Supporting Information

Organocatalytic Synthesis of \boldsymbol{N}-Phenylisoxazolidin-5-ones and a One-Pot Synthesis of $\boldsymbol{\beta}$-Amino Acid Esters

Jayasree Seayad, Pranab K. Patra, Yugen Zhang,* and Jackie Y. Ying*
Institute of Bioengineering and Nanotechnology
31 Biopolis Way, The Nanos, Singapore 138669

General: Reactions were monitored by thin layer chromatography using $0.25-\mathrm{mm}$ E. Merck silica gel coated glass plates ($60 \mathrm{~F}-254$) with UV light to visualize the course of reaction. Flash column chromatography was performed using CombiFlash (ISCO, Inc.). Chemical yields referred to the pure isolated substances. Gas chromatography-mass spectrometry (GC-MS) was performed with Shimadzu GC-2010 coupled with GCMSQP2010. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using a Brucker AV-400 (400 MHz) spectrometer. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. Data were reported in the following order: chemical shift in ppm (δ) (multiplicity were indicated by br (broadened), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), m_{c} (centered multiplet)); coupling constants (J, Hz); integration; assignment. All reactions were performed in oven-dried $\left(140^{\circ} \mathrm{C}\right)$ or flame-dried glassware under an inert atmosphere of dry N_{2} or Ar. All solvents were anhydrous and purchased from Aldrich or Fluka.

Procedure for the NHC-catalyzed synthesis of $\boldsymbol{\beta}$-aminoesters: $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}(0.2 \mathrm{mmol})$ was added under Ar to a solution of α, β-unsaturated aldehyde (1 mmol), nitrosobenzene (1.1 $\mathrm{mmol})$ and the catalyst ($0.1-0.2 \mathrm{mmol}$) in dichloromethane (2 mL). The reaction mixture was stirred at room temperature for $1-6 \mathrm{~h}$. The solvent was removed under vacuum, and the residue was diluted with methanol (3 mL), followed by the addition of perchloric acid (3-5 drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous NaHCO_{3} (10 $\mathrm{mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

Methyl 3-(4-methoxyphenylamino)-3-phenylpropanoate (9a): Potassium tertbutoxide ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of (E)-cinnamaldehyde ($132 \mathrm{mg}, 1$ mmol), nitrosobenzene ($117 \mathrm{mg}, 1.1 \mathrm{mmol}$) and the catalyst ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (2 mL). The reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum, and the residue was diluted with methanol (3 mL), followed by the addition of perchloric acid ($3-5$ drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.71\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.4 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.56\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 4.77(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NH), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.84\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.7(\mathrm{Cq}, \mathrm{CO}), 152.6,142.0,140.3(\mathrm{Cq}), 128.8,127.5,126.4(\mathrm{C}-\mathrm{Ar}), 115.6$, $114.7(\mathrm{C}-\mathrm{Ar}), 56.2,55.7\left(\mathrm{OCH}_{3}\right), 51.9(\mathrm{CH}), 42.5\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{ESI}): m / z 285\left(\mathrm{M}^{+}\right), 212,122$.

Methyl 3-(4-methoxyphenylamino)-3-(4-nitrophenyl)propanoate (9b): Potassium tert-butoxide ($11.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added to a solution of (E)-4-nitrocinnamaldehyde ($177 \mathrm{mg}, 1 \mathrm{mmol}$), nitrosobenzene ($117 \mathrm{mg}, 1.1 \mathrm{mmol}$) and the catalyst ($42.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) in dichloromethane (2 mL). The reaction mixture was stirred at room temperature for 3 h . The solvent was removed under vacuum, and the residue was diluted with methanol (3 mL), followed by the addition of perchloric acid ($3-5$ drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then by brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure
product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.18\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.57\left(\mathrm{AB}, \mathrm{d}, J_{A B}\right.$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.70\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.48\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, Ar-H), 4.87 (br t, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.30 (br s, 1H, NH), 3.70 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), 2.83 (dd, $J=2.0,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.1(\mathrm{Cq}, \mathrm{CO})$, 152.7, 150.2, 147.3, 140.1 (Cq), 127.4, 124.1 (C-Ar), 115.2, 114.8 (C-Ar), 55.6, 55.3 $\left(\mathrm{OCH}_{3}\right), 52.1(\mathrm{CH}), 42.1\left(\mathrm{CH}_{2}\right)$. MS (ESI): $m / z 330\left(\mathrm{M}^{+}\right), 257,211,122,108$.

Methyl 3-(4-methoxyphenylamino)-3-(2-nitrophenyl)propanoate (9c): Potassium tert-butoxide ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of (E)-2-nitrocinnamaldehyde ($177 \mathrm{mg}, 1 \mathrm{mmol}$), nitrosobenzene ($117 \mathrm{mg}, 1.1 \mathrm{mmol}$) and the catalyst ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (2 mL). The reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum, and the residue was diluted with methanol (3 mL), followed by the addition of perchloric acid ($3-5$ drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97$ (dd, $J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.73 (dd, $J=1.2$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.56(\mathrm{dt}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.41(\mathrm{dt}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $6.68\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.45\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 5.40(\mathrm{dd}, J=4.3$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.30 (br s, 1H, NH), 3.69 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.67 (s, 3H, OCH_{3}), 3.04 (dd, $J=$
$4.3,15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.81\left(\mathrm{dd}, J=7.9,15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 171.4 (Cq, CO), 152.6, 148.9, 140.0, 137.7 (Cq), 133.6, 128.6, 128.4, 125.0 (C-Ar), 116.4, 114.8 (C-Ar), 55.6, $52.0\left(\mathrm{OCH}_{3}\right), 51.4(\mathrm{CH}), 41.2\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{ESI}): m / z 330\left(\mathrm{M}^{+}\right), 296,257$, 237, 122, 108.

