\mathrm{PCCC}}=10 \mathrm{~Hz}, 4 \mathrm{C}\right), 131.3(2 \mathrm{C}), 129.9\left(\mathrm{~d}, J_{\mathrm{PC}}=55 \mathrm{~Hz}, 2 \mathrm{C}\right), 129.0\left(\mathrm{~d}, J_{\mathrm{PCC}}=\right.$ $10 \mathrm{~Hz}, 4 \mathrm{C}), 33.5\left(\mathrm{~d}, J_{\mathrm{PCCC}}=14 \mathrm{~Hz}\right), 25.8\left(\mathrm{~d}, J_{\mathrm{PC}}=38 \mathrm{~Hz}\right) 22.9,22.3,14.1 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 17.0(\mathrm{~m}) ;{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}, 28.88 \mathrm{MHz}\right) \delta-40.4(\mathrm{~m}) ;$ HRMS calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{BNP},\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{H}_{2}\right]$: 286.1896, found 286.1899.

Diethyl cyclohexylmethylphosphonate (Table 2, entry 1). ${ }^{21}$ The title compound was prepared from diethyl (chloromethyl)phosphonate $\mathbf{4 b}(4.0 \mathrm{mmol}, 746 \mathrm{mg}, 1.0$ equiv) and $\mathrm{Cy}_{3} \mathrm{~B}(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes $1: 1, \mathrm{v} / \mathrm{v}$) yielded diethyl cyclohexylmethylphosphonate ($3.32 \mathrm{mmol}, 777 \mathrm{mg}, 83 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.00-4.18(\mathrm{~m}, 4 \mathrm{H}), 1.89(\mathrm{~d}, J=13 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=$ $7 \mathrm{~Hz}, 6 \mathrm{H}), 1.26-1.89(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 61.2\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right)$, $34.5\left(\mathrm{~d}, J_{\mathrm{PCCC}}=11 \mathrm{~Hz}, 2 \mathrm{C}\right), 33.2\left(\mathrm{~d}, J_{\mathrm{PC}}=138 \mathrm{~Hz}\right), 32.6\left(\mathrm{~d}, J_{\mathrm{PCC}}=4 \mathrm{~Hz}\right), 26.1,26.0(\mathrm{~d}$, $\left.J_{\mathrm{PCCCC}}=6 \mathrm{~Hz}, 2 \mathrm{C}\right), 16.5\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 33.0$.

Diethyl 2-methyl-butylphosphonate (Table 2, entry 2). The title compound was prepared from diethyl (chloromethyl)phosphonate $\mathbf{4 b}(4.0 \mathrm{mmol}, 746 \mathrm{mg}, 1.0$ equiv) and $(s e c-B u){ }_{3} B(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes $1: 1, \mathrm{v} / \mathrm{v}$) yielded diethyl 2-methyl-butylphosphonate ($3.44 \mathrm{mmol}, 716 \mathrm{mg}, 86 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.06-4.14(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.95(\mathrm{~m}, 5 \mathrm{H}), 1.34(\mathrm{t}, J=7$ $\mathrm{Hz}, 6 \mathrm{H}), 1.05(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) 0.89(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right)$ $\delta 62.3\left(\mathrm{t}, J_{\mathrm{POC}}=6 \mathrm{~Hz}\right), 30.7\left(\mathrm{~d}, J_{\mathrm{PC}}=139 \mathrm{~Hz}\right), 31.2\left(\mathrm{~d}, J_{\mathrm{PCCC}}=14 \mathrm{~Hz}\right), 29.7\left(\mathrm{~d}, J_{\mathrm{PCC}}=4\right.$
$\mathrm{Hz}), 20.3\left(\mathrm{~d}, J_{\mathrm{PCCC}}=7 \mathrm{~Hz}\right) 16.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 10.9 ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right)$ δ 33.3; HRMS (EI $)$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{P}$, ([M] $]^{+}$) 209.1307, found 209.1308.

Diethyl (2-phenylethyl)phosphonate (Table 2, entry 3). ${ }^{22}$ The title compound was prepared from diethyl (chloromethyl)phosphonate $\mathbf{4 b}(4.0 \mathrm{mmol}, 746 \mathrm{mg}, 1.0$ equiv) and B-benzyl-9-BBN ($8.0 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in THF, $4.0 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes $1: 1$, v/v) yielded diethyl (2-phenylethyl)phosphonate ($2.76 \mathrm{mmol}, 668 \mathrm{mg}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.20-7.33(\mathrm{~m}, 5 \mathrm{H}), 4.05-4.16(\mathrm{~m}, 4 \mathrm{H}), 2.88-2.97(\mathrm{~m}$, $2 \mathrm{H}), 2.60(\mathrm{t}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{t},, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 141.1\left(\mathrm{~d}, J_{\mathrm{PCCC}}=17 \mathrm{~Hz}\right), 128.8(2 \mathrm{C}), 128.3(2 \mathrm{C}), 126.6$, $61.8\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 28.3\left(\mathrm{~d}, J_{\mathrm{PCC}}=6 \mathrm{~Hz}\right), 27.8\left(\mathrm{~d}, J_{\mathrm{PC}}=139 \mathrm{~Hz}\right), 16.7\left(\mathrm{~d}, J_{\mathrm{POCC}}=6\right.$ $\mathrm{Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 31.9$.

Diethyl (cyclooctylmethyl)phosphonate (Table 2, entry 4). The title compound was prepared from diethyl (chloromethyl)phosphonate $\mathbf{4 b}(4.0 \mathrm{mmol}, 746 \mathrm{mg}, 1.0$ equiv) and Alpine-borane ($8.0 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in THF, $4.0 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes $1: 1$, v/v) yielded diethyl (cyclooctylmethyl)phosphonate ($(3.32 \mathrm{mmol}, 870 \mathrm{mg}, 83 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.00-4.18(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{t}, J=6 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-2.05$ $(\mathrm{m}, 17 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 61.2\left(\mathrm{~d}, J_{\mathrm{POC}}=6 \mathrm{~Hz}\right), 33.5\left(\mathrm{~d}, J_{\mathrm{PC}}=138\right.$ $\mathrm{Hz}), 33.0\left(\mathrm{~d}, J_{\mathrm{PCCC}}=11 \mathrm{~Hz}, 2 \mathrm{C}\right), 32.5,27.3(2 \mathrm{C}), 26.0,24.9(2 \mathrm{C}), 16.5\left(\mathrm{~d}, J_{\mathrm{POCC}}=6\right.$ $\mathrm{Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta$ 33.3. HRMS calcd. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}, 262.1698$, found 209.1700.

