Supplementary Material.

The purpose of this part is to derive expressions for the Kirkwood-Buff integrals (KBIs) in binary systems. For binary mixtures, Kirkwood and Buff ${ }^{7}$ obtained the following expressions for the partial molar volumes, the isothermal compressibility and the derivatives of the chemical potential with respect to concentrations

$$
\begin{equation*}
v_{1}=\frac{1+\left(G_{22}-G_{12}\right) c_{2}}{c_{1}+c_{2}+c_{1} c_{2}\left(G_{11}+G_{22}-2 G_{12}\right)} \tag{A-1}
\end{equation*}
$$

$$
\begin{equation*}
v_{2}=\frac{1+\left(G_{11}-G_{12}\right) c_{1}}{c_{1}+c_{2}+c_{1} c_{2}\left(G_{11}+G_{22}-2 G_{12}\right)} \tag{A-2}
\end{equation*}
$$

$$
\begin{equation*}
k T k_{T}=\frac{1+c_{1} G_{11}+c_{2} G_{22}+c_{1} c_{2}\left(G_{11} G_{22}-G_{12}^{2}\right)}{c_{1}+c_{2}+c_{1} c_{2}\left(G_{11}+G_{22}-2 G_{12}\right)} \tag{A-3}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\partial \mu_{1}}{\partial x_{1}}\right)_{T, P}=\frac{k T}{x_{1}\left(1+x_{1} c_{2}\left(G_{11}+G_{22}-2 G_{12}\right)\right)} \tag{A-4}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\partial \mu_{1}}{\partial c_{1}}\right)_{T, P}=\frac{k T}{c_{1}\left(1+c_{1}\left(G_{11}-G_{12}\right)\right)} \tag{A-5}
\end{equation*}
$$

where P is the pressure, T is the absolute temperature, v_{α} is the partial molar volume per molecule of species α, μ_{1} is the chemical potential per molecule of component $1, k$ is the Boltzmann constant, k_{T} is the isothermal compressibility, c_{α} is the bulk molecular
concentration of component α and x_{α} is the mole fraction of component α. Because $c_{1} v_{1}+c_{2} v_{2}=1$, one can solve Eqs. (A-1, A-3 and A-5) to obtain the following expressions for the KBIs

$$
\begin{align*}
& G_{11}=k T k_{T}-\frac{1}{c_{1}}+\frac{c_{2} v_{2}}{c_{1}^{2} \mu_{11}^{(c)}} \tag{A-6}\\
& G_{22}=k T k_{T}-\frac{1}{c_{2}}+\frac{v_{1}^{2}}{c_{2} v_{2} \mu_{11}^{(c)}} \tag{A-7}
\end{align*}
$$

and

$$
\begin{equation*}
G_{12}=k T k_{T}-\frac{v_{1}}{c_{1} \mu_{11}^{(c)}} \tag{A-8}
\end{equation*}
$$

where $\mu_{11}^{(c)}=\frac{1}{k T}\left(\frac{\partial \mu_{1}}{\partial c_{1}}\right)_{T, P}=\left(\frac{\partial \ln a_{1}}{\partial c_{1}}\right)_{T, P}, a_{1}$ is the activity of component 1 and k is
Boltzmann's constant. Eq. (A-6) was derived by Zimm ${ }^{9}$ (there is a misprint in Zimm's paper (eq. (10)) where the sign is (-) instead of $(+$) before the third term in the left hand side of eq. (A-6).

The KBIs can be also expressed in terms of $\mu_{11}^{(x)}=\frac{1}{k T}\left(\frac{\partial \mu_{1}}{\partial x_{1}}\right)_{T, P}=\left(\frac{\partial \ln a_{1}}{\partial x_{1}}\right)_{T, P}$.
Eqs. (A-1, A-3 and A-4) provides the following expressions for the KBIs

$$
\begin{equation*}
G_{11}=k T k_{T}-\frac{1}{c_{1}}+\frac{c_{2} v_{2}^{2}\left(c_{1}+c_{2}\right)^{2}}{c_{1}^{2} \mu_{11}^{(x)}} \tag{A-9}
\end{equation*}
$$

$$
\begin{equation*}
G_{22}=k T k_{T}-\frac{1}{c_{2}}+\frac{v_{1}^{2}\left(c_{1}+c_{2}\right)^{2}}{c_{2} \mu_{11}^{(x)}} \tag{A-10}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{12}=k T k_{T}-\frac{v_{1} v_{2}\left(c_{1}+c_{2}\right)^{2}}{c_{1} \mu_{11}^{(x)}} \tag{A-11}
\end{equation*}
$$

These expressions are the same as those obtained by Matteoli and Lepori ${ }^{10}$.

