Supporting Information-1

Enantioselective Total synthesis of Peloruside A, a Potent Microtubule Stabilizer

Arun K. Ghosh, ${ }^{*}{ }^{\dagger}$ Xiaoming Xu, ${ }^{\dagger}$ Jae-Hun Kim, ${ }^{\dagger}$ and Chun-Xiao Xu ${ }^{\dagger}$
${ }^{\dagger}$ Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907; ${ }^{7}$ University of Illinois at Chicago, Department of Chemistry, Chicago, IL 60607

Contents

General Experimental Methods S2
Compound 6 S2
Compound 7 S3
Compound 8, 9 S4
Compound 10, 11 S5
Compound 12 S6
Compound 2 S7
Compound $\mathbf{1 4 , 1 5}$ S8
Compound 16,3 S9
Compound 17, 18 S10
Compound 19 S11
Compound 20,1 S12

General Experimental Methods All moisture sensitive reactions were carried out under nitrogen or argon atmosphere. Anhydrous solvents were obtained as follows: THF, diethyl ether and benzene, distilled from sodium and benzophenone; dichloromethane, pyridine, triethylamine, and diisopropylethylamine, distilled from CaH_{2}. All other solvents were HPLC grade. Column chromatography was performed with 240-400 mesh silica gel under low pressure of 5-10 psi. TLC was carried out with silica gel plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 500 or 400 MHz spectrometers. Infrared spectra were recorded on a FTIR instrument.

Olefin (6) To the solution of (-)-2,3-O-isopropylidene-D-threitol (4) ($5.5 \mathrm{~g}, 34 \mathrm{mmol}$) in THF (60 mL) was added $\mathrm{NaH}(60 \%, 1.49 \mathrm{~g}, 37 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the reaction was warmed up to $23^{\circ} \mathrm{C}$ over 1 h . $\mathrm{PMBCl}(4.85 \mathrm{~mL}, 34 \mathrm{mmol})$ was added at $23^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1.5 h and was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with ether and the organic layer was washed with water and brine. The resulting mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification by column chromatography provided product ($7.5 \mathrm{~g}, 78 \%$).

To a solution of the mono-PMB protected product ($87.3 \mathrm{~g}, 0.31 \mathrm{~mol}$) in THF $(700 \mathrm{~mL})$ was added imidazole $(52.6 \mathrm{~g}, 0.77 \mathrm{~mol}), \mathrm{Ph}_{3} \mathrm{P}(122 \mathrm{~g}, 0.46 \mathrm{~mol})$ and iodine $(118 \mathrm{~g}, 0.46 \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$ successively. The resulting mixture was warmed up to $23^{\circ} \mathrm{C}$ over 2 h and stirred overnight and then quenched by 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was extracted with ether and the organic layer was washed with water and brine. The resulting mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification by column chromatography provided ($106 \mathrm{~g}, 88 \%$) iodide as a colorless oil. $[\alpha]^{23}=+12.2$ (c 2.21, CHCl_{3}); IR (thin film, cm^{-1}) 2986, 1612, 1514, 1091, 821; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.23(2 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, J=$ $6.5 \mathrm{~Hz}), 4.51(2 \mathrm{H}, \mathrm{s}), 3.94(1 \mathrm{H}, \mathrm{dt}, J=2.5,5.0 \mathrm{~Hz}), 3.83(1 \mathrm{H}, \mathrm{dt}, J=3.0,7.5 \mathrm{~Hz}), 3.81$ $(3 \mathrm{H}, \mathrm{s}), 3.63(1 \mathrm{H}, \mathrm{dd}, 10.0,5.0 \mathrm{~Hz}), 3.59(1 \mathrm{H}, \mathrm{dd}, J=10.0,5.0 \mathrm{~Hz}), 3.33(3 \mathrm{H}, \mathrm{dd}, J=$ $5.0,10.5 \mathrm{~Hz}), 3.26(3 \mathrm{H}, \mathrm{dd}, J=5.5,10.5 \mathrm{~Hz}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,129.9,129.4,113.9,109.8,80.1,77.7,73.3,70.2,55.3$, 27.4, 27.3, 6.5; MS (EI, m/z) [M] 392.04 .

To a solution of thus obtained iodide $(34.3 \mathrm{~g}, 87 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ was added HMPA $(62 \mathrm{~mL})$ and $\mathrm{CuI}(3.4 \mathrm{~g}, 17.2 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$. The resulting mixture was cooled to $-30^{\circ} \mathrm{C}$ and vinylmagnesium bromide ($173 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 173 mmol) was added dropwise at that temperature over 1 h . The resulting mixture was stirred at $-30^{\circ} \mathrm{C}$ for 1 h and then warmed up to $10^{\circ} \mathrm{C}$ and then quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography provided product $6(21.6 \mathrm{~g}, 85 \%) .[\alpha]^{23}{ }_{\mathrm{D}}=+15.0$ (c $3.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) $3075,2985,2933,2906,2864,2838,1613,1514$, $1369,1248,1172,1086,1036,917 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(2 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{m}), 5.06-5.13(2 \mathrm{H}, \mathrm{m}), 4.53(1 \mathrm{H}, \mathrm{d}, J=11.8$ $\mathrm{Hz}), 4.49(1 \mathrm{H}, \mathrm{d}, J=11.8 \mathrm{~Hz}), 3.86(2 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 2.36(2 \mathrm{H}, \mathrm{m}), 1.41(3 \mathrm{H}, \mathrm{s})$, $1.40(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,133.7,130.0,129.2,117.5,113.7$,

