Supporting Materials

Palladium-Catalyzed Methylation of Aryl C-H Bond by Using Peroxides
Yuhua Zhang ${ }^{\text {a }}$, Jianqing Feng ${ }^{\text {b }}$ and Chao-Jun Li* ${ }^{\star a, b}$
${ }^{a}$ Department of Chemistry, Tulane University, New Orleans, Louisiana 70118
${ }^{b}$ Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 2K6,
Canada
${ }^{c}$ Email: cj.li@mcgill.ca

Contents

1) Experimental details and characterization data for all compounds
 S-2

2) Mechanistic investigation S-12
3) PDF file of copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for the new compounds- S-14

1) Experimental details and characterization data for all new compounds

General information:

${ }^{1} \mathrm{H}$ NMR spectra were recorded on 400 MHz spectrometer in CDCl_{3} solution and the chemical shifts were reported in parts per million (δ) relative to internal standard TMS (0 $\mathrm{ppm})$. The peak patterns are indicated as follows: s , singlet; d , doublet; t , triplet; dd, doublet of doublet; ddd, doublet of doublet of doublet; m, multiplet; q, quartet; dq, doublet of quartet. The coupling constants, J, are reported in Hertz (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were obtained at 100 MHz and referenced to the internal solvent signals (central peak is 77.00 ppm). MS data were obtained by Varian Saturn 2100D GC/MS Spectrometer. HRMS were made by McGill University. IR spectra were recorded by a Nexus 670 Avator FTIR Spectrometer and an ABB Bomem MB100 instrument. Flash column chromatography was performed over SORBENT silica gel 30-60 $\mu \mathrm{m}$. Thin layer chromatography was performed by using Sorbent Silica Gel $60 \mathrm{~F}_{254}$ TLC plates and visualized with ultraviolet light.

Substrates 1a, 1b, 1c, 1d, 1h and $\mathbf{1 i}$ were purchased from Aldrich Corp. Other substrates $3 \mathbf{3 a}, \mathbf{1 e}, \mathbf{1 f}$ and $\mathbf{1 g}$ were prepared via Suzuki coupling of the corresponding boronic acid and 2-bromopyridine according to the literature procedure. ${ }^{[1]} \mathbf{1} \mathbf{j}$ was prepared according to the literature ${ }^{[2]}$.

General procedure:

Methylation of 2-phenylpyridine with dicumyl peroxide:

To a mixture of 2-phenylpyridine (1a) ($79 \mathrm{mg}, 0.5 \mathrm{mmol}$) and dicumyl peroxide ($270 \mathrm{mg}, 1.0$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ were added. Then the reaction mixture was stirred at $130^{\circ} \mathrm{C}$ for 12 hrs under nitrogen atmosphere. After that, the resulting mixture was filtered through a short silica gel in a pipette eluting with methylene chloride. The solvent was evaporated and the residue was purified by silica gel column separation (eluted with hexane/methylene chloride $=1: 2$) to give acetophenone ($99 \mathrm{mg}, 166 \%$ based on 2 phenylpyridine), the desired product 3a ($35 \mathrm{mg}, 41 \%$ based on 2-phenylpyridine), a second product 4a ($29 \mathrm{mg}, 32 \%$ based on 2-phenylpyridine) and 2-phenylpropan-2-ol (122 mg , 180% based on 2-phenylpyridine).

Acetophenone. ${ }^{[3]}$ Register Number [98-86-2]. An oil; 99 mg (166\% based on 2-phenyl pyridine); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{ppm}$) $\delta 7.80-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}$, $2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, ppm) δ 197.9, 136.8, 132.9, 128.3, 128.1, 26.4.

2-o-Tolylpyridine (3a). ${ }^{[4]}$ Colorless oil; 35 mg (41% based on 2-phenylpyridine). Register Number [10273-89-9]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{ppm}$) $\delta 8.71-8.69(\mathrm{~m}, 1 \mathrm{H}), 7.74$ (ddd, $J=7.6,7.6$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{ppm}\right) \delta$ $160.2,149.4,140.6,136.4,136.0,131.0,129.8,128.5,126.1,124.3,121.9,20.5$.