Diethyl (1,2-diphenyl)ethylphosphonate (Table 2, entry 5). ${ }^{23}$ The title compound was prepared from diethyl chloro-phenyl-methylphosphonate $\mathbf{4 f}(4.0 \mathrm{mmol}, 1.05 \mathrm{~g}, 1.0$ equiv) and B-benzyl-9-BBN ($8.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF, $4.0 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 1:1, v/v) yielded diethyl (1,2-diphenyl)ethylphosphonate ($2.36 \mathrm{mmol}, 751 \mathrm{mg}, 59 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.99-7.34(\mathrm{~m}, 10 \mathrm{H}), 3.65-4.12(\mathrm{~m}, 4 \mathrm{H}), 3.13-3.50$ $(\mathrm{m}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right)$ $\delta 139.3\left(\mathrm{~d}, J_{\mathrm{PCCC}}=16 \mathrm{~Hz}\right), 135.7\left(\mathrm{~d}, J_{\mathrm{PCC}}=6 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{PCCC}}=7 \mathrm{~Hz}, 2 \mathrm{C}\right), 128.8(2$ C), 128.6 (2 C), $128.4(2 \mathrm{C}), 127.4,126.4,63.0\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 62.1\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right)$, $46.8\left(\mathrm{~d}, J_{\mathrm{PC}}=136 \mathrm{~Hz}\right), 36.5,16.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 16.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 29.3$.

Diethoxy 2-methylbutylphosphonite-borane (Table 2, entry 6). The title compound was prepared from diethoxy (chloromethyl)phosphine-borane $4 \mathbf{i}(3.2 \mathrm{mmol}, 590 \mathrm{mg}, 1.0$ equiv) and (sec-Bu) $)_{3}$ ($3.2 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $3.2 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 0.5 : $99.5, \mathrm{v} / \mathrm{v}$) yielded diethoxy 2 -methylbutylphosphonite-borane ($2.62 \mathrm{mmol}, 541 \mathrm{mg}, 82$ \%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.95-4.20(\mathrm{~m}, 4 \mathrm{H}), 1.26-1.93(\mathrm{~m}, 5 \mathrm{H}), 1.30(\mathrm{t}, J=7$ $\mathrm{Hz}, 6 \mathrm{H}), 1.01(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) 0.89(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.50\left(\mathrm{qd}, J_{\mathrm{BH}}=94 \mathrm{~Hz}, J_{\mathrm{PBH}}=14\right.$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 63.1\left(\mathrm{~d}, J_{\mathrm{POC}}=4 \mathrm{~Hz}\right), 36.9\left(\mathrm{~d}, J_{\mathrm{PC}}=54 \mathrm{~Hz}\right)$,
$31.2\left(\mathrm{~d}, J_{\mathrm{PCCC}}=10 \mathrm{~Hz}\right), 29.2,20.8\left(\mathrm{~d}, J_{\mathrm{PCCC}}=6 \mathrm{~Hz}\right), 16.7\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 11.2 ;{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 149.5\left(\mathrm{q}, J_{\mathrm{PB}}=81 \mathrm{~Hz}\right) ;{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}, 28.88 \mathrm{MHz}\right) \delta$ $43.7\left(\mathrm{dq}, J_{\mathrm{BP}}=81 \mathrm{~Hz}, J_{\mathrm{BH}}=94 \mathrm{~Hz}\right)$; HRMS calcd. for $\mathrm{C}_{9} \mathrm{H}_{28} \mathrm{BNO}_{2} \mathrm{P},\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$ 224.1951, found 224.1952.

Diethoxy octylphosphonite-borane (Table 2, Entry 7). The title compound was prepared from diethoxy (chloromethyl)phosphine-borane 4i ($3.2 \mathrm{mmol}, 590 \mathrm{mg}, 1.0$ equiv) and (heptyl) $)_{3} B$ ($3.2 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $3.2 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 0.5 : $99.5, \mathrm{v} / \mathrm{v}$) yielded diethoxy octylphosphonite-borane ($2.34 \mathrm{mmol}, 580 \mathrm{mg}, 73 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.94-4.16(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.76(\mathrm{~m}, 14 \mathrm{H}), 1.31(\mathrm{t}, J=7$ $\mathrm{Hz}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.50\left(\mathrm{q}, J_{\mathrm{BH}}=94 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75.45\right.$ $\mathrm{MHz}) \delta 63.0\left(\mathrm{~d}, J_{\mathrm{POC}}=4 \mathrm{~Hz}\right), 31.8,33.0\left(\mathrm{~d}, J_{\mathrm{PCCC}}=15 \mathrm{~Hz}\right), 30.3\left(\mathrm{~d}, J_{\mathrm{PC}}=56 \mathrm{~Hz}\right), 29.1$ $(2 \mathrm{C}), 22.6,21.6,16.7\left(\mathrm{~d}, J_{\mathrm{POCC}}=5 \mathrm{~Hz}\right) ; 14.1 .{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 149.1$ $\left(\mathrm{q}, J_{\mathrm{PB}}=81 \mathrm{~Hz}\right) ;{ }^{11} \mathrm{~B} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 28.88 \mathrm{MHz}\right) \delta-43.6\left(\mathrm{dq}, J_{\mathrm{BP}}=81 \mathrm{~Hz}, J_{\mathrm{BH}}=94 \mathrm{~Hz}\right)$; HRMS calcd. for $\mathrm{C}_{12} \mathrm{H}_{34} \mathrm{BNO}_{2} \mathrm{P}$, $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$266.2420, found 266.2413 .

Diethoxy 2 - phenylethylphosphonite-borane (Table 2, Entry 8). The title compound was prepared from diethoxy (chloromethyl)phosphine-borane $\mathbf{4 i}(3.2 \mathrm{mmol}, 590 \mathrm{mg}, 1.0$ equiv) and B-benzyl-9-BBN ($3.2 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $3.2 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel (EtOAc/hexanes $0.5: 99.5, \mathrm{v} / \mathrm{v}$) yielded diethoxy 2 - phenylethylphosphonite-borane ($2.27 \mathrm{mmol}, 545 \mathrm{mg}, 71 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.18-7.34(\mathrm{~m}, 5 \mathrm{H}), 3.96-4.23(\mathrm{~m}, 4 \mathrm{H}), 2.84-2.92(\mathrm{~m}$, $2 \mathrm{H}), 2.02-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 0.50\left(\mathrm{q}, J_{\mathrm{BH}}=92 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 141.2(\mathrm{~d}, J=14 \mathrm{~Hz}), 128.6$ (2 C), 128.3 (2 C), 126.6, 63.4 (d, $\left.J_{\mathrm{POC}}=5 \mathrm{~Hz}\right), 31.9\left(\mathrm{~d}, J_{\mathrm{PC}}=54 \mathrm{~Hz}\right), 28.0,16.8\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $\left.121.47 \mathrm{MHz}) \delta 147.6\left(\mathrm{q}, J_{\mathrm{PB}}=80 \mathrm{~Hz}\right) ;{ }^{11} \mathrm{~B} \mathrm{CDCl}_{3}, 28.88 \mathrm{MHz}\right) \delta-43.7\left(\mathrm{dq}, J_{\mathrm{BP}}=80\right.$ $\mathrm{Hz}, J_{\mathrm{BH}}=92 \mathrm{~Hz}$); HRMS calcd. for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{BNO}_{2} \mathrm{P}$, $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right): 258.1794$, found 258.1796.