Methyl ether (7) To the obtained olefin $\mathbf{6}(31.5 \mathrm{~g}, 108 \mathrm{mmol})$ in methanol (500 mL) was added $10 \% \mathrm{HCl}(66 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 12 h . The reaction was then quenched with $\mathrm{Na}_{2} \mathrm{CO}_{3}(11.4 \mathrm{~g}, 108 \mathrm{mmol})$ and concentrated to give the crude diol which was used for the next step without further purification. The crude diol ($57 \mathrm{~g}, 226 \mathrm{mmol}$) was dissolved in $\mathrm{MeCN}(1.3 \mathrm{~L})$, and $\mathrm{NaHCO}_{3}(109 \mathrm{~g}, 1.3 \mathrm{~mol})$ and iodine ($125 \mathrm{~g}, 490 \mathrm{mmol}$) was added successively at $0^{\circ} \mathrm{C}$. The resulting mixture was warmed up to $23^{\circ} \mathrm{C}$ over 3 h and then quenched by 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with ethyl acetate. The combined organic layer was washed with brine and concentrated in vacuo. Column chromatography provided product ($70.4 \mathrm{~g}, 82.4 \%$ for 2 steps) as a solid. $\mathrm{mp} 60-62^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}-24\left(c 2.64, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(2 \mathrm{H}, \mathrm{m}), 6.87(2 \mathrm{H}, \mathrm{m}), 4.53-4.48(3 \mathrm{H}, \mathrm{m}), 4.26(0.75 \mathrm{H}, \mathrm{m}), 4.15(0.75 \mathrm{H}, \mathrm{dd}, J=$ $4.0,9.0 \mathrm{~Hz}), 4.09(0.25 \mathrm{H}, \mathrm{m}), 3.95(0.25 \mathrm{H}, \mathrm{dd}, J=4.5,9.0 \mathrm{~Hz}), 3.75(2 \mathrm{H}, \mathrm{m}), 3.36$ $(0.5 \mathrm{H}, \mathrm{m}), 3.33-3.27(1.5 \mathrm{H}, \mathrm{m}), 3.07(1 \mathrm{H}, \mathrm{s}), 2.35(0.25 \mathrm{H}, \mathrm{ddd}, J=14.0,7.0,7.0 \mathrm{~Hz})$, $2.20(0.75 \mathrm{H}, \mathrm{dd}, J=5.5,14.0 \mathrm{~Hz}), 1.86(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5$, 129.6, 129.5, 114.0, 109.8, 81.7, 81.0, 78.0, 74.0, 73.6, 73.0, 68.7, 68.6, 55.3, 42.3, $40.8,11.2,10.7$; IR (thin film, cm^{-1}) $3440,2931,1612,1513,1071,820$;

To the solution of the alcohol $(24.5 \mathrm{~g}, 64.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(240 \mathrm{~mL})$ was added proton sponge $(17.3 \mathrm{~g}, 81 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{OBF}_{4}(11.7 \mathrm{~g}, 79 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then warmed up to $23^{\circ} \mathrm{C}$ and stirred over night. The solid was removed by filtration and the organic layer was washed with aqueous NaHCO_{3}, water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography provided the methyl ether $7(22 \mathrm{~g}, 87 \%)$. It's a mixture ($d r 4: 1$). $[\alpha]^{23}{ }_{\mathrm{D}}-41.8$ (c 1.83, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) $2929,2902,2864,2835,1612,1513,1462,1247,1085$, 1034, 820; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}), 4.56(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.45(0.2 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}), 4.44(0.8 \mathrm{H}, \mathrm{d}, J=11.7$ $\mathrm{Hz}), 4.23(0.8 \mathrm{H}, \mathrm{m}), 4.18(1 \mathrm{H}, \mathrm{m}), 4.06(0.2 \mathrm{H}, \mathrm{m}), 3.94(0.8 \mathrm{H}, \mathrm{m}), 3.89(0.2 \mathrm{H}, \mathrm{m})$, $3.79(3 \mathrm{H}, \mathrm{s}), 3.71-3.67(0.2 \mathrm{H}, \mathrm{m}), 3.63(0.8 \mathrm{H}, \mathrm{dd}, J=5.0,9.9 \mathrm{~Hz}), 3.58(1 \mathrm{H}, \mathrm{dd}, J=$ $6.8,10.1 \mathrm{~Hz}), 3.39-3.32(1.5 \mathrm{H}, \mathrm{m}), 3.30(2.4 \mathrm{H}, \mathrm{s}), 3.28(0.6 \mathrm{H}, \mathrm{s}), 3.24-3.21(1 \mathrm{H}, \mathrm{m})$, $2.35(0.8 \mathrm{H}, \mathrm{m}), 2.19(0.2 \mathrm{H}, \mathrm{m}), 2.04(0.2 \mathrm{H}, \mathrm{ddd}, J=2.3,4.7,13.7 \mathrm{~Hz}), 1.69(0.8 \mathrm{H}, \mathrm{ddd}$, $J=4.6,9.1,13.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,130.3,129.3,113.6,82.6$, 81.8, 81.7, 80.9, 78.3, 77.2, 76.8, 72.9, 68.7, 68.3, 57.2, 57.1, 55.2, 37.8, 36.2, 11.0, 9.9; MS (ESI, m/z) $[\mathrm{M}=\mathrm{Na}]^{+} 415.1$; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{INa}$ 415.0382, found 415.0392.

MOM ether (8) To a solution of the obtained methyl ether $7(46.2 \mathrm{~g}, 118 \mathrm{mmol})$ in 95% ethanol (610 mL) was added zinc dust ($59.4 \mathrm{~g}, 910 \mathrm{mmol}$). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 6 h and cooled down to $23^{\circ} \mathrm{C}$. The solid was removed by filtration and rinsed with EtOAc. The filtrate was concentrated in vacuo and purified by column chromatography to provide the product $(31 \mathrm{~g}, 99 \%)$ as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}$ -8.04 ($c 2.55, \mathrm{CHCl}_{3}$); IR (thin film, cm^{-1}) 3457, 2930, 1716, 1612, 1514, 1088, 824; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.82$ $(1 \mathrm{H}, \mathrm{m}), 5.07(2 \mathrm{H}, \mathrm{m}), 4.48(3 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{m}), 3.54-3.46(2 \mathrm{H}, \mathrm{m}), 3.39(3 \mathrm{H}, \mathrm{s})$, $3.31(1 \mathrm{H}, \mathrm{m}), 2.38(1 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,134.3$, $130.1,129.5,117.5,113.7,80.5,73.1,71.4,70.7,58.2,55.3,34.3$; MS (ESI, m/z) $[\mathrm{M}+\mathrm{Na}]^{+} 289.1$.