Methyl 3-(2-methoxyphenylamino)-3-(2-nitrophenyl)propanoate (9c'):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98$ (dd, $J=1.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.69 (dd, $J=1.1,8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.54 (dt, $J=1.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.40 (dt, $J=1.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.77$ (dd, $J=1.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.67 (dq, $J=2.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.25$ (dd, $J=1.9,7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.53 (br dd, $J=4.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 5.39 (br d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 3.90 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.08\left(\mathrm{dd}, J=4.3,15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.86(\mathrm{dd}, J=7.9$, $15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.1(\mathrm{Cq}, \mathrm{CO}), 148.8,146.9,137.8$, 135.7 (Cq), 133.7, 128.4, 128.3, 125.0, 121.1, 117.5, 110.8, 109.6 (C-Ar), 55.6, $52.0\left(\mathrm{OCH}_{3}\right)$, $50.3(\mathrm{CH}), 41.5\left(\mathrm{CH}_{2}\right)$. MS (ESI): $m / z 330\left(\mathrm{M}^{+}\right), 257,207,123,108$.

4-(2-(methoxycarbonyl)-1-(4-methoxyphenylamino)ethyl)-2-bromophenyl

trifluoro-methanesulfonate (9d): Potassium tert-butoxide ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of (E)-3-bromo-4-trifluoromethylsulfonyloxycinnamaldehyde ($357 \mathrm{mg}, 1$ mmol), nitrosobenzene ($117 \mathrm{mg}, 1.1 \mathrm{mmol}$) and the catalyst ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum, and the residue was diluted with methanol (3 mL), followed by the addition of perchloric acid ($3-5$ drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.42(\mathrm{dd}, J=2.2,8.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.73\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.48$ $\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 4.74(\mathrm{dd}, J=6.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$, $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.78\left(\mathrm{ddd}, J=3.9,6.2,6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.1(\mathrm{Cq}, \mathrm{CO}), 164.6(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 162.1(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 152.6$, $151.6,147.1(\mathrm{~d}, J=15.4 \mathrm{~Hz}), 140.3,115.1,114.8,109.2(\mathrm{~d}, J=25.4 \mathrm{~Hz}), 102.9(\mathrm{t}, J=25.4$ $\mathrm{Hz})$, 55.7, $55.3\left(\mathrm{OCH}_{3}\right), 52.0(\mathrm{CH}), 42.3\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{ESI}): m / z 513\left(\mathrm{M}^{+}\right), 440,305,122$.

Methyl 4-(2-methoxycarbonyl)-1-(4-methoxyphenylamino)ethyl)benzoate (9e): Potassium tert-butoxide ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of (E)-4methoxycarbonylcinnamaldehyde ($190 \mathrm{mg}, 1 \mathrm{mmol}$), nitrosobenzene ($117 \mathrm{mg}, 1.1 \mathrm{mmol}$) and the catalyst ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (2 mL). The reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum, and the residue was diluted with methanol (3 mL), followed by the addition of perchloric acid ($3-5$ drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.00\left(\mathrm{AB}, J_{A B}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.45\left(\mathrm{AB}, J_{A B}=\right.$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.69\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.50\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\right.$ H), 4.81 (brt, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.80\left(\mathrm{dd}, J=1.5,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.4$,
166.8 (Cq, CO), 152.5, 147.8, 140.5, 129.4 (Cq), 130.1, 126.4, 115.2, 114.8 (C-Ar), 55.7, 55.6, 52.1, $52.0\left(\mathrm{OCH}_{3}, \mathrm{CH}\right), 42.3\left(\mathrm{CH}_{2}\right)$. MS (ESI): m/z $343\left(\mathrm{M}^{+}\right), 270,122,108$.

Methyl 6-(2-methoxycarbonyl)-1-(4-methoxyphenylamino)ethyl)naphthalene-2-

 carboxylate (9f): Potassium tert-butoxide ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of methyl (E)-6-(2-formylvinyl)naphthalene-2-carboxylate (240 mg , 1 mmol), nitrosobenzene ($117 \mathrm{mg}, 1 \mathrm{mmol}$) and the catalyst ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (2 mL). The reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum, and the residue was diluted with methanol (3 mL), followed by the addition of perchloric acid (3-5 drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.05(\mathrm{dd}, J=1.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H), 7.93 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.57$ (dd, $J=1.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.69\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.57\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.4\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.94(\mathrm{dd}, J=5.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.84\left(\mathrm{dd}, J=3.0,5.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.5,167.2(\mathrm{Cq}, \mathrm{CO}), 152.4,142.7,140.7,135.6,132.0(\mathrm{Cq}), 130.8,130.1$, 128.2 (C-Ar), 127.3 (Cq), 125.6, 125.2, 125.0 (C-Ar), 115.2, 114.8 (C-Ar), 56.0, 55.7, 52.0 $\left(\mathrm{OCH}_{3}\right), 52.3(\mathrm{CH}), 42.5\left(\mathrm{CH}_{2}\right)$.