Diethoxy nonylphosphonite-borane (Table 2, entry 9). The title compound was prepared from diethoxy (chloromethyl)phosphine-borane $4 \mathbf{i}(3.2 \mathrm{mmol}, 590 \mathrm{mg}, 1.0$ equiv) and 9 -octyl-BBN ($3.2 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $3.2 \mathrm{mmol}, 1.0$ equiv). Purification of the crude product by chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{hexanes}$ 0.5:99.5, v/v) yielded diethoxy nonylphosphonite-borane ($1.98 \mathrm{mmol}, 520 \mathrm{mg}, 62 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.94-4.18(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.76(\mathrm{~m}, 16 \mathrm{H}), 1.30(\mathrm{t}, J=7$ $\mathrm{Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.50\left(\mathrm{q}, J_{\mathrm{BH}}=94 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75.45\right.$ $\mathrm{MHz}) \delta 63.2\left(\mathrm{~d}, J_{\mathrm{POC}}=5 \mathrm{~Hz}\right) 32.1,30.9\left(\mathrm{~d}, J_{\mathrm{PCCC}}=14 \mathrm{~Hz}\right), 30.4,30.1\left(\mathrm{~d}, J_{\mathrm{PC}}=38 \mathrm{~Hz}\right)$, 29.6, 29.5, 29.3, 22.9, 21.8, $16.8\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 14.3 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right)$ $\delta 149.0\left(\mathrm{q}, J_{\mathrm{PB}}=81 \mathrm{~Hz}\right) ;{ }^{11} \mathrm{~B}\left(\mathrm{CDCl}_{3}, 28.88 \mathrm{MHz}\right) \delta-43.6\left(\mathrm{dq}, J_{\mathrm{BP}}=81 \mathrm{~Hz}, J_{\mathrm{BH}}=94\right.$ Hz); HRMS calcd. for $\mathrm{C}_{13} \mathrm{H}_{36} \mathrm{BNO}_{2} \mathrm{P},\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$280.2577, found 280.2571 .

Diphenyl propylphosphine-borane (Table 2, entry 10). The title compound was prepared from Diphenyl (chloromethyl)phosphine-borane 4k ($2.1 \mathrm{mmol}, 521 \mathrm{mg}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~B}$ ($2.1 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF, $2.1 \mathrm{mmol}, 1.0$ equiv). Purification of
the crude product by chromatography on silica gel (EtOAc/hexanes 1:9, v/v) yielded diphenyl propylphosphine-borane ($1.78 \mathrm{mmol}, 432 \mathrm{mg}, 85 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.40-7.70(\mathrm{~m}, 10 \mathrm{H}), 2.12-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.63$ $(\mathrm{m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80\left(\mathrm{q}, J_{\mathrm{BH}}=98 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75.45\right.$ $\mathrm{MHz}) \delta 132.4\left(\mathrm{~d}, J_{\mathrm{PCCC}}=10 \mathrm{~Hz}, 4 \mathrm{C}\right), 131.3(2 \mathrm{C}), 129.9\left(\mathrm{~d}, J_{\mathrm{PC}}=55 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, J_{\mathrm{PCC}}\right.$ $=10 \mathrm{~Hz}, 4 \mathrm{C}), 28.0\left(\mathrm{~d}, J_{\mathrm{PC}}=37 \mathrm{~Hz}\right), 17.0,16.1\left(\mathrm{~d}, J_{\mathrm{PCCC}}=15 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $121.47 \mathrm{MHz}) \delta 16.6\left(\mathrm{q}, J_{\mathrm{PB}}=58 \mathrm{~Hz}\right) ;{ }^{11} \mathrm{~B} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 28.88 \mathrm{MHz}\right) \delta-39.7\left(\mathrm{dq}, J_{\mathrm{BP}}=\right.$ $58 \mathrm{~Hz}, J_{\mathrm{BH}}=98 \mathrm{~Hz}$), HRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BNP},\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{H}_{2}\right]: 258.1583$, found 258.1579.

General procedure for the conversion of phosphinite-boranes in to \boldsymbol{H}-phosphinate esters.

To a 0.2 M solution of phosphinite-borane in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$, was added tetrafluoroboric acid diethyl ether complex (3.0 equiv). An exothermic reaction ensued and gas evolved. The reaction was then warmed to rt and stirred for additional 6 h . Subsequently, the mixture was cooled to $0^{\circ} \mathrm{C}$ and saturated aqueous sodium bicarbonate solution was slowly added. The resulting biphasic mixture was stirred vigorously for 5 10 min and poured into separatory funnel. The organic layer was separated and aqueous layer was extracted with EtOAc (3 X). The combined organic layers were dried with MgSO_{4}, and concentrated in vacuo to give H-phosphinate.
Ethyl octyl-H-phosphinate (5, Scheme 5). ${ }^{24}$ The title compound was prepared from diethoxy octylphosphinite-borane ($1.6 \mathrm{mmol}, 400 \mathrm{mg}, 1.0$ equiv) and tetrafluoroboric acid diethyl ether complex ($4.8 \mathrm{mmol}, 777 \mathrm{mg}, 653 \mu \mathrm{l}, 3.0$ equiv) in 96% yield (1.54 $\mathrm{mmol}, 317 \mathrm{mg}$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.09(\mathrm{~d}, J=527 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.23(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.80$ ($\mathrm{m}, 14 \mathrm{H}$), $1.36(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right)$ $\delta 62.5\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 31.8,30.4\left(\mathrm{~d}, J_{\mathrm{PCCC}}=15 \mathrm{~Hz}\right), 29.1,29.0,28.6\left(\mathrm{~d}, J_{\mathrm{PC}}=93 \mathrm{~Hz}\right)$, $22.6,20.7,16.2\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 14.0 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 40.7(\mathrm{dm}, J=$ 530 Hz).

