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Sl Figure 1. Proton NMR spectrum of (L"),;Ni 5 in dg-toluene at —60 °C.



Sl Figure 2. Thermal ellipsoid representation (50 Sl Figure 3. Thermal ellipsoid representation (50
%) of the neutral manganese complex 2 (two %) of the neutral iron complex 3 (two
independent molecules). Hydrogen atoms have independent molecules). Hydrogen atoms have

been omitted. been omitted.
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S| Figure 4. Thermal elli ESOid representation (50 S| Figure 5. Thermal ellipsoid representation (50

%) of the neutral cobalt complex 4 (two o :
independent molecules). Hydrogen atoms have aﬁ)())rr?shil\?e Ezlelgagm?tlgfl complex 5. Hydrogen

been omitted.
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SI Figure 6. Estimation of Error in g Values Obtained from Modeling of Magnetic Data

The modeling of the magnetic susceptibility data was performed using the program julX
(Eckhard Bill, Max Planck Institute, Miilheim, Germany, December 2005). Parameters such as ¢ values
were optimized using a SIMPLEX procedure. The “error” in the g-value is not explicitly determined but
can be estimated as + 0.03 to + 0.05 (depending on the quality of the data). For example, the magnetic
data for the manganese complex 2 was well-fitted with g = 1.98 (a). Below are additional simulations
wherein the g values are forcibly changed to (b) 1.95 and (c) 2.01. These latter simulations are worse
fits in that fewer data points are touched by the fitted lines.

Another method to estimate the “error” in g values obtained from simulations of magnetic
susceptibility data is to compare the g value obtained from EPR spectroscopy (when available, and
independently simulated) due to the higher accuracy of the latter method. In this paper, we have done
this comparison for (1) (L),Co and (2) [(L):Ni]"/[(L),Ni(THF)]" (See SI Figures 7 and 13,
respectively). For both of these complexes, the g values obtained from modeling of the magnetic
measurements and EPR spectroscopy were within 0.05.

(a) g = 1.98 (reported value)
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SI Figure 7. X-band EPR spectrum (dX"”/dB) of Co 4 in toluene glass (1.0 mM, 11.0 K, frequency =
9.45 GHz, modulation = 16.0 G, power = 502 x¢W). The spectrum was simulated by adopting the
following values: g = (2.05, 1.91, 3.53); line-widths, /feq = 100 G, /g = (140, 37, 26) G, and line-
width strain ¢ = (0, 0, 10) G; magnetic hyperfine coupling constants, A(59C0, I =7/2) = (25, 30, 140) x

10* em™'. Using the formula, g we = VM , Jave 1s calculated to be 2.60. This is in good agreement

with the gis, value of 2.65 obtained from the magnetic susceptibility measurement of 4. The features
from 320 to 360 mT were ill-fitted due to “smearing” in the experimental data resulting from
intermolecular interactions.



Sl Figure 8. Thermal ellipsoid representation Sl Figure 9. Thermal ellipsoid representation

(50 %) of the cationic Cr complex 1°**THF. (50 %) of the cationic Co complex 4°*THF.
Hydrogen atoms and the B(Arg)s counteranion Hydrogen atoms and the B(Arg)s counteranion
have been omitted. have been omitted.
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Sl Figure 10. Thermal ellipsoid representation
(50 %) of the cationic Ni complex 5%*THF.
Hydrogen atoms and the B(Arg)s counteranion
have been omitted.
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SI Figure 11. Thermal ellipsoid representation
(50 %) of the cationic Zn complex 6°*THF.
Hydrogen atoms and the B(Arg)s counteranion
have been omitted.
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Sl Figure 13. X-band EPR spectrum (dX"/dB) of Ni 5%THF in frozen THF (1.0 mM, 10.0 K,
frequency = 9.45 GHz, modulation = 10.0 G, power = 252 x4W). The spectrum is a composite of two
species. Based on the g values, these species are similar and are likely two geometric isomers (perhaps
due to different orientations of the THF ring). The first species (shown in dark grey, 65%) was
simulated by adopting the following values: g = (2.23, 2.22, 2.09); line-widths, 7™ = (91, 83, 48) G. The
second species (shown in light grey, 35%) was simulated with g = (2.24, 2.23, 2.05); line-widths, /™ =
(62, 57, 42) G. The experimental g,,. based on EPR is 2.18, which is very close to the experimental g,
value of 2.23 from the simulations of the magnetic susceptibility data (See Results and Discussion,
Section 2.6).
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Sl Figure 14. X-band EPR spectrum (dX"/dB) of Zn 6%THF in frozen THF (0.5 mM, 20.0 K,
frequency = 9.45 GHz, modulation = 6.0 G, power =200 4W).
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SI Figure 15. Qualitative MO diagram of the magnetic orbitals derived from the BS(4,2) calculation of
the Cr complex 1. The spatial overlaps (S) of the corresponding alpha and beta orbitals are given. The
last unoccupied d-orbital was not located.




SI Figure 16. Spin density distribution for DFT models of Zn 6**THF that consider solvation effects

ilslin% dCOSMO. € is the dielectric constant of the solvent. Only atoms with spin densities > 0.05 are
abele
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SI Figure 17. Qualitative MO diagram of the magnetic orbitals derived from BS(4,1) calculation of
[(L)(L),Cr(THF)]" 1°*THF. The spatial overlap (S) of the corresponding alpha and beta orbitals is
given. The last unoccupied d-orbital was not located.



SI Figure 18. Spin density maps of the DFT models of the cationic series [(L*),M(THF)]".
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(L)LY -0.96

§=2
Mn +4.80
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S=3/2
Fe +3.71
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Nofe: In the diagrams, atoms are labeled with their
unpaired spin density only if the latter is = 0.05.
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S=%
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Nota: In the diagrams, atoms are labeled with their
unpaired spin density only if the latter is = 0.10.