Methyl 3-(4-methoxyphenylamino)-3-(4-cyanophenyl)propanoate (9g): Potassium tert-butoxide ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of (E)-4-cyanocinnamaldehyde $(157 \mathrm{mg}, 1 \mathrm{mmol})$, nitrosobenzene ($117 \mathrm{mg}, 1.1 \mathrm{mmol}$) and the catalyst ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in
dichloromethane (2 mL). The reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum, and the residue was diluted with methanol (3 mL), followed by the addition of perchloric acid ($3-5$ drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.51\left(\mathrm{AB}, \mathrm{d}, J_{A B}\right.$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.71\left(\mathrm{AB}, \mathrm{d}, J_{A B}=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.47\left(\mathrm{AB}, \mathrm{d}, J_{A B}=9.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, Ar-H), 4.80 (dd, $J=4.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.38 (br s, $1 \mathrm{H}, \mathrm{NH}$), 3.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.67 (s , $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.81 (ddd, $\left.J=2.7,4.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.1$ (Cq, CO), 152.7, 148.1, 140.1 (Cq), 132.7, 127.2 (C-Ar), 118.7 (Cq), 111.4 (Cq, CN), 115.2, $114.8(\mathrm{C}-\mathrm{Ar}), 55.7,55.5\left(\mathrm{OCH}_{3}\right), 52.1(\mathrm{CH}), 42.1\left(\mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{ESI}): m / z 310\left(\mathrm{M}^{+}\right), 237,122$.

Methyl 3-(4-methoxyphenylamino)-3-(4-trifluoromethyl)phenyl)propanoate (9h):
Potassium tert-butoxide ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of (E)-4trifluoromethylcinnamaldehyde ($200 \mathrm{mg}, 1 \mathrm{mmol}$), nitrosobenzene ($117 \mathrm{mg}, 1.1 \mathrm{mmol}$) and the catalyst ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (2 mL). The reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum, and the residue was diluted with methanol (2 mL), followed by the addition of perchloric acid ($3-5$ drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59\left(\mathrm{AB}, J_{A B}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.51\left(\mathrm{AB}, J_{A B}=\right.$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.72\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.51\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\right.$ H), 4.81 (dd, $J=3.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.71$ (s, 3H, CH3$), 3.68(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 2.82 (ddd, $J=1.7,3.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.3(\mathrm{Cq}$, CO), 152.6, 146.6, $140.4(\mathrm{Cq}), 129.7(\mathrm{q}, ~ J=32.0 \mathrm{~Hz}, \mathrm{Cq}$), 126.7 (C-Ar), 125.8 ($\mathrm{q}, ~ J=3.8$ $\mathrm{Hz}, \mathrm{C}-\mathrm{Ar}), 125.6\left(\mathrm{q}, J_{C F}=270.4 \mathrm{~Hz}, \mathrm{Cq}, \mathrm{CF}_{3}\right), 115.2,114.8(\mathrm{C}-\mathrm{Ar}), 55.6,55.5\left(\mathrm{OCH}_{3}\right), 52.0$ $(\mathrm{CH}), 42.4\left(\mathrm{CH}_{2}\right)$. MS (ESI): m/z $353\left(\mathrm{M}^{+}\right), 280,122,108$.

Methyl 3-(4-methoxyphenylamino)-3-(perfluorophenyl)propanoate (9i): Potassium tert-butoxide ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of (E)pentafluorocinnamaldehyde ($222 \mathrm{mg}, 1 \mathrm{mmol}$), nitrosobenzene ($117 \mathrm{mg}, 1.1 \mathrm{mmol}$) and the catalyst ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (2 mL). The reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum, and the residue was diluted with methanol (2 mL), followed by the addition of perchloric acid ($3-5$ drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.75\left(\mathrm{AB}, \mathrm{d}, J_{A B}=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.64\left(\mathrm{AB}, \mathrm{d}, J_{A B}\right.$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.32(\mathrm{brt}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.72(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.09\left(\mathrm{dd}, J=7.5,15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.93(\mathrm{dd}, J=7.5,15.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4(\mathrm{Cq}, \mathrm{CO}), 153.4,146.2(\mathrm{~m}), 143.8(\mathrm{~m})$,
141.7 (m), 138.8 (m), $136.3(\mathrm{~m}), 139.4(\mathrm{Cq}), 115.6,114.9(\mathrm{C}-\mathrm{Ar}), 55.5,52.1\left(\mathrm{OCH}_{3}\right), 47.3$ $(\mathrm{CH}), 39.7\left(\mathrm{CH}_{2}\right)$. MS (ESI): $m / z 375\left(\mathrm{M}^{+}\right), 302,122$.