Ethyl 2-methylbutyl-H-phosphinate (6, Scheme 5) . The title compound was prepared from diethoxy 2-methylbutylphosphinite-borane ($1.6 \mathrm{mmol}, 330 \mathrm{mg}, 1.0$ equiv) and tetrafluoroboric acid diethyl ether complex ($4.8 \mathrm{mmol}, 777 \mathrm{mg}, 653 \mu \mathrm{l}, 3.0$ equiv) in 96 $\%$ yield ($1.54 \mathrm{mmol}, 253 \mathrm{mg}$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.20(\mathrm{~d}, J=527 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.27(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.96$ $(\mathrm{m}, 5 \mathrm{H}), 1.38(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=15 \mathrm{~Hz}, 3 \mathrm{H}) 0.92(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 62.5\left(\mathrm{~d}, J_{\mathrm{POC}}=4 \mathrm{~Hz}\right), 35.6\left(\mathrm{~d}, J_{\mathrm{PC}}=93 \mathrm{~Hz}\right), 30.9\left(\mathrm{~d} J_{\mathrm{PCCC}}=\right.$ $13 \mathrm{~Hz}), 29.0,20.5\left(\mathrm{~d}, J_{\mathrm{PCC}}=7 \mathrm{~Hz}\right), 16.4\left(\mathrm{~d}, J_{\mathrm{POC}}=6 \mathrm{~Hz}\right), 11.1 ;{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121.47\right.$ $\mathrm{MHz}) \delta 39.5,39.2(\mathrm{dm}, J=527 \mathrm{~Hz})$. HRMS (EI^{\dagger}) calcd. for $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{P}$, ([M] ${ }^{+}$) 165.1044, found 165.1043.

Ethyl pentyl-H-phosphinate (7, Scheme 5). The title compound was prepared from diethoxy pentylphosphinite-borane ($1.0 \mathrm{mmol}, 207 \mathrm{mg}, 1.0$ equiv) and tetrafluoroboric
acid diethyl ether complex ($1.0 \mathrm{mmol}, 486 \mathrm{mg}, 408 \mu \mathrm{l}, 3.0$ equiv) in 95% yield (0.95 $\mathrm{mmol}, 157 \mathrm{mg}$), 95% of deuterated compound.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.09(\mathrm{~d}, J=524 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.26(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.83$ $(\mathrm{m}, 7 \mathrm{H}), 1.38(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right)$ $\delta 62.4\left(\mathrm{~d}, J_{\mathrm{POC}}=5 \mathrm{~Hz}\right), 32.6\left(\mathrm{~d}, J_{\mathrm{PCCC}}=16 \mathrm{~Hz}\right), 28.3\left(\mathrm{dt}, J_{\mathrm{PC}}=94 \mathrm{~Hz}, J_{\mathrm{DC}}=19 \mathrm{~Hz}\right), 22.2$, $20.4,16.3\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 13.8 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 40.3(\mathrm{dm}, J=527$ Hz); HRMS (EI^{+}) calcd. for $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{DO}_{2} \mathrm{P}\left([\mathrm{M}]^{+}\right)$166.1107, found 166.1109 .

Ethyl 2-phenylethyl-H-phosphinate (8, Scheme 5). The title compound was prepared from diethoxy 2 - phenylethylphosphinite-borane ($1.2 \mathrm{mmol}, 288 \mathrm{mg}, 1.0$ equiv.) and tetrafluoroboric acid diethyl ether complex ($3.6 \mathrm{mmol}, 583 \mathrm{mg}, 490 \mu \mathrm{l}, 3.0$ equiv.) in 98 \% yield ($1.18 \mathrm{mmol}, 233 \mathrm{mg}$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.20-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, J=532 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-$ $4.26(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 140.1\left(\mathrm{~d}, J_{\mathrm{PCCC}}=15 \mathrm{~Hz}\right), 128.7(2 \mathrm{C}), 128.1(2 \mathrm{C}), 126.5$, $62.6\left(\mathrm{~d}, J_{\mathrm{POC}}=6 \mathrm{~Hz}\right), 31.3\left(\mathrm{~d}, J_{\mathrm{PC}}=93 \mathrm{~Hz}\right), 26.9,16.2\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 38.2(\mathrm{~d}, J=534 \mathrm{~Hz})$, HRMS calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{P}, 198.0810$, found 198.0810.

Ethyl allyl-octylphosphinate (9, Scheme 5). Method B. A flame-dried, 50 mL , threenecked, round-bottomed flask charged with diethoxy octylphosphinite-borane (1.6 mmol , $400 \mathrm{mg}, 1.0$ equiv) N-methylpiperazine ($12.8 \mathrm{mmol}, 1.28 \mathrm{~g}, 1.4 \mathrm{~mL}, 8.0$ equiv) and dry toluene (10 mL). The solution was heated at reflux for 24 h . After cooling to rt , the mixture was concentrated in high vacuo to remove access of N -methylpiperazine. The residue was diluted with dry toluene (20 mL) and allyl bromide ($3.2 \mathrm{mmol}, 387 \mathrm{mg}, 270$ $\mu \mathrm{l}, 2.0$ equiv) was added. The reaction mixture was heated under reflux for 3 h . After cooling to rt, the mixture was washed with $\mathrm{H}_{2} \mathrm{O}$, the aqueous phase was extracted with EtOAc (3 X) and the combined organic fractions were dried with MgSO_{4}, concentrated in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc) yielded ethyl allyl-octylphosphinate 9 ($0.94 \mathrm{mmol}, 231 \mathrm{mg}, 59 \%$).
Method C. A flame-dried, seal tube was purged with nitrogen, charged with diethoxy octylphosphonite-borane ($1.6 \mathrm{mmol}, 400 \mathrm{mg}, 1.0$ equiv) and diethylamine (40 mL). The solution was heated at $55^{\circ} \mathrm{C}$ for 3 days. After cooling to rt , the mixture was concentrated in high vacuo. The residue was diluted with dry toluene (20 mL) and transferred via cannula under nitrogen to the flame-dried, 50 mL , three-necked, round-bottomed flask. Allyl bromide ($8.0 \mathrm{mmol}, 968 \mathrm{mg}, 678 \mu \mathrm{l}, 5.0$ equiv) was than added and the mixture was heated under reflux for 3 h . After cooling to rt , the reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}$, the aqueous phase was extracted with EtOAc (3 X) and the combined organic fractions were dried with MgSO_{4}, concentrated in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc) yielded ethyl allyl-octylphosphinate 9 ($1.04 \mathrm{mmol}, 256 \mathrm{mg}, 65 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.74-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.25(\mathrm{~m}, 2 \mathrm{H}), 4.02-4.15(\mathrm{~m}$, 2 H), 2.57 (dd, $J=8 \mathrm{~Hz}, J=10 \mathrm{~Hz}, 2 \mathrm{H}), 1.27-1.77(\mathrm{~m}, 14 \mathrm{H}), 1.32(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H})$, $0.88(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta 128.3\left(\mathrm{~d}, J_{\mathrm{PCC}}=9 \mathrm{~Hz}\right), 120.0(\mathrm{~d}$, $\left.J_{\mathrm{PCCC}}=12 \mathrm{~Hz}\right), 60.5\left(\mathrm{~d}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 34.6\left(\mathrm{~d}, J_{\mathrm{PC}}=85 \mathrm{~Hz}\right), 32.0,31.0\left(\mathrm{~d}, J_{\mathrm{PCCC}}=15 \mathrm{~Hz}\right)$, 29.2, $27.6\left(\mathrm{~d}, J_{\mathrm{PC}}=93 \mathrm{~Hz}\right), 22.8,21.8\left(\mathrm{~d}, J_{\mathrm{PCC}}=4 \mathrm{~Hz}\right), 16.8\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 14.3 ;{ }^{31} \mathrm{P}$

NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta$ 54.9; HRMS calcd. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P}$; 246.1749, found 246.1750 .

Procedure for the synthesis of $\boldsymbol{\alpha}$-iodo phosphonates.

Diethyl 1-iodopentylphosphonate (3b-I, Scheme 6). A flame-dried, 50 mL , threenecked, round-bottomed flask was purged with nitrogen, charged with diethyl (chloromethyl)phosphonate ($4.0 \mathrm{mmol}, 746 \mathrm{mg}, 1.0$ equiv) and dry THF (20 mL). The solution was cooled below - $90{ }^{\circ} \mathrm{C}$ (liquid nitrogen/ethanol bath) and n-butyllitium (2.5 $\mathrm{mL}, 1.6 \mathrm{M}$ solution in hexane, $4.0 \mathrm{mmol}, 1.0$ equiv) was added slowly via syringe followed by $\mathrm{Bu}_{3} \mathrm{~B}(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{mmol}, 1.0$ equiv) in one portion. The reaction mixture was warmed slowly to rt and $\mathrm{I}_{2}(4.8 \mathrm{mmol}, 1.2 \mathrm{~g}, 1.2$ equiv) was added in one portion. The resulting mixture was stirred at reflux for 2 h , after cooling to rt, was diluted with EtOAc washed with aqueous solution of sodium thiosulfate (1 X) and water (1 X). Organic layer was dried with MgSO_{4}, and solvents removed in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc/hexanes 3:7, v/v) yielded diethyl pentylphosphonate ($3.05 \mathrm{mmol}, 1.02 \mathrm{~g}, 76 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.14-4.25(\mathrm{~m}, 4 \mathrm{H}), 3.69-3.79(\mathrm{~m}, 1 \mathrm{H}), 1.31-2.04(\mathrm{~m}$, $7 \mathrm{H}), 1.35(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right) \delta$ $63.7\left(\mathrm{q}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 32.9\left(\mathrm{~d}, J_{\mathrm{PCC}}=2 \mathrm{~Hz}\right), 32.3\left(\mathrm{~d}, J_{\mathrm{PCCC}}=13 \mathrm{~Hz}\right), 21.7,18.2\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $154 \mathrm{~Hz}), 16.6\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 14.0 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 23.2$; HRMS $\left(\mathrm{EI}^{+}\right)$calcd. for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{IO}_{3} \mathrm{P},\left([\mathrm{M}]^{+}\right) 334.0195$, found 334.0201.

Diethyl 1-iodo-2-methylbutylphosphonate (Scheme 6). A flame-dried, 50 mL , threenecked, round-bottomed flask was purged with nitrogen, charged with diethyl (chloromethyl)phosphonate ($4.0 \mathrm{mmol}, 746 \mathrm{mg}, 1.0$ equiv) and dry THF (20 mL). The solution was cooled below $-90^{\circ} \mathrm{C}$ (liquid nitrogen/ethanol bath) and n-butyllitium (2.5 $\mathrm{mL}, 1.6 \mathrm{M}$ solution in hexane, $4.0 \mathrm{mmol}, 1.0$ equiv) was added slowly via syringe followed by $(\sec -\mathrm{Bu})_{3} \mathrm{~B}(4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in diethyl ether, $4.0 \mathrm{mmol}, 1.0$ equiv) in one portion. The reaction mixture was warmed slowly to rt and $\mathrm{I}_{2}(4.8 \mathrm{mmol}, 1.2 \mathrm{~g}, 1.2$ equiv) was added in one portion. The resulting mixture was stirred at reflux for 2 h , after cooling to rt, was diluted with EtOAc washed with aqueous. solution of sodium thiosulfate (1 X) and water (1 X). Organic layer was dried with MgSO_{4}, and solvents removed in vacuo. Purification of the crude product by chromatography on silica gel (EtOAc/hexane $3: 7 \mathrm{v} / \mathrm{v}$) yielded diethyl pentylphosphonate ($2.88 \mathrm{mmol}, 962 \mathrm{mg}, 72 \%$), mixture of diastereoisomers (50/50)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.15-4.26(\mathrm{~m}, 4 \mathrm{H}), 3.95(2 \mathrm{dd}, J=13 \mathrm{~Hz}, J=2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.70-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 1.15-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=6 \mathrm{~Hz}, 3 \mathrm{H})$ $0.91(2 \mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.57 \mathrm{MHz}\right) \delta 63.7\left(\mathrm{dd}, J_{\mathrm{POC}}=7 \mathrm{~Hz}, J=3\right.$ Hz), $63.3\left(\mathrm{q}, J_{\mathrm{POC}}=7 \mathrm{~Hz}\right), 36.4,35.2,30.7\left(\mathrm{~d}, J_{\mathrm{PCCC}}=16 \mathrm{~Hz}\right), 29.4\left(\mathrm{~d}, J_{\mathrm{PC}}=150 \mathrm{~Hz}\right)$, $28.7\left(\mathrm{~d}, J_{\mathrm{PC}}=150 \mathrm{~Hz}\right), 28.1,19.7\left(\mathrm{~d}, J_{\mathrm{PCCC}}=15 \mathrm{~Hz}\right), 18.9,16.4\left(\mathrm{~d}, J_{\mathrm{POCC}}=6 \mathrm{~Hz}\right), 11.6$, 11.3; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 121.47 \mathrm{MHz}\right) \delta 22.5,22.2$; $\mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$calcd. for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{IO}_{3} \mathrm{P}$, ([M] ${ }^{+}$) 334.0195, found 334.0197.