2-(2,6-Dimethylphenyl)pyridine (4a). ${ }^{[5]}$ Colorless oil; 29 mg (32% based on 2-phenyl pyridine). Register Number [10273-91-3]. ${ }^{1} \mathrm{H}$ NMR (400 MHz , ppm) $\delta 8.66-8.62(\mathrm{~m}, 1 \mathrm{H}$), $7.68(\mathrm{ddd}, J=8.0,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, ppm) δ 160.1, 149.9, 136.5, 136.0, 128.1, 127.7, 124.7, 121.9 (possibly overlapped), 20.4.

2-Phenylpropan-2-ol. ${ }^{[3]}$ Colorless oil; 122 mg (180% based on 2-phenyl pyridine). Register Number [617-94-7]. An oil; 122 mg (180% based on 2-phenylpyridine); ${ }^{1} \mathrm{H}$ NMR (400 MHz , ppm) $\delta 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{t}, J=15 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , ppm) $\delta 149.0,128.0,126.5,124.3,72.4,31.6$.

Methylation of other substrates with dicumyl peroxide

The characteristic data for methylation products were provided in the following. Acetophenone and 2-phenylpropan-2-ol were observed by-products in all cases; however, their yields were not determined during the separation by column.

Methylation of 1b with dicumyl peroxide:

2-(2,4-Mimethylphenyl)pyridine (3b). ${ }^{[5]}$ Following the general reaction procedure by using $\mathbf{1 b}$ as the substrate, after separation by column chromatography on silica gel compound $\mathbf{3 b}$ was obtained as a colorless oil ($35 \mathrm{mg}, 35 \%$ based on 1b). . Register Number [914253-86-4]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{ppm}$) $\delta 8.69-8.67(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{ddd}, J=8.0,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, 2.34(s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, ppm) $\delta 160.2,149.3,138.2,137.8,136.3,135.8,131.7$, $129.8,126.8,124.3,121.6,21.4,20.5$.

2-Mesitylpyridine (4b). ${ }^{[6]}$ By following the general reaction procedure, $\mathbf{4} \mathbf{b}$ was obtained from 1b as a colorless oil ($24 \mathrm{mg}, 24 \%$ based on 1b). Register Number [75722-64-4]. ${ }^{1} \mathrm{H}$ NMR (400 MHz, ppm) $\delta 8.72-8.70(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{ddd}, J=8.0,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}$, 2H), 6.93 ($\mathrm{s}, 2 \mathrm{H}$), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{ppm}$) $\delta 160.2,149.8,137.9$, 137.6, 136.4, 135.9, 128.5, 124.9, 121.7, 21.3, 20.3.

Methylation of 1c with dicumyl peroxide:

2-o-Tolylquinoline (3c). ${ }^{[7]}$ By following the general reaction procedure, 3c was obtained from 1c as a viscous oil ($60 \mathrm{mg}, 55 \%$ based on 1c). Register Number [52146-06-2]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{ppm}$) $\delta 8.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{ddd}, J=7.6,7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, ppm) $\delta 160.5,148.1,140.9,136.3,136.2,131.1$, 129.9(two peaks), 129.8, 128.8, 127.7, 127.0, 126.7, 126.3, 122.6, 20.6.

Methylation of 1d with dicumyl peroxide:

10-Methylbenzo[h]quinoline (3d). ${ }^{[5]}$ By following the general reaction procedure except that 0.75 mmol of dicumyl peroxide was used, compound $3 \mathbf{d}$ was obtained as a white solid from 1d (73 mg, 76\% based on 1d). Register Number [914253-93-3]. ${ }^{1} \mathrm{H}$ NMR (400 MHz , ppm) $\delta 9.01(\mathrm{dd}, J=4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{ppm}) \delta 149.2,147.4,139.0,135.5,135.4,131.4,130.1,129.0,127.7,127.5,127.0$, 125.7, 120.8, 27.5.

Methylation of 1 e with dicumyl peroxide:

2-(4-Methoxy-2-methylphenyl)pyridine (3e). ${ }^{[4]}$ By following the general reaction procedure, 3e was obtained from 1e as a colorless oil ($32 \mathrm{mg}, 32 \%$ based on 1e). Register Number [521958-77-0]. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{ppm}$) $\delta 8.68-8.66(\mathrm{~m}, 1 \mathrm{H}), 7.71$ (ddd, $J=7.6,7.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.81(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, ppm) $\delta 159.9,159.7,149.3,137.6,136.3,133.4,131.2,124.3,121.5,116.3$, 111.5, 55.5, 20.9.