Methyl 3-(4-methoxyphenylamino)-3-(3,5-difluorophenyl)propanoate (9j): Potassium tert-butoxide ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of (E)-3,5difluorocinnamaldehyde ($168 \mathrm{mg}, 1 \mathrm{mmol}$), nitrosobenzene ($117 \mathrm{mg}, 1.1 \mathrm{mmol}$) and the catalyst ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (2 mL). The reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum, and the residue was diluted with methanol (2 mL), followed by the addition of perchloric acid ($3-5$ drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.93(\mathrm{dd}, J=2.2,8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.73\left(\mathrm{AB}, \mathrm{d}, J_{A B}\right.$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.70-6.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.51\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 4.72$ (dd, $J=5.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $4.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.78 (ddd, $J=5.6,5.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.0(\mathrm{Cq}, \mathrm{CO})$, $152.8,146.0,144.7,140.0(\mathrm{Cq}), 132.2,127.0,123.1,115.2,114.9(\mathrm{CH}), 55.7,54.8\left(\mathrm{OCH}_{3}\right)$, $52.1(\mathrm{CH}), 42.3\left(\mathrm{CH}_{2}\right)$. MS (ESI): m/z $321\left(\mathrm{M}^{+}\right), 248,122$.

1-Ethyl 4-methyl 2-(4-methoxyphenylamino)succinate (9k): Potassium tertbutoxide ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of (E)-ethyl 3-formylacrylate (128 mg , 1 mmol), nitrosobenzene ($117 \mathrm{mg}, 1.1 \mathrm{mmol}$) and the catalyst ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum, and the residue was diluted with methanol (2 mL),
followed by the addition of perchloric acid ($3-5$ drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.78\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.67\left(\mathrm{AB}, \mathrm{d}, J_{A B}\right.$ $=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.36(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.20\left(\mathrm{dq}, J=2.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.75$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.85\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 1.85(\mathrm{t}, J$ $\left.=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.5,171.1(\mathrm{Cq}, \mathrm{CO}), 153.2,140.1$ $(\mathrm{Cq}), 115.9,114.8(\mathrm{C}-\mathrm{Ar}), 61.6\left(\mathrm{OCH}_{2}\right), 55.7,54.9\left(\mathrm{OCH}_{3}\right), 52.0(\mathrm{CH}), 37.4\left(\mathrm{CH}_{2}\right), 14.1$ $\left(\mathrm{CH}_{3}\right) . \mathrm{MS}(\mathrm{ESI}): m / z 281\left(\mathrm{M}^{+}\right), 208,148,134$.

Methyl 3-(4-methoxyphenylamino)heptanoate (91): Potassium tert-butoxide (22.4 $\mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of (E)-hept-2-enal ($112 \mathrm{mg}, 1 \mathrm{mmol}$), nitrosobenzene $(117 \mathrm{mg}, 1.1 \mathrm{mmol})$ and the catalyst ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane (2 mL). The reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum and the residue was diluted with methanol (2 mL), followed by the addition of perchloric acid ($3-5$ drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.78\left(\mathrm{AB}, \mathrm{d}, J_{A B}=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.61\left(\mathrm{AB}, \mathrm{d}, J_{A B}\right.$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.71$ (pentet, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.67(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.52\left(\mathrm{ddd}, J=5.6,6.1,15.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.60-1.53(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.47-1.30 (m, 4H, CH2), 0.90 (br t, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 172.6,152.2,141.3(\mathrm{Cq}), 115.1,114.9(\mathrm{C}-\mathrm{Ar}), 55.8,51.6,51.5\left(\mathrm{CH}, \mathrm{OCH}_{3}\right), 39.0$, 34.7, 28.3, $22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$. MS (ESI): m/z $265\left(\mathrm{M}^{+}\right)$, 208, 192, 148, 134.

4-(2-Methoxycarbonyl)-1-(4-methoxyphenylamino)ethyl-2-methoxyphenyl

trifluoromethane sulfonate (12): Potassium tert-butoxide ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to a solution of (E)-3-methoxy-4-trifluoromethylsulfonyloxycinnamaldehyde ($310 \mathrm{mg}, 1 \mathrm{mmol}$), nitrosobenzene ($117 \mathrm{mg}, 1.1 \mathrm{mmol}$) and the catalyst ($85 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dichloromethane $(2 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 6 h . The solvent was removed under vacuum, and the residue was diluted with methanol (2 mL), followed by the addition of perchloric acid (3-5 drops). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo, and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mL} \times 2$). The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10$ mL) and then brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The pure product was obtained through flash silica gel column chromatography of the residue using hexane and ethyl acetate as the eluents.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.09(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.99(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.73\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.51$ $\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 4.73(\mathrm{dd}, J=5.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$, $3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.79(\mathrm{ddd}, J=5.6,5.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.4$ (Cq, CO), 152.6, 151.6, 144.4, 140.5, 137.7, $117.3\left(\mathrm{q}, J_{C F}=270.4 \mathrm{~Hz}, \mathrm{Cq}, \mathrm{CF}_{3}\right), 122.6,117.1,115.2,114.8,111.0,56.2,55.6\left(\mathrm{OCH}_{3}\right)$, $52.0(\mathrm{CH}), 42.5\left(\mathrm{CH}_{2}\right)$. MS (ESI): $m / z 463\left(\mathrm{M}^{+}\right), 390,299,256,122$.

X-Ray Crystal Structure of $\mathbf{1 2}$.

Table 1. Crystal data and structure refinement for 12.