References

(1) (a) Brown, H. C. Organic Syntheses via Boranes, Wiley: New York, 1975, Vol. 1.
(b) Brown, H. C.; Zidlewicz, M. Organic Syntheses via Boranes: Recent Development, Wiley: New York, 2001, Vol. 1.
(2) Brown, D. G.; Vethuisen, E. J.; Brisbois, R. G.; Hoye, T. R. J. Org. Chem. 1996, 61, 2540.
(3) Waschbusch, R.; Carran, E. J.; Marinetti, A.; Savignac, P. Chem. Rev. 1997, 97, 3401.
(4) Saady, M.; Lebeau, L.; Mioskowski, C. Helv. Chim. Acta 1995, 78, 670.
(5) Kosolapoff, G. M. J. Am. Chem. Soc. 1947, 69, 1002.
(6) Gajda, T. Synthesis 1990, 717.
(7) Baraldi, P. G.; Guarneri, M.; Moroder, F.; Pollini, G. P.; Simoni, D. Synthesis 1982, 653.
(8) Mitrasov, Y. N.; Simakova, E. A.; Antonova, I. I.; Kondrateva, O.V.; Skovortsov, V. G. Russ. J. Gen. Chem. 2005, 75, 1386.
(9) Maier, L. J. Organomet. Chem. 1979, 178, 157.
(10) Teulade, M. P.; Savignac, P. J. Organomet. Chem. 1986, 312, 283.
(11) Uhing, E.; Rattenbury K.; Toy, A. D. F. J. Am. Chem. Soc. 1961, 83, 2299.
(12) Kinner, A. M.; Perren E. A. J. Chem. Soc. 1952, 352, 3437.
(13) Braussaud, N.; Ruether, T.; Cavell, K. J.; Skelton, B, W.; White, A. H. Synthesis 2001, 4, 626.
(14) Rabilloud, G. Bull. Soc. Chim. Fr. 1966, 3, 1145
(15) (a) Douglass, M. R.; Stern, C. L.; Marks, T, J. J. Am. Chem. Soc. 2001, 123, 10221.
(b) Teulade, M. P.; Savignac, P. Tetrahedron Lett. 1987, 28, 405.
(16) Eur. Pat. Appl. 1983, 107 pp.
(17) Teulade, M. P.; Savignac, P. J. Organomet. Chem. 1988, 338, 295.
(18) Patois, C.; Savignac, P. Bull. Soc. Chim. Fr. 1993, 130, 630.
(19) Villieras, J.; Reliquet, A.; Normant, J, F. J. Organomet. Chem. 1978, 144, 17.
(20) Zimmerman, H. E.; Keck, G. E.; Pflederer, J. L. J. Am. Chem. Soc. 1976, 98, 5574.
(21) Lapin, C.; Goutier, G.; Goutier, A.; Pietter, S, R. J. Org. Chem. 2003, 68, 9916.
(22) Coutrol, P.; Youssefi - Tabrizi, M.; Grison, C. J. Organomet. Chem. 1986, 316, 13.
(23) Leardini, R.; Tundo, A.; Zanardi, G.; Pedulli, G. F. Tetrahedron 1983, 39, 2715.
(24) (a) Ribière, P.; Bravo-Altamirano, K.; Antczak, M. I.; Hawkins, J. D.; Montchamp, J.-L. J. Org. Chem. 2005, 70, 4064. (b) Antczak M. I.; Montchamp, J.-L.; Synthesis 2006, 3080

INDEX	FREQUENCY	PPM	HEIGHT
1	2895.895	23.842	23.7
2	2884.064	23.744	73.5
3	2872.640	23.650	122.2
4	2860.808	23.553	126.0
5	2848.977	23.456	80.9
6	2837.145	23.358	31.1

[^0]

[^1]\[

$$
\begin{array}{clll}
\text { INDEX } & \text { FREQUENCY } & \text { PPM } \\
1 & 788.632 & 6.493
\end{array}
$$ $$
\begin{gathered}
\text { HeIGHT } \\
126.0
\end{gathered}
$$
\]

$$
\begin{aligned}
& \text { 岂 }
\end{aligned}
$$

${ }_{\text {1нэтзн }}^{0.92 \tau}$
$\begin{array}{cl}\text { FREqUENCY } & \text { PPM } \\ 2228.425 & 18.347\end{array}$
${ }_{1}^{\text {INDEX }}$

$$
\begin{array}{crlr}
\text { INDEX } & \text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\
1 & 2212.705 & 18.464 & 59.8 \\
2 & 2234.953 & 18.400 & 104.6 \\
3 & 2228.017 & 18.343 & 118.6 \\
7 & 2220.673 & 18.283 & 111.6 \\
5 & 2212.922 & 18.219 & 71.2
\end{array}
$$

〒O~Nomom-
t

$\begin{array}{clll}\text { INDEX } & \text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 1 & 10394.325 & 85.576 & 126.0\end{array}$
${ }^{31} \mathrm{P} /{ }^{1} \mathrm{H}$ decoupled

$$
{ }^{\mathrm{EtO} \cdot \mathrm{BH}_{3}} \mathrm{EHO}_{4 \mathrm{P}}^{\mathrm{EH}} \mathrm{EH}_{3} \mathrm{Cl} \quad{ }^{31} \mathrm{P} /{ }^{1} \mathrm{H} \text { decoupled }
$$

[^2]

O
0
-1
O
0
0

$$
\begin{aligned}
& \dot{\circ} \dot{\sim} \dot{\sigma} \dot{\sigma} \dot{\circ} \dot{\infty} \dot{\sigma} \dot{\sigma}
\end{aligned}
$$

i

$\cdots-$
.

$$
\begin{aligned}
& \stackrel{\sim}{\sim}
\end{aligned}
$$

INDEX	FREQUENCY	PPM	HEIGHT
1	20654.025	170.044	13.3
2	17317.083	142.571	47.0
3	17288.932	142.339	48.3
4	17246.093	141.987	63.8
5	17175.103	141.402	59.4
6	17106.153	140.835	49.0
7	7819.507	64.378	14.8

$$
\begin{aligned}
& \text { HEIGHT } \\
& 26.0
\end{aligned}
$$

$$
=\overrightarrow{0}=\stackrel{\rightharpoonup}{0}
$$

Bixice


```
106&与t
    *1B/1H coupled
```


HE IGHT

$\begin{array}{crlr}\text { INDEX } & \text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ \mathbf{1} & 4768.565 & 39.259 & 126.0\end{array}$

EICHT
126.2
123.5

(Chloromethyl)phosphonic dichloride

$\begin{array}{cccr}\text { INDEX } & \text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 1 & 400.487 & 53.063 & 84.6 \\ 2 & 3916.541 & 51.911 & 80.9\end{array}$

index
1 $\quad \begin{gathered}\text { Frepuency } \\ 1425.038\end{gathered} \quad \begin{gathered}\text { PPM } \\ 36.431\end{gathered} \begin{gathered}\text { HeIGHT } \\ 126.0\end{gathered}$