To a stirred solution of the alcohol ($31 \mathrm{~g}, 116 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ was added diisopropylethylamine (69.7 mL 371 mmol) and $\mathrm{MOMCl}(23.6 \mathrm{~mL}, 309 \mathrm{mmol})$ successively and the resulting mixture was stirred over night and quenched with water. The organic layer was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography provided the MOM ether $\mathbf{8}(32 \mathrm{~g}, 88 \%)$ as a colorless oil. $[\alpha]^{23}{ }_{\mathrm{D}}-13.6\left(c 2.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(2 \mathrm{H}$, d, $J=9.0 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 5.83(1 \mathrm{H}, \mathrm{m}), 5.06(2 \mathrm{H}, \mathrm{m}), 4.78(1 \mathrm{H}, \mathrm{d}, J=$ $6.5 \mathrm{~Hz}), 4.69(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 4.78(1 \mathrm{H}, \mathrm{A}$ of AB, $J=11.5 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{B}$ of AB, $J=11.7 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77(1 \mathrm{H}, \mathrm{m}), 3.63(1 \mathrm{H}, \mathrm{dd}, J=4.5,9.5 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dd}, J$ $=6.0,10.0 \mathrm{~Hz}), 3.42(1 \mathrm{H}, \mathrm{m}), 3.40(3 \mathrm{H}, \mathrm{s}), 3.38(3 \mathrm{H}, \mathrm{s}), 2.35(1 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,135.3,130.3,129.3,117.1,113.8,97.1,80.5$, 73.0, 65.5, 58.7, 55.7, 53.3, 34.5; MS (ESI, m/z) [M+Na] 333.0.

Alcohol (9) To the solution of thus obtained MOM ether $8(7 \mathrm{~g}, 22.5 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O}(106 \mathrm{~mL} / 13 \mathrm{~mL})$ was added $\mathrm{NMO}(5.3 \mathrm{~g}, 45 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(2.5 \mathrm{w} \%$ in ${ }^{t} \mathrm{BuOH}, 8.3 \mathrm{~mL}, 0.69 \mathrm{mmol}$). The resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 3 h and quenched with saturated aqueous $\mathrm{NaHSO}_{3}(42 \mathrm{~mL})$. The solid was removed by filtration and the filtrate was extracted with EtOAc. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. To a solution of $1 / 3$ of the crude diol ($2.6 \mathrm{~g}, 7.49 \mathrm{mmol}$) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(58 \mathrm{~mL} / 14 \mathrm{~mL})$ was added NaIO_{4} ($3.85 \mathrm{~g}, 18 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$ and stirred for 2 h . The solid was removed by filtration and the filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with buffer solution ($\mathrm{pH}=7$), water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The aldehyde was used without further purification. To the solution of (+)$\mathrm{Ipc}_{2} \mathrm{BOMe}(2.84 \mathrm{~g}, 9.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(32 \mathrm{~mL})$ was added allylmagnesium bromide
$\left(1 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 8.2 \mathrm{~mL}$) dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was warmed up to $23^{\circ} \mathrm{C}$ over 1 h . The solid was removed by filtration. And to the filtrate was added thus obtained crude aldehyde in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ via cannul at $-78^{\circ} \mathrm{C}$ over 5 min , and the mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$. Then the reaction was quenched with aqueous $\mathrm{NaOH}(2 \mathrm{M}, 12 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 5 \mathrm{~mL})$ and slowly warmed up to $23^{\circ} \mathrm{C}$ over night. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was passed through a short column to get the crude product. ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 5.81(1 \mathrm{H}, \mathrm{m}), 5.09$ $(2 \mathrm{H}, \mathrm{m}), 4.79(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.67(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz})$, $4.43(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 3.86(2 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.62(2 \mathrm{H}, \mathrm{m}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=$ $6.6,10.3 \mathrm{~Hz}), 3.44(3 \mathrm{H}, \mathrm{s}), 3.36(3 \mathrm{H}, \mathrm{s}), 3.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.21(2 \mathrm{H}, \mathrm{m}), 1.72(1 \mathrm{H}, \mathrm{m})$, $1.49(1 \mathrm{H}, \mathrm{dt}, J=14.5,9,3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,134.7,130.0$, 129.2, 117.4, 113.7, 96.8, 81.3, 77.2, 73.0, 70.3, 69.3, 58.4, 55.6, 55.2, 42.1, 35.8;

TBS ether (10) To a solution of the crude diastereomeric mixture ($2.05 \mathrm{~g}, 5.78 \mathrm{mmol}$) in DMF (15 mL) was added imidazole ($720 \mathrm{mg}, 10.6 \mathrm{mmol}$), DMAP ($70 \mathrm{mg}, 0.6 \mathrm{mmol}$) and $\operatorname{TBSCl}(1.06 \mathrm{~g}, 7.03 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$ and then the mixture was stirred over night. To the resulting mixture was added water and EtOAc and the organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo. Column chromatography provided the pure diastereomeric isomer $10(2.6 \mathrm{~g}, 74 \%$ over 4 steps, $d r$ 94:6): $[\alpha]_{\mathrm{D}}^{23}-4.8\left(c 2.69, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (thin film, cm^{-1}) 3075, 2953, 2930, 2895, 1856, 1612, 1513, 1249, 1099, 1039, 835; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(2 \mathrm{H}, \mathrm{d}, J$ $=8.6 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{m}), 5.06(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 5.03(1 \mathrm{H}$, s), $4.79(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.45(2 \mathrm{H}, \mathrm{s}), 3.81(2 \mathrm{H}, \mathrm{m}), 3.80$ $(3 \mathrm{H}, \mathrm{s}), 3.62(1 \mathrm{H}, \mathrm{dd}, J=4.9,9.9 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=6.2,9.7 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{m})$, $3.37(3 \mathrm{H}, \mathrm{s}), 3.36(3 \mathrm{H}, \mathrm{s}), 2.28(1 \mathrm{H}, \mathrm{m}), 2.23(1 \mathrm{H}, \mathrm{m}), 1.75(1 \mathrm{H}, \mathrm{m}), 1.64(1 \mathrm{H}, \mathrm{m}), 0.87$ $(9 \mathrm{H}, \mathrm{s}), 0.05(3 \mathrm{H}, \mathrm{s}), 0.03(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,134.9,130.3$, 129.2, 116.9, 113.6, 96.7, 77.5, 72.9, 69.8, 68.9, 58.0, 55.7, 55.2, 41.9, 36.7, 25.8, 17.9, $-4.4,-4.6 ; \mathrm{MS}(\mathrm{ESI}, \mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$491.18; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{SiNa} 491.2805$, found 491.2806.