Empirical formula	C19 H20 F3 N O7 S	
Formula weight	463.42	
Temperature	295(2) K	
Wavelength	0.71073 A	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	$\mathrm{a}=6.0822(10) \AA$	$\alpha=69.877(3)^{\circ}$.
	$\mathrm{b}=11.4054(18) \AA$	$\beta=85.336(3)^{\circ}$.
	$\mathrm{c}=16.008(3) \AA$	$\gamma=89.285(3)^{\circ}$.
Volume	1039.1(3) \AA^{3}	
Z	2	
Density (calculated)	$1.481 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.224 \mathrm{~mm}^{-1}$	
F(000)	480	
Crystal size	$0.50 \times 0.44 \times 0.10 \mathrm{~mm}^{3}$	
Theta range for data collection	1.36 to 26.00°	
Index ranges	$-7 \leq \mathrm{h} \leq 7,-14 \leq \mathrm{k} \leq 14,-19 \leq 1 \leq 19$	
Reflections collected	11953	
Independent reflections	$4080[\mathrm{R}(\mathrm{int})=0.0278]$	
Completeness to theta $=26.00^{\circ}$	100.0\%	
Absorption correction	Sadabs, (Sheldrick 2001)	
Max. and min. transmission	0.9779 and 0.8962	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	4080 / 0 / 287	
Goodness-of-fit on F^{2}	1.032	
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0647, \mathrm{wR} 2=0.1704$	
R indices (all data)	$\mathrm{R} 1=0.0918, \mathrm{wR} 2=0.1883$	
Largest diff. peak and hole	0.646 and -0.187e. \AA^{-3}	

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 12. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
S(1)	6343(1)	-2241(1)	4372(1)	69(1)
$\mathrm{O}(1)$	4756(4)	-1131(2)	4282(1)	69(1)
$\mathrm{O}(2)$	8255(4)	-1891(2)	3784(2)	83(1)
$\mathrm{O}(3)$	6413(5)	-2889(2)	5287(2)	104(1)
$\mathrm{O}(4)$	7902(4)	573(2)	4105(1)	71(1)
$\mathrm{O}(5)$	796(3)	4067(2)	1909(2)	76(1)
$\mathrm{O}(6)$	2297(4)	5203(2)	2592(2)	85(1)
$\mathrm{O}(7)$	9341(5)	922(4)	-1499(2)	130(1)
N(1)	7089(4)	3664(2)	752(2)	66(1)
$\mathrm{F}(1)$	4324(5)	-2618(2)	3124(2)	124(1)
$F(2)$	5695(4)	-4238(2)	4016(2)	112(1)
F(3)	2779(4)	-3495(2)	4431(2)	121(1)
C(1)	5051(4)	3428(3)	1322(2)	59(1)
C(2)	4988(4)	2193(2)	2103(2)	51(1)
C(3)	3413(5)	1287(3)	2198(2)	67(1)
C(4)	3374(5)	171(3)	2907(2)	68(1)
C(5)	4900(5)	-27(2)	3515(2)	57(1)
C(6)	6509(4)	867(2)	3451(2)	53(1)
C(7)	6528(4)	1973(2)	2732(2)	51(1)
C(8)	4672(7)	-3202(3)	3953(3)	85(1)
C(9)	9344(6)	1524(3)	4132(2)	79(1)
C(10)	4662(5)	4532(3)	1642(2)	62(1)
C(11)	2384(5)	4553(2)	2060(2)	59(1)
C(12)	151(7)	5344(5)	3008(4)	109(2)
C(13)	7659(5)	2935(3)	223(2)	62(1)
C(14)	6166(5)	2215(3)	-4(2)	73(1)
C(15)	6766(6)	1579(4)	-578(3)	83(1)
C(16)	8887(7)	1613(4)	-928(3)	90(1)
C(17)	10381(6)	2303(5)	-709(3)	97(1)
C(18)	9807(5)	2979(4)	-149(2)	83(1)
$\mathrm{C}(19)$	$11368(8)$	$536(5)$	$-1594(3)$	$109(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1 2 .}$

$\mathrm{S}(1)-\mathrm{O}(3)$	1.398(3)
$\mathrm{S}(1)-\mathrm{O}(2)$	$1.405(2)$
$\mathrm{S}(1)-\mathrm{O}(1)$	$1.556(2)$
$\mathrm{S}(1)-\mathrm{C}(8)$	1.825(4)
$\mathrm{O}(1)-\mathrm{C}(5)$	$1.423(3)$
$\mathrm{O}(4)-\mathrm{C}(6)$	1.349(3)
$\mathrm{O}(4)-\mathrm{C}(9)$	1.417(4)
$\mathrm{O}(5)-\mathrm{C}(11)$	1.201(3)
$\mathrm{O}(6)-\mathrm{C}(11)$	$1.306(4)$
$\mathrm{O}(6)-\mathrm{C}(12)$	1.449(4)
$\mathrm{O}(7)-\mathrm{C}(19)$	$1.319(5)$
$\mathrm{O}(7)-\mathrm{C}(16)$	1.408(5)
$\mathrm{N}(1)-\mathrm{C}(13)$	1.398(4)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.449(4)
$\mathrm{F}(1)-\mathrm{C}(8)$	1.297(4)
$\mathrm{F}(2)-\mathrm{C}(8)$	$1.305(4)$
$\mathrm{F}(3)-\mathrm{C}(8)$	$1.309(5)$
$\mathrm{C}(1)-\mathrm{C}(10)$	1.523(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.526(4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.379(4)
$\mathrm{C}(2)-\mathrm{C}(7)$	1.388(4)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.383(4)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.359(4)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.395(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	1.385(4)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.492(4)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.382(5)$
$\mathrm{C}(13)-\mathrm{C}(18)$	1.385(4)
$\mathrm{C}(14)$ - $\mathrm{C}(15)$	1.379 (5)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.359(5)$
$\mathrm{C}(16)-\mathrm{C}(17)$	1.353(6)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.392(5)$
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{O}(2)$	122.61(18)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{O}(1)$	106.54(16)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(1)$	112.50(13)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(8)$	106.22(18)