$\begin{array}{clc}\text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 20653.209 & 170.037 & -6.4 \\ 7819.099 & 64.374 & 6.7 \\ 4424.630 & 36.428 & 126.0\end{array}$

$\begin{array}{rlc}\text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 20653.209 & 170.037 & -6.4 \\ 7819.099 & 64.374 & 6.7 \\ 4424.630 & 36.428 & 126.0\end{array}$
$\begin{array}{clc}\text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 20653.209 & 170.037 & -6.4 \\ 7819.099 & 64.374 & 6.7 \\ 4424.630 & 36.428 & 126.0\end{array}$
$\begin{array}{clc}\text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 20653.209 & 170.037 & -6.4 \\ 7819.099 & 64.374 & 6.7 \\ 4424.630 & 36.428 & 126.0\end{array}$
$\begin{array}{rlc}\text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 20653.209 & 170.037 & -6.4 \\ 7819.099 & 64.374 & 6.7 \\ 4424.630 & 36.428 & 126.0\end{array}$
$\underset{\sim}{x}$
${ }^{31} \mathrm{P} /{ }^{1} \mathrm{H}$ decoupled
120

$\begin{aligned} & \text { H } \\ & \text { H } \\ & \text { I }\end{aligned}$

花

6. 0
IGHT
126
122
華

$\begin{array}{cclc}\text { INDEX } & \text { FREquency } & \text { PPM } & \text { HEIGHT } \\ 1 & 4249.195 & 34.981 & 126.0\end{array}$

Table 1, entry 1

[^3]

邑
Table 1, entry 4
2
\vdots
\vdots
IGHT
-6.0
${ }^{31} \mathrm{P} /{ }^{1} \mathrm{H}$ decoupled

Table 1, entry 5

툼

$\begin{array}{cr}\text { INDEX } & \text { FREQUENCY } \\ 1 & 7819.507 \\ 2 & 3680.458\end{array}$

HEIGHT
14.8
17.2
78.0
83.1
126.0
52.6
53.8
10.0
11.5
9.9
7.1
25.5
26.9
29.3
33.9
36.6
28.9
31.6
38.7
38.7
7.3
37.7
41.7
57.4
9.1
8.8
71.4
32.5
36.5
37.9
34.3
9.1
66.3
10.0

$\begin{array}{cclc}\text { INDEX } & \text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 1 & 12261.691 & 100.950 & 126.0\end{array}$

[^4]

${ }^{31} \mathrm{P} /{ }^{1} \mathrm{H}$ decoupled

\[

$$
\begin{aligned}
& \begin{array}{l}
\text { HEIGHT } \\
35.5 \\
36.1 \\
35.9 \\
43.2 \\
15.6 \\
12.1 \\
12.5 \\
22.0 \\
22.4 \\
60.0 \\
81.1 \\
55.3 \\
59.4 \\
65.3 \\
22.1
\end{array}
\end{aligned}
$$
\]

$\infty 0^{\infty} 0$
,
$\begin{array}{lll}n & m & n \\ 0 & \infty \\ 0 & 0 \\ 0 & \infty \\ 0 & \infty\end{array}$
든

$\underset{\sim}{\infty} \infty$

$$
\begin{aligned}
& \text { Iriterpolated Peak } \\
& \begin{array}{|rrrrrr}
\text { PEAK } & \text { POINT } & \text { HEIGHT } & \text { REL. HT } & \text { HZ } & \text { PHM } \\
1 & 1274 & 54699 & 103.28 & -1221.55 & -42.295 \\
2 & 1290 & 52373 & 98.88 & -1301.15 & -45.051
\end{array}
\end{aligned}
$$

INDEX	FREQUENCY	PPM	HEIGHT
1	18739.333	154.280	41.8
2	18663.039	153.652	53.3
3	18583.481	152.997	51.2
4	18505.147	152.352	40.3

INDEX	FREQUENCY	PPM	HEIGHT
1	20654.025	170.044	20.4
2	18667.935	153.693	36.8
3	18578.177	152.954	36.7

INDEX	FREQUENCY	PPM	HEIGHT
1	5845.268	77.474	74.6
2	5813.311	77.051	77.5
3	5781.354	76.627	77.4
4	4778.016	63.329	32.1
5	4773.122	63.264	63.2
6	4768.516	63.203	41.7
7	2570.674	34.072	33.6
8	2513.382	33.313	34.3
9	2233.541	29.604	62.7
10	2221.737	29.447	60.2
11	2152.929	28.535	75.6
12	2150.913	28.509	74.7
13	1696.029	22.479	101.5
14	1254.388	16.626	83.0
15	1248.917	16.553	80.4
16	1052.281	13.947	83.8
17	910.633	12.070	68.4
18	0.000	0.000	26.6

$\begin{array}{rl}\text { FREQUENCY } & \text { PPM } \\ 2088.077 & 17.191 \\ 2018.311 & 16.617\end{array}$
$\underset{\sum_{i}^{x}}{\underset{\sim}{x}} \rightarrow N$
${ }^{31} \mathrm{P} /{ }^{1} \mathrm{H}$ decoupled
43.5

$$
\begin{aligned}
& \text { 두훘․․․ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 듬 } \\
& \text { 仓己 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 品 } \\
& \stackrel{x}{\underset{\sim}{u}} \rightarrow \sim \infty
\end{aligned}
$$

INDEX	FREQUENCY	PPM	HEIGHT
1	9991.266	132.426	126.0
2	9982.341	132.308	117.4
3	9908.351	131.327	98.5
4	9831.769	130.312	14.7
5	9776.780	129.583	18.0
6	9739.352	129.087	120.2
7	9729.564	128.957	113.2
8	5865.059	77.737	39.2
9	5833.102	77.313	41.6
10	5801.145	76.889	41.6
11	2534.901	33.598	36.2
12	2521.081	33.415	36.5
13	1966.295	26.062	31.5
14	1929.444	25.573	32.6
15	1725.897	22.875	67.5
16	1684.151	22.322	61.9
17	1063.147	14.091	58.8

0
0
0
0
0
0
0
$\overbrace{\underset{\sim}{\sim}}^{\text {出 }}$

[^5]