Unsaturated ester (11) To the solution of thus obtained silyl ether $10(11 \mathrm{~g}, 23.5$ mmol) in acetone/water ($120 \mathrm{~mL} / 15 \mathrm{~mL}$) was added $\mathrm{OsO}_{4}\left(2.5 \mathrm{w} \%\right.$ in ${ }^{t} \mathrm{BuOH}, 2.87 \mathrm{~mL}$, $0.24 \mathrm{mmol})$ and NMO ($3.31 \mathrm{~g}, 28.5 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$ and the reaction mixture was stirred at that temperature for 5 h . The solid was removed and the filtrate was extracted with EtOAc. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. To the solution of the crude diol in THF/ $\mathrm{H}_{2} \mathrm{O}(100$
$\mathrm{mL} / 25 \mathrm{~mL}$) was added $\mathrm{NaIO}_{4}(6.03 \mathrm{~g}, 28.2 \mathrm{mmol})$ and the reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 3 h . The solid was removed by filtration and the filtrate was extracted with EtOAc. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude aldehyde was used without further purification.

To the solution of $(\mathrm{O} \text {-cresol })_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}(9.29 \mathrm{~g}, 29.4 \mathrm{mmol})$ in THF (210 mL) was added $\mathrm{NaI}(3.45 \mathrm{~g}, 23 \mathrm{mmol})$ and $\mathrm{NaH}(60 \%$ in mineral oil, $1.03 \mathrm{~g}, 25.8$ mmol) at $0^{\circ} \mathrm{C}$ and it was stirred at $0^{\circ} \mathrm{C}$ for 10 min and cooled down to $-78^{\circ} \mathrm{C}$. To the resulting mixture was added the aldehyde in THF (50 mL) dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and warmed up to $-50^{\circ} \mathrm{C}$ and then quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography provided the Z isomer $11(9.9 \mathrm{~g}, 78 \%)$ and E isomer (1.4 g , 11%). Z isomer: $[\alpha]^{23}{ }_{\mathrm{D}}-9.5\left(c 2.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (thin film, cm^{-1}) 2953, 2930, 2897, 2857, 1718, 1514, 1250, 1180, 1098, 1039; ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(2 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.3791 \mathrm{H}, \mathrm{dt}, J=11.6,7.0 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{d}, J$ $=\mathrm{m} 11.6 \mathrm{~Hz}), 4.78(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.45(2 \mathrm{H}, \mathrm{s}), 4.14(2 \mathrm{H}$, $\mathrm{q}, J=7.2 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.61(1 \mathrm{H}, \mathrm{dd}, J=4.7,9.8 \mathrm{~Hz}), 3.55(1 \mathrm{H}, \mathrm{dd}$, $J=6.3,9.8 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{m}), 3.37(3 \mathrm{H}, \mathrm{s}), 3.36(3 \mathrm{H}, \mathrm{s}), 2.97(1 \mathrm{H}, \mathrm{m}), 2.82(1 \mathrm{H}, \mathrm{m})$, $1.68(2 \mathrm{H}, \mathrm{m}), 1.27(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{hz}), 0.86(9 \mathrm{H}, \mathrm{s}), 0.05(3 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,159.0,146.2,130.3,129.1,121.0,113.6,96.6,77.4$, $76.5,72.9,69.7,68.4,59.7,58.2,55.7,55.2,37.2,36.1,25.7,17.9,14.2,-4.5,-4.7$; MS (ESI, m/z) $[\mathrm{M}+\mathrm{Na}]^{+}$563.19; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{SiNa}$ 563.3016, found 563.3021.

12
Acetonide (12) To the solution of the Z unsaturated olefin $11(9.89 \mathrm{~g}, 18.3 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(92 \mathrm{~mL} / 92 \mathrm{~mL})$ was added AD-mix- $\alpha(25.7 \mathrm{~g})$ and $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}(1.74 \mathrm{~g})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at that $0^{\circ} \mathrm{C}$ for 4 days and then quenched with NaHSO_{3} and extracted with EtOAc. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was passed through a short silica gel column to provide the crude diastereomeric mixture ($10.2 \mathrm{~g}, 97 \%$), which could be separated in next step.

To the solution of crude diol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added PPTS (335 mg , 1.33 mmol) and 2-methoxypropene ($4.4 \mathrm{~mL}, 46 \mathrm{mmol}$) at $23^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min . The reaction solvent was removed in vacuo and purification by column chromatography provided the major product $11(8.71 \mathrm{~g})$ and minor product (1.17 g , overall 95%). The major isomer: $[\alpha]^{23}{ }_{\mathrm{D}}+20.0\left(c \quad 1.89, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 2982, 2953, 2932, 2896, 2856, 1757, 1513, 1463, 1249, 1099, 1039, $837 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $4.76(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{s}), 4.50(1 \mathrm{H}, \mathrm{m}), 4.44(2 \mathrm{H}$, s), 4.24-4.14 ($2 \mathrm{H}, \mathrm{m}$), $4.06(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.76(1 \mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}, \mathrm{dd}, J=4.5$,
$10.0 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{dd}, J=6.5,9.9 \mathrm{~Hz}), 3.43(1 \mathrm{H}, \mathrm{m}), 3.36(3 \mathrm{H}, \mathrm{s}), 3.35(3 \mathrm{H}, \mathrm{s}), 1.71-$ $1.64(3 \mathrm{H}, \mathrm{m}), 1.58(3 \mathrm{H}, \mathrm{s}), 1.51(1 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.25(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{hz}), 0.88$ $(9 \mathrm{H}, \mathrm{s}), 0.07(3 \mathrm{H}, \mathrm{s}), 0.05(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,159.0,130.2$, $129.1,113.6,110.4,96.5,77.2,76.9,74.1,72.9,69.5,66.4,60.8,58.5,55.6,55.2,39.0$, 37.6, 27.0, 25.8, 25.7, 17.9, 14.1, -4.3, -4.9; MS (ESI, m/z) [M+Na] ${ }^{+} 637.21$; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{10} \mathrm{SiNa}$ 637.3384, found 637.3392.

Enone (2) To the solution of thus obtained ester $\mathbf{1 2}(1.47 \mathrm{~g}, 2.39 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) was added DIBALH (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.5 \mathrm{~mL}, 2.5 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred at that temperature for 1 h and quenched with $\mathrm{NH}_{4} \mathrm{Cl}$. The solid was removed by filtration and the filtrate was extracted with EtOAc. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was passed through a short silica gel pad to provide the crude aldehyde, which was then dissolved in THF (50 mL). To the solution was added isopropenylmagnesium bromide (0.5 M in THF, $26.9 \mathrm{~mL}, 13.4 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$ and keeped at $0^{\circ} \mathrm{C}$ for 15 min before quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc and the combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography provided the diastereomeric mixture ($1.21 \mathrm{~g}, 86 \%$).