$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(8)$	106.56(19)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(8)$	99.86(16)
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{S}(1)$	121.93(18)
$\mathrm{C}(6)-\mathrm{O}(4)-\mathrm{C}(9)$	117.9(2)
$\mathrm{C}(11)-\mathrm{O}(6)-\mathrm{C}(12)$	117.3(3)
$\mathrm{C}(19)-\mathrm{O}(7)-\mathrm{C}(16)$	118.9(3)
$\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{C}(1)$	120.9(3)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	108.0(2)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	114.1(2)
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	111.6(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	119.1(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.0(3)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	119.9(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.5(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.4(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	122.1(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(1)$	119.5(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(1)$	118.2(3)
$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(7)$	126.0(2)
$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)$	116.6(2)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	117.4(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	121.4(2)
$\mathrm{F}(1)-\mathrm{C}(8)-\mathrm{F}(2)$	109.0(4)
$\mathrm{F}(1)-\mathrm{C}(8)-\mathrm{F}(3)$	109.4(4)
$\mathrm{F}(2)-\mathrm{C}(8)-\mathrm{F}(3)$	107.9(3)
$\mathrm{F}(1)-\mathrm{C}(8)-\mathrm{S}(1)$	110.7(3)
$\mathrm{F}(2)-\mathrm{C}(8)-\mathrm{S}(1)$	109.5(3)
$\mathrm{F}(3)-\mathrm{C}(8)-\mathrm{S}(1)$	110.3(3)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(1)$	113.4(2)
$\mathrm{O}(5)-\mathrm{C}(11)-\mathrm{O}(6)$	123.4(3)
$\mathrm{O}(5)-\mathrm{C}(11)-\mathrm{C}(10)$	124.6(3)
$\mathrm{O}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	111.9(2)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	116.6(3)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{N}(1)$	123.9(3)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{N}(1)$	119.4(3)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	122.0(3)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	120.9(4)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	118.1(4)

$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{O}(7)$	$125.3(4)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{O}(7)$	$116.6(4)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$122.1(4)$
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$120.2(4)$

Symmetry transformations used to generate equivalent atoms:
' x, y, z ' ' $-x,-y,-z$ '

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 12. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
S(1)	79(1)	46(1)	73(1)	-6(1)	-15(1)	-4(1)
$\mathrm{O}(1)$	80(1)	44(1)	67(1)	-4(1)	13(1)	-8(1)
$\mathrm{O}(2)$	66(1)	67(1)	106(2)	-19(1)	-1(1)	-1(1)
$\mathrm{O}(3)$	141(2)	71(2)	81(2)	5(1)	-33(2)	-7(2)
$\mathrm{O}(4)$	96(2)	52(1)	62(1)	-9(1)	-23(1)	-9(1)
$\mathrm{O}(5)$	56(1)	74(2)	103(2)	-37(1)	-12(1)	-12(1)
$\mathrm{O}(6)$	69(2)	90(2)	112(2)	-55(2)	-14(1)	-6(1)
$\mathrm{O}(7)$	93(2)	211(4)	130(3)	-112(3)	-24(2)	31(2)
N(1)	51(1)	65(2)	70(2)	-7(1)	-10(1)	-12(1)
$\mathrm{F}(1)$	176(3)	83(2)	116(2)	-28(2)	-62(2)	-14(2)
$\mathrm{F}(2)$	134(2)	58(1)	148(2)	-38(1)	-11(2)	0 (1)
$F(3)$	88(2)	97(2)	174(3)	-45(2)	-1(2)	-27(1)
C(1)	50(2)	48(2)	70(2)	-8(1)	-11(1)	-4(1)
C(2)	43(1)	45(1)	61(2)	-11(1)	-3(1)	-1(1)
C(3)	55(2)	54(2)	84(2)	-10(2)	-18(2)	-8(1)
C(4)	55(2)	44(2)	93(2)	-10(2)	-6(2)	-11(1)
C(5)	63(2)	38(1)	60(2)	-7(1)	7(1)	-4(1)
C(6)	58(2)	46(2)	53(2)	-16(1)	-4(1)	$0(1)$
C(7)	52(2)	43(1)	57(2)	-15(1)	2(1)	-10(1)
C(8)	97(3)	52(2)	101(3)	-16(2)	-20(2)	-8(2)
C(9)	98(3)	68(2)	68(2)	-16(2)	-27(2)	-10(2)
C(10)	51(2)	44(2)	83(2)	-9(1)	-16(1)	-7(1)
C (11)	59(2)	39(1)	74(2)	-11(1)	-20(1)	-3(1)
C(12)	97(3)	114(3)	138(4)	-73(3)	$9(3)$	-9(3)
C(13)	62(2)	60(2)	52(2)	-4(1)	-10(1)	3(1)
C(14)	53(2)	78(2)	77(2)	-14(2)	-3(2)	-2(2)
C(15)	73(2)	91(3)	86(2)	-29(2)	-16(2)	2(2)
C(16)	79(2)	115(3)	81(2)	-38(2)	-23(2)	15(2)
C(17)	66(2)	150(4)	76(2)	-40(3)	-3(2)	16(2)
C(18)	57(2)	107(3)	80(2)	-21(2)	-16(2)	-7(2)
C(19)	121(4)	121(4)	88(3)	-38(3)	-15(3)	24(3)