2-(4-Methoxy-2,6-dimethylphenyl)pyridine (4e). By following the general reaction procedure, $\mathbf{4 e}$ was obtained from $\mathbf{1 e}$ as a colorless oil ($30 \mathrm{mg}, 28 \%$ based on 1e). IR(liquid): $3047,3000,2954,2922,2837,1607,1586,1563,1465,1424,1376,1318,1283,1193,1156$, 1075, 1021, $935,855,794,752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{ppm}$) $\delta 8.69-8.68(\mathrm{~m}, 1 \mathrm{H}), 7.74-$ $7.69(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, ppm) $\delta 160.0,159.1,149.8,137.6,136.4,133.6,125.3,121.7,113.1,55.4,20.7$; MS (EI) m / z (\%) 212(100), 197, 181, 168, 154, 141. HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ON}$: 213.1154; found: 213.1139.

Methylation of 1 f with dicumyl peroxide:

2-(4-Methoxycarbonyl-2-methylphenyl)pyridine (3f). By following the general reaction procedure, $\mathbf{3 f}$ was obtained from $\mathbf{1 f}$ as a colorless oil ($62 \mathrm{mg}, 55 \%$ based on $\mathbf{1 f}$). IR (KBr pellet): $v_{\max } 2952,1720,1586,1468,1290,1251,1198,1112,764 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , ppm) $\delta 8.70-8.69(\mathrm{dd}, J=5.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 1 \mathrm{H})$, $7.46(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, ppm) $\delta 167.0,158.9,149.3,144.6,136.2,136.1,131.8,129.7,129.7,127.0$, 124.0, 122.1, 52.0, 20.2; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+1}(\mathrm{M}+1)$: 228.1019 ; found: 228.1012.

Methyl 3,5-dimethyl-4-(pyridin-2-yl)benzoate (4f). By following the general reaction procedure, $\mathbf{4} \mathbf{f}$ was obtained from $\mathbf{1 f}$ as a colorless oil ($10 \mathrm{mg}, 8 \%$ based on $\mathbf{1 f}$). IR $(\mathrm{KBr}$ pellet): $v_{\max } 2951,1722,1586,1436,1315,1219,1121,771 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{ppm}$) $\delta 8.70-8.69(\mathrm{dd}, J=4.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 2 \mathrm{H}), 7.73-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19-$ $7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{ppm}$) δ 167.1, 158.9, 149.7, 144.8, 136.4, 136.1, 129.2, 128.6, 123.9, 122.0, 51.9, 20.0. HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}^{+1}(\mathrm{M}+1)$: 242.1181 ; found: 242.1186 .

Methylation of 1 g with dicumyl peroxide:

2-(2,5-Dimethylphenyl)pyridine (3g). By following the general reaction procedure, 3 g was obtained from 1 g as a colorless oil ($58 \mathrm{mg}, 63 \%$ based on $\mathbf{1 g}$). IR (KBr pellet): $v_{\max } 2922$, $1588,1465,1426,793,750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{ppm}$) $\delta 8.71(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{dt}, J=8,2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{ppm}) \delta 160.0,149.2,140.2,135.9,135.2,132.4,130.6,130.2,128.9,124.0,121.4$, 20.8, 19.7; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}^{+1}(\mathrm{M}+1)$: 184.1121 ; found: 184.1118 .

Methylation of 1 h with dicumyl peroxide:

\mathbf{N}-o-Tolylacetamide (3h). ${ }^{[8]}$ By following the general reaction procedure, 3h was obtained from 1 h as a pale yellow solid ($31 \mathrm{mg}, 42 \%$ based on $\mathbf{1 h}$). Register Number [120-66-1]. ${ }^{1} \mathrm{H}$ NMR (400 MHz, ppm) ${ }^{1} \mathrm{H}$ NMR (400 MHz, ppm) $\delta 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}$, $3 \mathrm{H}), 7.07(\mathrm{dd}, J=6.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(100 \mathrm{MHz}, \mathrm{ppm}) \delta$ $168.8,135.8,130.7,129.9,126.9,125.6,123.9,24.4,18.0$.