To the solution of the obtained alcohol mixture ($7.02 \mathrm{~g}, 11.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(40 \mathrm{~mL})$ was added Dess-Martin periodinane ($5.83 \mathrm{~g}, 13.7 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(3.46 \mathrm{~g}$, 41.2 mmol) at $23^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min and quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography provided the enone $2(6.28 \mathrm{~g}, 90 \%) .[\alpha]^{23}{ }_{\mathrm{D}}+29.3\left(c 2.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film, cm^{-1}) 2953, 2931, 2894, 2856, 1693, 1513, 1378, 1249, 1100, 1073, 835; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.85(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 5.88$ $(1 \mathrm{H}, \mathrm{s}), 5.84(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 5.29(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 4.74(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.62$ $(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{m}), 4.43(2 \mathrm{H}, \mathrm{s}), 4.01(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{dt}$, $J=6.7,4.1 \mathrm{~Hz}), 3.58(1 \mathrm{H}, \mathrm{dd}, J=4.2,9.9 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=6.6,9.9 \mathrm{~Hz}), 3.37(1 \mathrm{H}$, m), $3.34(3 \mathrm{H}, \mathrm{s}), 3.32(3 \mathrm{H}, \mathrm{s}), 1.87(3 \mathrm{H}, \mathrm{s}), 1.60(1 \mathrm{H}, \mathrm{m}), 1.58(3 \mathrm{H}, \mathrm{s}), 1.40(1 \mathrm{H}, \mathrm{m})$, $1.37(3 \mathrm{H}, \mathrm{s}), 0.87(9 \mathrm{H}, \mathrm{s}),-0.07(3 \mathrm{H}, \mathrm{s}),-0.04(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $197.0,159.0,144.0,130.2,129.1,125.3,113.6,109.6,96.6,78.6,77.2,76.9,74.5,72.9$, $69.5,66.3,58.5,55.6,55.1,39.0,38.1,27.3,25.8,25.5,17.9,17.8,-4.3,-4.9$; MS (ESI, m / z) $[\mathrm{M}+\mathrm{Na}]^{+}$633.16; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{9} \mathrm{SiNa} 633.3435$, found 633.3433.

14
TES ether (14) To the solution of the alcohol 5 ($390 \mathrm{mg}, 1.41 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) was added 2,6 -lutidine ($0.63 \mathrm{~mL}, 5.36 \mathrm{mmol}$) and TESOTf ($0.80 \mathrm{~mL}, 3.55 \mathrm{mmol}$). The resulting mixture was stirred for 5 min and water and EtOAc was added. The organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was passed through a silica gel pad to provide the crude silyl ether ($495 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(4 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{m}), 5.81$ $(1 \mathrm{H}, \mathrm{m}), 5.13-5.07(2 \mathrm{H}, \mathrm{m}), 4.92(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{dd}, J=5.0,8.1 \mathrm{~Hz})$, $4.51(2 \mathrm{H}, \mathrm{s}), 3.32(3 \mathrm{H}, \mathrm{m}), 2.57(1 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{m}), 2.16(1 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}, \mathrm{d}, J=$ $1.0 \mathrm{~Hz}), 1.66(1 \mathrm{H}, \mathrm{m}), 1.23(2 \mathrm{H}, \mathrm{m}), 0.94(9 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 0.85(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$, $0.56(6 \mathrm{H}, \mathrm{q}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.2,138.6,135.8,128.2$, $127.5,127.4,126.7,116.3,73.5,73.0,70.6,41.5,39.1,25.3,17.9,11.6,6.8,4.7$;

Alcohol (15) The TES ether was dissolved in ${ }^{t} \mathrm{BuOH} /$ Acetone $/ \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL} / 4 \mathrm{~mL} / 1 \mathrm{~mL})$. To the solution was added NMO $(0.41 \mathrm{~g}, 3.53 \mathrm{mmol})$ and $\mathrm{OsO}_{4}\left(2.5 \mathrm{w} \%\right.$ in ${ }^{t} \mathrm{BuOH}$, $0.88 \mathrm{~mL}, 0.074 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and it was stirred at this temperature for 2 h before quenched with aqueous NaHSO_{3}. The resulting mixture was extracted with EtOAc and the organic layer was washed with brine, concentrated in vacuo and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. To the solution was added pyridine ($0.3 \mathrm{~mL}, 3.7 \mathrm{mmol}$) and $\mathrm{Pb}(\mathrm{OAc})_{4}(0.66 \mathrm{~g}, 1.49 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$ and stirred for 30 min . The solid was removed by filtration and the filtrate was extracted with EtOAc. The organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was passed through a silica gel pad to give crude aldehyde ($374 \mathrm{mg}, 74 \%, 2$ steps).

To the solution of $(-)-\mathrm{Ipc}_{2} \mathrm{BOMe}(788 \mathrm{mg}, 2.49 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL})$ was added allylmagnesium bromide (1 M in $\mathrm{Et}_{2} \mathrm{O}, 2.22 \mathrm{~mL}, 2.22 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was warmed up to $23^{\circ} \mathrm{C}$ over 2 h . The solid was removed by filtration and the filtrate was cooled down to $-78^{\circ} \mathrm{C}$. To the filtrate was added thus obtained crude aldehyde in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ via cannul at $-78^{\circ} \mathrm{C}$ over 5 min , and the mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ and then quenched with buffer $(\mathrm{pH}=7)$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ $(30 \%, 5 \mathrm{~mL})$. The resulting mixture was slowly warmed up to $23^{\circ} \mathrm{C}$ over night and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography provided major isomer ($374 \mathrm{mg}, 83 \%$, $d r 5: 1$).