Table 5. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 12.

	x	y	z	U(eq)
H(1)	3849	3404	956	71
H(3)	2369	1428	1782	80
H(4)	2313	-439	2968	81
H(7)	7594	2582	2669	62
H(9A)	10323	1791	3597	118
H(9B)	10189	1205	4641	118
H (9C)	8497	2219	4174	118
H(10A)	5713	4504	2073	74
H(10B)	4935	5300	1138	74
$\mathrm{H}(12 \mathrm{~A})$	-915	5539	2572	164
H(12B)	221	6006	3247	164
H(12C)	-275	4578	3481	164
H(14)	4711	2159	237	87
H(15)	5707	1121	-728	100
H(17)	11840	2328	-940	116
H(18)	10868	3462	-24	100
H(19A)	12369	1240	-1796	164
H(19B)	11443	119	-2023	164
H(19C)	11768	-32	-1030	164
$\mathrm{H}(1 \mathrm{~N})$	8200(60)	3820(30)	1030(20)	85(11)

Table 6. Hydrogen bonds for $\mathbf{1 2}$ [\AA and ${ }^{\circ}$].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N}) \ldots \mathrm{O}(5) \# 1$	$0.89(4)$	$2.28(4)$	$3.166(4)$	$173(3)$

Symmetry transformations used to generate equivalent atoms:
\#1 x+1,y,z

Procedure for the ${ }^{\mathbf{1}} \mathbf{H}$ NMR experiments: The base (0.10 mmol) was added under argon to a solution of α, β-unsaturated aldehyde (0.10 mmol), nitrosobenzene (0.11 mmol) and the catalyst $(0.02 \mathrm{mmol})$ in the corresponding deuterated solvent $(1 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for $1-3 \mathrm{~h}$. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded directly.

2,3-Diphenylisoxazolidin-5-one (3a):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.00(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.77(\mathrm{dd}, J=7.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}$, CH), 3.13 (ddd, $J=7.6,17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.94\left(\mathrm{dd}, J=9.6,17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$). MS (ESI): $\mathrm{m} / \mathrm{z} 239\left(\mathrm{M}^{+}\right), 196,131,120,104$.

3-(4-Nitrophenyl)-2-phenylisoxazolidin-5-one (3b):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.24\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.62\left(\mathrm{AB}, \mathrm{d}, J_{A B}=8.8\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.19-7.05(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.98-6.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.14(\mathrm{dt}, J=2.5,6.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}$), 3.12 (dd, $J=6.0,12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.81 (dd, $J=6.0,12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.8(\mathrm{Cq}, \mathrm{CO}), 149.3,144.9,135.2(\mathrm{Cq}), 126.6,124.3,124.2$, 122.8, 120.7 (C-Ar), $62.5(\mathrm{CH}), 38.8\left(\mathrm{CH}_{2}\right)$. MS (ESI): m/z 240, 225, 179, 118, 77.

Degradation of Methyl 3-(4-methoxyphenylamino)-3-(4-nitrophenyl)propanoate

 (3b): The isoxazolidinone $\mathbf{3 b}$ obtained by the reaction of 4-nitro cinnamaldehyde with nitrosobenzene over NHC was subjected to chromatographic purification. Upon silica gel column chromatography using hexane and ethyl acetate as the eluents, the products imine DP-1 and DP-2 obtained were characterized by NMR and mass spectroscopy.

3-(2-Nitrophenyl)-2-phenylisoxazolidin-5-one (3c):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00-6.90(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.54(\mathrm{dd}, J=5.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $3.49\left(\mathrm{dd}, J=8.7,17.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.68\left(\mathrm{dd}, J=5.8,17.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) . \mathrm{m} / \mathrm{z} 284\left(\mathrm{M}^{+}\right)$, 266, 249, 224, 176, 130, 120, 108, 91, 79.

2-Methoxy-4-(5-oxo-2-phenylisoxazolidin-3-yl)phenyl trifluoromethanesulfonate

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.00(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.84(\mathrm{dd}, J=8.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.20\left(\mathrm{dd}, J=8.0,17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.92(\mathrm{dd}, J=8.9,17.3 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}). $\mathrm{m} / \mathrm{z} 373$, 358, 240, 225, 118.

2-Bromo-4-(5-oxo-2-phenylisoxazolidin-3-yl)phenyl trifluoromethanesulfonate (3d)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80-7.07(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.15(\mathrm{dd}, J=7.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 3.32 (dd, $J=8.1,17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.04 (dd, $J=7.5,17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$). MS (ESI): m / z 423, 409, 273, 209, 181, 118, 77.

Methyl 4-(5-oxo-2-phenylisoxazolidin-3-yl)benzoate (3e):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00-6.93(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.84(\mathrm{dd}, J=7.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.16\left(\mathrm{dd}, J=7.9,17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.91(\mathrm{dd}, J=9.3,17.3 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}). MS (ESI): $m / z 253,238,118,77$.