Methylation of 1 i with dicumyl peroxide:

\boldsymbol{N}-(2,4-dimethylphenyl)acetamide (3i). ${ }^{[9]}$ By following the general reaction procedure, $\mathbf{3 i}$ was obtained from $\mathbf{1 i}$ as a pale yellow solid ($27 \mathrm{mg}, 33 \%$ based on $\mathbf{1 i}$). Register Number [2050-43-3]. ${ }^{1} \mathrm{H}$ NMR (400 MHz, ppm) $\delta 7.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}$, $2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, ppm) $\delta 168.9,135.5,133.1$, $131.4,130.5,127.4,124.3,24.3,21.1,18.0$.

2) Mechanistic investigation: Isotope effect

To a mixture of 2-phenyl pyridine $\mathbf{1 j}(80 \mathrm{mg}, 0.5 \mathrm{mmol})$ and dicumyl peroxide ($270 \mathrm{mg}, 1.0$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ were added. Then the reaction mixture was stirred at $130^{\circ} \mathrm{C}$ for 12 hr under nitrogen atmosphere. After that, the resulting mixture was filtered through a short silica gel in a pipette eluting with methylene chloride. The solvent was evaporated and the residue was purified by silica gel column chromatography (eluting with hexane/methylene chloride = 1:2), to give acetophenone (its yield was not determined), the mono-methylated product 3a and $\mathbf{3 j}$ (overall $35 \mathrm{mg}, 42 \%$ based on $\mathbf{1 j}$), ${ }^{1} \mathrm{H}$ NMR analysis showed that the ratio of ortho-proton product $\mathbf{3 a}$ to ortho-deuterium product $\mathbf{3 j}$ is $1: 1$ (Compared with the ${ }^{1} \mathrm{H}$ NMR spectrum of pure 3a, the integration of the peaks at 7.40 was 1.48 instead of 2). Then the second product $\mathbf{4 a}(28 \mathrm{mg}, 30 \%$ based on $\mathbf{1 j}$), and 2 -phenylpropan-2-ol (its yield was also omitted) were eluted successively.

$\mathbf{3 a}$ and $\mathbf{3 j}$ (crude NMR ratio of $\mathbf{3 a}$ and $\mathbf{3 j}=1: 1$)

Colorless oil; $35 \mathrm{mg}(42 \%$ based on $\mathbf{1 j}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{ppm}$) $\delta 8.71-8.69(\mathrm{~m}, 1 \mathrm{H}), 7.76-$ $7.72(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 1.5 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{ppm}$) δ $160.0,149.2,140.3,136.1,135.7,130.7,129.6,128.2,125.8,125.7,124.1,121.6,20.3 . \mathrm{MS}$ (EI) $m / z(\%) 170,169(100), 168,167$.

References:

[1] Littke, A. F.; Dai. C. Y.; Fu. G. C. J. Am. Chem. Soc. 2000. 122, 4020-4028.
[2] Chen, X.; Hao, X.-S.; Goodhue, C.E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
[3] Spectral data were identical to those of the commercially available products.
[4] So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Lett. 2007, 9, 2795-2798.
[5] Chen, X.; Goodhue, C. E. Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634-12635.
[6] Korn, T. J.; Schade, M. A.; Cheemala, M. N.; Wirth, S.; Guevara, S. A.; Cahiez, G.; Knochel. P. Synthesis 2006, 21, 3547-3574.
[7] Cho, C. S.; Kim, B. T.; Choi, H.-J.; Kim, T.-J.; Shim, S. C. Tetrahedron 2003, 59, 79978002.
[8] Ramalingan, C.; Park, Y.-T. J. Org. Chem. 2007, 72, 4536-4538.
[9] Shilpa; Gowda, B. T. Zeitschrift fuer Naturforschung, A: Physics Sciences 2007, 62, 8490.

\qquad

σ.

$-\mathcal{\sim} \underset{\sim}{\infty}$
-

0I
$\begin{array}{r}21 \\ \hline\end{array}$

[^0]

13C OBSERVE

[^0]: 13C observe