Methyl ether (16) To the solution of the thus made homoallylic alcohol ($165 \mathrm{mg}, 0.38$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added proton sponge ($333 \mathrm{mg}, 1.56 \mathrm{mmol}$) and $\mathrm{Me}_{3} \mathrm{OBF}_{4}(173 \mathrm{mg}, 1.17 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h and the solid was removed by filtration. The filter cake was washed with hexane and the filtrate was washed with NaHCO_{3}, water and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography provided methyl ether $\mathbf{1 3}$ ($153 \mathrm{mg}, 93 \%$): $[\alpha]^{23}{ }_{\mathrm{D}}-35.3$ (c 1.21, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) $3075,3066,3029$, 2955, 2936, 2876, 2825, 1454, 1239, 1089, 1005, 741; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.34(4 \mathrm{H}, \mathrm{m}), 7.27(1 \mathrm{H}, \mathrm{m}), 5.86(1 \mathrm{H}, \mathrm{m}), 5.13-5.07(2 \mathrm{H}, \mathrm{m}), 4.94(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz})$, $4.60(1 \mathrm{H}, \mathrm{dd}, J=4.6,8.8 \mathrm{~Hz}), 4.50(2 \mathrm{H}, \mathrm{s}), 3.33(3 \mathrm{H}, \mathrm{m}), 3.32(3 \mathrm{H}, \mathrm{s}), 2.56(1 \mathrm{H}, \mathrm{m})$, $2.38(1 \mathrm{H}, \mathrm{m}), 2.23(1 \mathrm{H}, \mathrm{m}), 1.94(1 \mathrm{H}$, ddd, $J=4.98 .913 .8 \mathrm{~Hz}), 1.69(3 \mathrm{H}, \mathrm{d}, J=1.0$ Hz), $1.62(1 \mathrm{H}, \mathrm{m}), 1.44(1 \mathrm{H}, \mathrm{ddd}, J=4.57 .5,12.2 \mathrm{~Hz}), 1.24(1 \mathrm{H}, \mathrm{m}), 0.92(9 \mathrm{H}, \mathrm{t}, J=$ $8.0 \mathrm{~Hz}), 0.84(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 0.56(6 \mathrm{H}, \mathrm{q}, J=7.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 138.9,138.6,134.7,128.2,127.5,127.4,127.2,116.9,77.4,73.3,73.0,67.5,55.9$, 40.1, 39.0, 37.4, 25.3, 17.8, 11.4, 6.9, 4.8; MS (ESI, m/z) [M+Na] 469.21 ; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{SiNa} 469.3114$, found 469.3123 .

Aldehyde (3) To the solution of the methyl ether 16 ($133 \mathrm{mg}, 0.30 \mathrm{mmol}$) in ${ }^{t} \mathrm{BuOH} /$ Acetone $/ \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL} / 1.0 \mathrm{~mL} / 0.25 \mathrm{~mL})$ was added $\mathrm{NMO}(0.07 \mathrm{~g}, 0.60 \mathrm{mmol})$ and $\mathrm{OsO}_{4}\left(2.5 \mathrm{w} \%\right.$ in $\left.{ }^{\circ} \mathrm{BuOH}, 0.15 \mathrm{~mL}, 0.013 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$ and it was stirred at this temperature for 2 h before quenched with aqueous NaHSO_{3}. The resulting mixture was extracted with EtOAc and the organic layer was washed with brine, concentrated in vacuo and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. To the solution was added pyridine (0.068 mL , $0.75 \mathrm{mmol})$ and $\mathrm{Pb}(\mathrm{OAc})_{4}(145 \mathrm{mg}, 0.052 \mathrm{mmol})$ at $23^{\circ} \mathrm{C}$ and stirred for 30 min . The solid was removed by filtration and the filtrate was extracted with EtOAc. The organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was purified by column chromatography to give the aldehyde 3 ($100 \mathrm{mg}, 75 \%, 2$ steps): $[\alpha]^{23}{ }_{\mathrm{D}}-40.1\left(c 1.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (thin film, cm^{-1}) 3029, 2956, 2935, 2876, 1727, 1455, 1085, 1005, 742; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(1 \mathrm{H}, \mathrm{t}$, $J=1.9 \mathrm{~Hz}), 7.36-7.25(5 \mathrm{H}, \mathrm{m}), 4.94(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{dd}, J=3.6,9.1$ $\mathrm{Hz}), 4.49(2 \mathrm{H}, \mathrm{s}), 3.82(1 \mathrm{H}, \mathrm{m}), 3.34(3 \mathrm{H}, \mathrm{s}), 3.32(2 \mathrm{H}, \mathrm{m}), 2.64(1 \mathrm{H}, \mathrm{ddd}, J=1.6,4.1$, $16.3 \mathrm{~Hz}), 2.57(1 \mathrm{H}, \mathrm{ddd}, J=2.7,7.6,16.5 \mathrm{~Hz}), 2.51(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}$, s), $1.64(1 \mathrm{H}, \mathrm{m}), 1.45(1 \mathrm{H}, \mathrm{ddd}, J=3.6,8.2,13.7 \mathrm{~Hz}), 1.21(1 \mathrm{H}, \mathrm{dt}, J=13.6,7.7 \mathrm{~Hz})$, $0.92(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 0.82(3 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 0.56(6 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.4,138.6,138.5,128.2,127.5,127.4,73.7$ 73.3, 73.0, 67.1, $56.2,47.7,40.1,39.3,25.3,17.9,11.6,6.8,4.7$.

Aldol product (17) To the solution of the enone $2(645 \mathrm{mg}, 1.06 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(200$ mL) was added L-Selectride (lithium tri-sec-butylborohydride, 1.0 M in THF, 1.1 mL , 1.1 mmol) at $-78^{\circ} \mathrm{C}$ and the reaction was kept at that temperature for $10-15 \mathrm{~min}$. To the solution was added thus obtained aldehyde $\mathbf{3}(520 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and quenched with $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography provided the major isomer 17 and minor isomer (823 mg and 206 mg respectively, $92 \%, d r 4: 1$). Major isomer: $[\alpha]^{23}{ }_{\mathrm{D}}$ 13.9 (c $1.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) 2956, 2936, 2879, 2859, 1714, 1514, 1463, 1379, 1249, 1098, 1078, 1038, 836; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.25(5 \mathrm{H}, \mathrm{m})$, $7.22(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 4.92(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=10.1 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.54(2 \mathrm{H}, \mathrm{m}), 4.46(2 \mathrm{H}$, s), $4.43(2 \mathrm{H}, \mathrm{s}), 4.01(2 \mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.59(2 \mathrm{H}, \mathrm{dd}, J=4.3,10.0 \mathrm{~Hz}), 3.48(1 \mathrm{H}$, dd, $J=6.7,9.9 \mathrm{~Hz}), 3.39(1 \mathrm{H}, \mathrm{m}), 3.35(6 \mathrm{H}, \mathrm{s}), 3.30(2 \mathrm{H}, \mathrm{m}), 3.29(3 \mathrm{H}, \mathrm{s}), 2.51(1 \mathrm{H}$, m), $2.05(1 \mathrm{H}, \mathrm{m}), 1.69(3 \mathrm{H}, \mathrm{s}), 1.64-1.61(4 \mathrm{H}, \mathrm{m}), 1.57-1.42(2 \mathrm{H}, \mathrm{m}), 1.50(3 \mathrm{H}, \mathrm{s})$, $1.33(3 \mathrm{H}, \mathrm{s}), 1.23(2 \mathrm{H}, \mathrm{m}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 0.94(1 \mathrm{H}, \mathrm{m}), 0.89(9 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0$ $\mathrm{Hz}), 0.87(12 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 0.54(6 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}), 0.08(3 \mathrm{H}, \mathrm{s}), 0.05$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.2,159.0,138.9,138.5,130.2,129.1,128.2$, $127.4,127.3,127.2,113.6,109.1,96.6,79.2,77.3,76.9,76.5,74.3,73.2,73.0,72.9$, $72.8,69.5,67.3,66.4,58.5,56.2,55.6,55.0,51.3,39.14,39.05,33.3,27.6,25.8,25.3$, $20.8,18.8,17.94,17.87,11.6,6.8,4.7,-4.3,-4.9$; MS (ESI, m/z) [M+Na] 1083.32; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{58} \mathrm{H}_{100} \mathrm{O}_{13} \mathrm{Si}_{2} \mathrm{Na} 1083.6600$, found 1083.6611.

