## **Supporting Information**

## An organic/Si nanowire hybrid field configurable transistor

By Q. Lai et al.

Contents

- A. Closed-loop feedback circuit for targeted configuration
- B. Characteristics of a Si field effect transistor as control

## A. Closed-loop feedback circuit for targeted configuration

In order to precisely program a FCT to an arbitrary targeted value, we designed an analog circuit with a closed-loop feedback mechanism. As shown in Supplementary Figure 1, the circuit consists of four submodules: (I) Current sampling and filtering, (II) Comparison and arbitration, (III) Oscillation and pulse generation, (IV) Amplitude adjustment and feedback. In submodule I, the DC component of the source-drain current Id of the FCT (marked by the red circle in Supplementary Figure 1) was sampled continuously and converted to a voltage signal V<sub>1</sub> by an integrator composed of an operational amplifier (op-amp), A<sub>0</sub>, two resistors, R<sub>0</sub>, R<sub>1</sub>, and a capacitor, C<sub>0</sub>, while the high-frequency noise and transients were filtered by the capacitor C<sub>1</sub>. In submodule II, the voltage signal V<sub>1</sub> was compared with a reference voltage, V<sub>Ref</sub>, which defined the targeted current, I<sub>Ref</sub>. Because of the "virtual short circuit" effect of the op-amp, A1, the voltage difference, VRef - V1, was converted back to a current  $I_1 \!=\! \left(V_{Ref} - V_1\right) \! / \, R$  , where  $R_3 \!= R_4 \!= R.$  The op-amp,  $A_1$  and the capacitor  $C_2$  served as an integrator that generated a voltage  $V_2(t)=V_2(0)+(V_{Ref}-V_1)t/C_2R$ . Submodule III was basically a sawtooth oscillator. When V2 was higher (or lower) than the two reference voltages V<sub>high</sub> and V<sub>low</sub> provided by the resistors R<sub>6</sub>, R<sub>7</sub>, and R<sub>8</sub> in series, the transistor P<sub>0</sub> (or N<sub>0</sub>) was turned on, and a positive (or negative) pulse V<sub>3</sub> was generated, which recharged capacitor  $C_2$  with the opposite polarity and switched  $P_0$  (or  $N_0$ ) back to the off state. I<sub>1</sub> was integrated by C<sub>2</sub> again, thus generating the sawtooth waveform V<sub>2</sub> and a positive (or negative) pulse V<sub>3</sub>. By adjusting the feedback resistor R<sub>2</sub>, the pulse duration was tuned to an optimal value. In submodule IV, the positive (or negative) pulse V<sub>3</sub> generated in submodule III was inverted and amplified to V<sub>C</sub> with a rail-to-rail amplitude and applied to the FCT gate to

configure the FCT.

This circuit enabled the reading, comparison, and configuration processes to occur continuously. If I<sub>d</sub> was higher (or lower) than I<sub>Ref</sub>, negative (or positive) configuration voltage pulses, V<sub>g</sub>, were applied to the FCT gate to decrease (or increase) I<sub>d</sub>, while filtering out the high-frequency current transients. The frequency of pulses was proportional to  $|I_{Ref} - I_d|$ , so at the beginning of a configuration cycle, I<sub>d</sub> was quickly programmed toward the targeted I<sub>Ref</sub>,; the rate gradually decreased as I<sub>d</sub> approached I<sub>Ref</sub>. When I<sub>d</sub> reached I<sub>Ref</sub>, the configuration pulses were halted.



**Supplementary Figure 1.** The closed-loop circuit used for the targeted configuration of a field configurable transistor.

## B. Characteristics of a Si field effect transistor as control

Conventional Si field effect transistors (FETs) (without the RbAg<sub>4</sub>I<sub>5</sub>/MEH-PPV bilayer in the FCT gate shown in Figure. 1a in the paper) were tested as control devices for comparison with the FCT. These FETs had a simple Al/Ti/ SiO<sub>2</sub>/p-Si gate structure and were fabricated by using the same process as described for the FCT in the paper except the steps to integrate the RbAg<sub>4</sub>I<sub>5</sub>/MEH-PPV bilayer were omitted. A typical source-drain current (I<sub>d</sub>) of an FET measured at a source-drain voltage  $V_d = 1$  V is shown in Supplementary Figure 2 as a function of gate-source voltage (V<sub>g</sub>). No hysteresis loop was observed in the I<sub>d</sub>-V<sub>g</sub> curve. The threshold voltage of the FET is  $V_T \approx 1.0$  V.



Supplementary Figure 2. The source-drain current  $I_d$  as a function of the gate-source voltage  $V_g$  measured in a Si field effect transistor as a control device. The intercept of the dashed straight line tangent to the  $I_d - V_g$  curve with the  $V_g$  axis determined the transistor threshold voltage to be  $V_T \approx 1.0$  V.