Methyl 6-(5-oxo-2-phenylisoxazolidin-3-yl)naphthalene-2-carboxylate (3f):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.60$ (s, 1H, Ar-H), 8.10-7.32 (m, 5H, Ar-H), 7.29-7.22 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.18(\mathrm{dd}, J=7.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.33\left(\mathrm{dd}, J=7.9,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.13\left(\mathrm{dd}, J=9.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$.

4-(5-oxo-2-phenylisoxazolidin-3-yl)benzonitrile (3g):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74-6.87$ (m, 9H, Ar-H), 4.86 (br t, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 3.20 (dd, $J=8.2,17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.87 (dd, $J=8.2,17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$). MS (ESI): m / z 220, 205, 118, 77.

3-(4-(Trifluoromethyl)phenyl)-2-phenylisoxazolidin-5-one (3h):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59-7.00(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.87(\mathrm{dd}, J=8.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 3.19 (dd, $J=8.1,17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.90\left(\mathrm{dd}, J=9.0,17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$). MS (ESI): $m / z 307$ $\left(\mathrm{M}^{+}\right), 264,199,120,109$.

3-(Perfluorophenyl)-2-phenylisoxazolidin-5-one (3i):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.25(\mathrm{dd}, J=6.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 3.23 (dd, $J=9.0,17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.11 (dd, $J=6.7,17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$). MS (ESI): $m / z 329$ $\left(\mathrm{M}^{+}\right), 287,221,120$.

3-(3,5-Difluorophenyl)-2-phenylisoxazolidin-5-one (3j):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-6.81(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.29$ (dd, $J=8.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.01 (dd, $J=8.0,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$). MS (ESI): $m / z 275$ $\left(\mathrm{M}^{+}\right), 232,167,120,109$.

Ethyl 5-oxo-2-phenylisoxazolidine-3-carboxylate (3k):

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.00(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.62(\mathrm{dd}, J=4.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $4.26\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.11\left(\mathrm{ddd}, J=4.9,7.5,17.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.29(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). MS (ESI): m/z $235\left(\mathrm{M}^{+}\right), 207,162,134,120,99$.

Proposed mechanism for the acid-catalyzed conversion of N -phenylisoxazolidi-5ones to N-PMP protected β-amino acid esters:

Chiral catalyst synthesis:

A mixture of valinol S2 ($5 \mathrm{~g}, 48.5 \mathrm{mmol}$) and glycolic acid $\mathrm{S} 1(4.05 \mathrm{~g}, 53.3 \mathrm{mmol})$ in chlorobenzene (500 mL) was subjected to Dean-Stark condition for 18 h at $160{ }^{\circ} \mathrm{C}$. The solvent was evaporated and the residue was distilled using Kugelruhr $\left(120{ }^{\circ} \mathrm{C}, 1 \mathrm{mmHg}\right)$ to give the alcohol $\mathrm{S3}$ as white crystal in 70% yield (4.9 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of S3: $\delta 4.36\left(\mathrm{dd}, J=8.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25\left(\mathrm{br} \mathrm{d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.07(\mathrm{t}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$), $3.93\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, \mathrm{CH}\right), 3.17$ (br s, 1H, OH), 1.76 (octet, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 0.99 (d, J $\left.=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.90\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3$ $(\mathrm{Cq}), 71.4,70.9\left(\mathrm{CH}_{2}\right), 57.0,32.4(\mathrm{CH}), 18.8,18.0\left(\mathrm{CH}_{3}\right)$. The alcohol S3 (2 g, 14 mmol$)$ in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was slowly added to a stirred dichloromethane (150 mL) solution of dimethyl sulfoxide ($1.64 \mathrm{~g}, 21 \mathrm{mmol}$) and oxalyl chloride ($2.7 \mathrm{~g}, 21 \mathrm{mmol}$) at $-60^{\circ} \mathrm{C}$. After 30 min , triethylamine ($4.24 \mathrm{~g}, 42 \mathrm{mmol}$) was slowly added at the same temperature. The reaction mixture was warmed within the next 30 min , quenched with water and extracted with dichloromethane (3 times). The combined extracts were washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Without further purification, the aldehyde thus obtained was subjected to imination with 2,6 -diisopropylaniline ($2.7 \mathrm{~g}, 15.4 \mathrm{mmol}$). After refluxing in toluene for 24 h , the solvent was evaporated in vacuo from the reaction mixture. The rest of the volatile substance was removed using kugelruhr $\left(140{ }^{\circ} \mathrm{C}, 1 \mathrm{mmHg}\right)$ to give the required imine residue $\mathrm{S} 4 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of S4: $\delta 7.85(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.18-7.14(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.54(\mathrm{dd}, J=$ 7.9, $9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 4.25-4.15 (m, 2H, CH $\left.2, \mathrm{CH}\right), 2.88$ (heptet, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$), 1.91 (octet, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $1.17\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.16\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $1.08\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.98\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. The residual imine was pure enough (95%) for the cyclization under Glorius condition. ${ }^{\text {S1 }}$
(S1) Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. Chem. Commun. 2002, 2704.

Jะ-: 62-24-31

PKP-Hept

HPLC analysis using CHIRALCEL OD-RH column (45:55 $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$).