Alcohol (18) To the solution of the major aldol product $17(30 \mathrm{mg}, 0.028 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(9: 1,1.8 \mathrm{~mL})$ was added $\mathrm{DDQ}(2 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred for 3 h at $23^{\circ} \mathrm{C}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$, buffer $(\mathrm{pH}=7,1.2 \mathrm{~mL})$ and DDQ $(30 \mathrm{mg}$, 0.13 mmol) was added. The resulting mixture was stirred for 8 h at $23^{\circ} \mathrm{C}$ and aqueous NaHCO_{3} was added. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic phase was washed with dilute aqueous NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column
chromatography gave the alcohol 18 (16 mg, 70\%): : $[\alpha]^{23}{ }_{\mathrm{D}}+17.9\left(c \quad 1.3, \mathrm{CHCl}_{3}\right)$; IR (thin film, cm^{-1}) $3443,2956,2928,2855,1713,1462,1378,1252,1097,1074,836 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.24(5 \mathrm{H}, \mathrm{m}), 5.10(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 4.95(1 \mathrm{H}, \mathrm{d}, J$ $=9.5 \mathrm{~Hz}), 4.71(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 4.59(1 \mathrm{H}, \mathrm{dd}, J=4.8,8.5$ $\mathrm{Hz}), 4.52(1 \mathrm{H}, \mathrm{m}), 4.47(2 \mathrm{H}, \mathrm{m}), 4.02-3.95(2 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}, \mathrm{m}), 3.63-3.53(3 \mathrm{H}, \mathrm{m})$, 3.42-3.36 ($2 \mathrm{H}, \mathrm{m}$), $3.40(3 \mathrm{H}, \mathrm{s}), 3.35(3 \mathrm{H}, \mathrm{s}), 3.32(3 \mathrm{H}, \mathrm{s}), 3.12(1 \mathrm{H}, \mathrm{t}, J=9.1 \mathrm{~Hz})$, $2.65(1 \mathrm{H}, \mathrm{m}), 2.02(1 \mathrm{H}, \mathrm{m}), 1.72(3 \mathrm{H}, \mathrm{s}), 1.69-1.55(6 \mathrm{H}, \mathrm{m}), 1.50(3 \mathrm{H}, \mathrm{s}), 1.20(2 \mathrm{H}, \mathrm{m})$, $1.18(3 \mathrm{H}, \mathrm{s}), 1.13(1 \mathrm{H}, \mathrm{m}), 1.09(3 \mathrm{H}, \mathrm{s}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.82(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 0.07(3 \mathrm{H}$, s), $0.05(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.6,139.3,137.6,130.9,128.4$, $127.7,109.2,97.3,81.1,79.1,78.1,77.9,74.3,73.7,73.4,73.2,66.3,65.7,62.4,58.2$, $56.9,55.7,51.4,39.3,38.9,38.6,36.5,33.5,29.6,27.6,25.8,24.7,20.8,18.9,18.1$, 17.9, 11.8, -4.3, -4.9; MS (ESI, m/z) [M+Na] 849.2; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{44} \mathrm{H}_{78} \mathrm{O}_{12} \mathrm{SiNa} 849.5160$, found 849.5154 .

Macrolactone (19) To the solution of the alcohol $\mathbf{1 8}(17.3 \mathrm{mg}, 0.021 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.9 \mathrm{~mL})$ was added $4 \AA ̊$ molecular sieve, $\mathrm{NMO}(2.2 \mathrm{mg}, 0.021 \mathrm{mmol})$ and TPAP (1.2 $\mathrm{mg}, 0.004 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The solid was removed by filtration and EtOAc was added to the filtrate. The organic phase was washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, water and brine, concentrated in vacuo and dissolved in ${ }^{t} \mathrm{BuOH}(3.3 \mathrm{~mL})$. To the solution was added 2-methyl-2-butene $(0.4 \mathrm{~mL})$ and a solution of $\mathrm{NaClO}_{2}(32 \mathrm{mg}, 0.35 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(35 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(3.3 \mathrm{~mL})$. The resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 25 min . The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic phase was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was passed through a short silica gel column to obtain the crude seco-acid 9 mg.