[^6]
Table 2, entry 2

 들

ndex	frequency	PPM	ig
1	10658.910	141.275	11.0
2	10641.318	141.012	11.7
3	9716.608	128.786 *	126.0
4	9677.166	$128.263{ }^{\text {4 }}$	125.3
5	9548.474	126.557	70.2
6	5866.499	77.756	29.7
7	5834.542	77.332	31.2
8	5802.585	76.909	29.3
	1668.252	61.874	11.6
10	4661.630	61.786	13.1
11	2173.872	28.813	37.7
12	2169.554	28.756	34.2
13	2164.947	28.695	33.8
14	2025.603	26.848	36.2
15	1261.224	16.716	45
16	1255.466	16.640	45.1

$\begin{array}{cccc}\text { INDEX } & \begin{array}{c}\text { FREQUENCY } \\ 4046.016\end{array} & \begin{array}{l}\text { PPM } \\ 33.311\end{array} & \begin{array}{c}\text { HEIGHT } \\ 126.0\end{array}\end{array}$
${ }^{31} \mathrm{P} /{ }^{1} \mathrm{H}$ decoupled

 즌

Table 2 , entry 4

height

$\begin{array}{ccl}\text { INDEX } & \text { FREQUENCY } & \text { PPM } \\ 1 & 3555.614 & 29.273\end{array}$

$\begin{array}{cclc}\text { INDEX } & \text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 1 & 18285.649 & 150.545 & \mathbf{8 1 . 6} \\ 2 & 18207.315 & 149.900 & \mathbf{9 9 . 0} \\ 3 & 18122.861 & 149.205 & \mathbf{9 5 . 5} \\ 4 & 18044.527 & 148.560 & 78.4 \\ 5 & 7819.915 & 64.381 & -19.6\end{array}$

[^7]

GHT
85.3
112.3
112.6
86.1

∞	
$\stackrel{N}{\circ}$	
	N

REQUEN
8228.9
8151.8
8067.7
7990.6

${ }^{31} \mathrm{P} /{ }^{1} \mathrm{H}$ decoupled

Table 2, entry 7

$$
\infty \dot{\infty} \dot{0} \dot{0} \dot{n}
$$

$$
\because \because \because \because
$$

$$
\leadsto
$$

$$
\begin{aligned}
& \text { 官守まずす }
\end{aligned}
$$

¢ع0z	0zet	¢
$\varepsilon 569$	$00 \varepsilon \tau$	\square
T．9ャ8	¢8てT	ε
$6 \varepsilon 19$	b92T．	2
0こてる	¢もてt	τ
	UNIOd	ytad
6utzsti	d pa	¢メวา

$$
\begin{aligned}
& \begin{array}{l}
\text { 둥 } \\
0 \\
\hline
\end{array}
\end{aligned}
$$

${ }^{31} \mathrm{P} /{ }^{1} \mathrm{H}$ coupled

乞

$$
\begin{aligned}
& \text { EtO, }{ }^{\mathrm{O}} \mathrm{P} \text {-octyl } \quad{ }^{31} \mathrm{P} /{ }^{1} \mathrm{H} \text { coupled } \\
& \text { Scheme } 5
\end{aligned}
$$

[^8]$-\infty$

 픈

${ }^{31} \mathrm{P} /{ }^{1} \mathrm{H}$ decoupled

$\begin{array}{ccc}\text { frequency } \\ 4793.044 & \text { PPM } \\ 39.461\end{array} \begin{gathered}\text { HeIGHT } \\ 126.0\end{gathered}$

$$
{ }^{31} \mathrm{P} /{ }^{1} \mathrm{H} \text { coupled }
$$

[^9]

$\begin{array}{crlr}\text { INDEX } & \text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 1 & 5154.522 & 42.437 & 98.8 \\ 2 & 4627.401 & 38.097 & 102.4\end{array}$

高
案

 듬

$$
\text { Scheme } 5
$$

$$
\begin{aligned}
& \begin{array}{r}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array} \\
& { }^{31} \mathrm{P} /{ }^{1} \mathrm{H}
\end{aligned}
$$

[^10]

$\begin{array}{rlr}\text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 2739.228 & 22.552 & 126.0 \\ 2702.101 & 22.246 & 115.9\end{array}$
Diethyl 1-iodo-2-methylbutylphosphonate Scheme 6

REQUENCY	PPM	HEIGHT
2733.108	22.502	126.0
2695.981	22.196	112.2

${ }^{31} \mathrm{P} /{ }^{1} \mathrm{H}$ decoupled
Diethyl 1-iodo-2-methylbutylphosphonate

[^0]: GHT
 142.4
 9.1
 148.2
 147.3
 64.1
 65.3
 68.3
 65.6
 78.0
 80.2
 119.9
 로

[^1]:

[^2]: 104.5
 126.0
 125.1
 106.6

 HOI 3H

 FREQUEN
 16818.9
 16746.3
 16670.0
 16596.1

[^3]: 忌

 ご

 㐫

[^4]:

 产

 | |
 | :---: |
 | | |
 | | |

[^5]:
 둥
 $\stackrel{y}{3}$
 $\stackrel{y}{ }$

 :

[^6]: HEIGH

[^7]: .8
 .2
 .1
 HEIGHT
 $\begin{array}{llr}\text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 18209.355 & 149.917 & 51.8 \\ 18127.757 & 149.245 & 50 \\ 18061.255 & 148.698 & 38.1\end{array}$
 $\begin{array}{llr}\text { FREQUNCY } & \text { PPM } & \text { HEIGHT } \\ \text { 18209.355 } & 119.917 & 51 \\ 18127.757 & 149.245 & 50 \\ 18061.255 & 148.698 & 38.1\end{array}$
 $\begin{array}{llr}\text { FREQUNCY } & \text { PPM } & \text { HEIGHT } \\ \text { 18209.355 } & 119.917 & 51 \\ 18127.757 & 149.245 & 50 \\ 18061.255 & 148.698 & 38.1\end{array}$
 $\begin{array}{llr}\text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 18209.355 & 149.917 & 51 . \\ 18127.757 & 149.245 & 50 \\ 18061.255 & 148.698 & 38.1\end{array}$
 $\begin{array}{llr}\text { FREQUENCY } & \text { PPM } & \text { HEIGHT } \\ 18209.355 & 149.917 & 51 . \\ 18127.757 & 149.245 & 50 \\ 18061.255 & 148.698 & 38.1\end{array}$

[^8]: ッ ？
 등 $\dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty}$ 플
 〕へ ${ }^{\infty}{ }^{\infty}$

[^9]:

 $\sum_{i=1}^{x} \rightarrow N M$ -

[^10]:
 皆
 $=\stackrel{\rightharpoonup}{6} \underset{\sim}{\sigma} \underset{\sim}{\sim} \underset{\sim}{\sim}$
 듬 $\underset{\sim}{n} \underset{\sim}{n} \underset{\sim}{n}$

