Hydrogen Bonded Aryl Amide Macrocycles: Synthesis, Single Crystal Structures and Stacking Interactions with Fullerenes and Coronene

Yuan-Yuan Zhu, Chuang Li, Guang-Yu Li, Xi-Kui Jiang, Zhan-Ting Li*

State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Supporting Information

General methods
Figure 1S. Absorption spectral changes of 1 with the addition of C_{60} S3
Figure 2S. Absorption spectral changes of 1 with the addition of C_{70} S3
Figure 3S. Absorption spectral changes of 3 with the addition of C_{60} S3
Figure 4S. Fluorescent spectra of coronene with the addition of 1S4
Figure 5S. Fluorescent spectra of coronene with the addition of 2cS4
Figure 6S. Fluorescent spectra of coronene with the addition of 3S4
Figure 7S. Fluorescent spectra of coronene with the addition of 4S4
Figure 8S. Simulated diffusion decay curves of (a) 1, (b) $1 + C_{60}$ and (c) $1 + C_{70}$ in CDCl ₃ -
CS ₂ (v/v 1:1)S5
¹ H NMR spectra of compounds 1 , 2a , 2b , 2c , 3 , 4 , 11 , 12 , 13 , 15 , 16 , and 17 S6-S11

General methods. All reactions were carried out under a dry nitrogen atmosphere. All solvents were dried before use following standard procedures. Unless otherwise indicated, all starting materials were obtained from commercial suppliers and were used without further purification. Analytical thin-layer chromatography (TLC) was performed on 0.2 mm silica coated on glass plates with FB254B indicator. The ¹H NMR spectra were recorded on 500, or 300 MHz spectrometers in the indicated solvents. Chemical shifts are expressed in parts per million (δ) using residual solvent protons as internal standard (chloroform: δ 7.26 ppm; DMSO: δ 2.50 ppm). The ¹³C NMR spectra were recorded on 300 MHz spectrometer in the indicated solvents. Chemical shifts are expressed in parts per million using CDCl₃ as internal standard (chloroform: δ 77.0 ppm). The ¹⁹F NMR spectra were recorded on 300 MHz spectrometer in the indicated solvents. Chemical shifts are expressed in parts per million using CPCl₃ as external standard (CFCl₃: δ 0 ppm). Elemental analysis was carried out at the SIOC analytical center.

Figure 1S. Absorption spectral changes of **1** $(2 \times 10^{-5} \text{ M})$ with the addition of C₆₀ $(0 - 4.0 \times 10^{-5} \text{ M})$ in the mixture of chloroform and toluene (v/v = 1 : 1) at 25 °C. The absorbance of C₆₀ has been subtracted for all the spectra.

Figure 2S. Absorption spectral changes of **1** (2×10^{-5} M) with the addition of C₇₀ ($0 - 4 \times 10^{-5}$ M) in the mixture of chloroform and toluene (v/v = 1 : 1) at 25 °C. The absorbance of C₆₀ has been subtracted for all the spectra.

Figure 3S. Absorption spectral changes of **3** (2×10^{-5} M) with the addition of C₆₀ ($0 - 3 \times 10^{-5}$ M) in chloroform at 25 °C. The absorbance of C₆₀ has been subtracted for all the spectra.

Figure 4S. Fluorescent spectra of coronene $(5 \times 10^{-5} \text{ M})$ with the addition of **1** (0 to 2×10^{-4} M) in chloroform at 25 °C (excitation wavelength = 340 nm).

Figure 5S. Fluorescent spectra of coronene $(5 \times 10^{-5} \text{ M})$ with the addition of **2c** (0 to $4.5 \times 10^{-4} \text{ M}$) in chloroform at 25 °C (excitation wavelength = 340 nm).

Figure 6S. Fluorescent spectra of coronene $(5 \times 10^{-5} \text{ M})$ with the addition of **3** (0 to 4.5×10^{-4} M) in chloroform at 25 °C (excitation wavelength = 340 nm).

Figure 7S. Fluorescent spectra of coronene ($(5 \times 10^{-5} \text{ M})$ with the addition of **4** (0 to $1.2 \times 10^{-4} \text{ M}$) in chloroform at 25 °C (excitation wavelength = 340 nm).

Figure 8S. Simulated diffusion decay curves by varying the gradient strength from 2 to 95% in 16 steps for the diffusion constant of the amide proton of (a) **1** (5 mM), (b) **1** + C₆₀ (1:1, 5 mM) and (c) **1** + C₇₀ (1:1, 5 mM) in CDCl₃-CS₂ (v/v 1:1).

S11