To the solution of thus obtained seco-acid in toluene (2.4 mL) was added DIPEA ($0.05 \mathrm{~mL}, 0.29 \mathrm{mmol}$) and 2,4,6-trichlorobenzoyl chloride ($18.8 \mu \mathrm{~L}, 0.12$ mmol) at $23^{\circ} \mathrm{C}$. The reaction was stirred for 15 h at that temperature and was added dropwise to a solution of DMAP ($22.4 \mathrm{mg}, 0.18 \mathrm{mmol}$) in toluene (25 mL) at $23^{\circ} \mathrm{C}$ over 10 h . The resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 36 h and water was added. The organic layer was separated and the aqueous was extracted with EtOAc. The combined organic phase was wash with $0.18 \% \mathrm{HCl}$, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography provided product 19 ($5.7 \mathrm{mg}, 64 \%$): $[\alpha]^{23}{ }_{\mathrm{D}}-45.7\left(c 0.88, \mathrm{CHCl}_{3}\right)$; IR (thin film, cm^{-1}) 2956, 2929, 2856, 1730, 1463, 1379, 1256, 1095, 1076, 1027, 971, 837; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.22(5 \mathrm{H}, \mathrm{m})$, $5.78(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 4.70(1 \mathrm{H}$,
d, $J=6.7 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{m}), 4.53(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.47$ $(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{m}), 3.98(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 3.81(1 \mathrm{H}, \mathrm{m}), 3.59(1 \mathrm{H}$, dd, $J=4.1,9.3 \mathrm{~Hz}), 3.49(1 \mathrm{H}, \mathrm{m}), 3.40(3 \mathrm{H}, \mathrm{s}), 3.37(3 \mathrm{H}, \mathrm{s}), 3.34(6 \mathrm{H}, \mathrm{s}), 3.20(1 \mathrm{H}, \mathrm{m})$, $2.75(1 \mathrm{H}, \mathrm{m}), 2.05(1 \mathrm{H}, \mathrm{ddd}, J=15.2,5.5,1.1 \mathrm{~Hz}), 1.97(1 \mathrm{H}, \mathrm{ddd}, J=15.2,9.1,1.3$ $\mathrm{Hz}), 1.88(1 \mathrm{H}, \mathrm{ddd}, J=14.5,6.3,4.3 \mathrm{~Hz}), 1.72(2 \mathrm{H}, \mathrm{m}), 1.66(3 \mathrm{H}, \mathrm{s}), 1.63(1 \mathrm{H}, \mathrm{m})$, $1.59(3 \mathrm{H}, \mathrm{s}), 1.53(1 \mathrm{H}, \mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.32(1 \mathrm{H}, \mathrm{m}), 1.22(1 \mathrm{H}, \mathrm{m}), 1.18$ $(3 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 0.09(3 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.1,168.8,138.9,134.0,129.8,128.1,127.5,127.2,110.2,96.4$, $79.4,77.4,76.7,75.4,74.0,72.7,70.6,66.0,58.4,57.4,56.2,50.4,39.5,39.3,38.5$, $37.9,35.7,29.6,26.7,25.8,25.5,25.2,24.9,21.0,17.9,11.6,-4.2,-5.0 ;$ MS (ESI, m/z) $[\mathrm{M}+\mathrm{Na}]^{+}$845.24; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{44} \mathrm{H}_{74} \mathrm{O}_{12} \mathrm{SiNa} 845.4847$, found 845.4840 .

20
Methyl ether (20) The macrolactone $19(13 \mathrm{mg}, 0.016 \mathrm{mmol})$ was dissolved in a mixture of THF (3.6 mL) and $1 \mathrm{~N} \mathrm{HCl}(3.6 \mathrm{~mL})$. The resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 9 h . The aqueous layer was extracted with EtOAc and the combined organic phase was washed with aqueous NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was passed through a silica gel pad to give the crude product which was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To the solution was added 2,6-di-tert-butylpyridine ($60 \mu \mathrm{~L}$), $\mathrm{Me}_{3} \mathrm{OBF}_{4}(24 \mathrm{mg})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred for 4 h and quenched with aqueous NaHCO_{3}. The organic phase was separated and the aqueous layer was extracted with EtOAc. Combined organic phase was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. A simple silica gel column gave 8 mg crude product, which may contains both the macrolactone form and the semi-ketal form. The NMR spectra seem complicated. MS (ESI, m/z) $[\mathrm{M}+\mathrm{Na}]^{+}$ 705.29;

To the solution of the methyl ether (4 mg) in methanol (2 mL) was added formic acid (0.1 mL) and $10 \% \mathrm{Pd} / \mathrm{C}$ (a spatula) at $23^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 1 h . Celite was added and the solid was removed by filtration. The filtrate
was concentrated in vacuo and was dissolved in THF/4N HCl ($1.5 \mathrm{~mL} / 1.5 \mathrm{~mL})$ and was stirred for 3.5 h at $23^{\circ} \mathrm{C}$. The reaction mixture was extracted with EtOAc and the combined organic layer was washed with NaHCO_{3}, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography provided the (+)Peloruside A (1) ($1.6 \mathrm{mg}, 50 \%, 2$ steps) $[\alpha]^{23}{ }_{\mathrm{D}}+15.1$ (c $0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film, cm^{-1}) 2957, 2923, 2852, 1742, 1463, 1378, 1151, 1086, 1037, 722; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.69(1 \mathrm{H}, \mathrm{d}, J=10.6 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz})$, $4.91(1 \mathrm{H}, \mathrm{m}), 4.54(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.2 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{s}), 4.28(1 \mathrm{H}, \mathrm{ddd}, J=11.3,4.4,2.5$ $\mathrm{Hz}), 4.23(1 \mathrm{H}, \mathrm{dd}, J=10.6,5.4 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 3.99(1 \mathrm{H}, \mathrm{m}), 3.82(1 \mathrm{H}$, ddd, $J=11.5,5.0,3.0 \mathrm{~Hz}), 3.65(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.5), 3.48(3 \mathrm{H}, \mathrm{s}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.36$ $(1 \mathrm{H}, \mathrm{m}), 3.31(3 \mathrm{H}, \mathrm{s}), 3.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.70(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 2.62(1 \mathrm{H}, \mathrm{m}), 2.27(1 \mathrm{H}$, br s), $2.14(1 \mathrm{H}, \mathrm{m}), 2.05(1 \mathrm{H}, \mathrm{m}), 1.79(1 \mathrm{H}, \mathrm{ddd}, J=12.5,4.9,2.5 \mathrm{~Hz}), 1.78(1 \mathrm{H}, \mathrm{m})$, $1.68(3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 1.53(1 \mathrm{H}, \mathrm{q}, J=12.0 \mathrm{~Hz}), 1.46-1.40(2 \mathrm{H}, \mathrm{m}), 1.17(1 \mathrm{H}, \mathrm{m})$, $1.13(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $174.0,136.1,131.2,102.0,78.3,78.0,76.0,73.9,70.9,70.3,67.0,66.9,63.5,59.1$, 56.1, 55.7, 43.6, 43.4, 35.8, 33.9, 32.6, 31.7, 24.7, 20.9, 17.5, 15.8, 12.3; MS (ESI, m/z) $[\mathrm{M}+\mathrm{Na}]^{+}$571.17; HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{O}_{11} \mathrm{Na} 571.3094$, found 571.3102.

