Authors: Corrie Clark, Peter Adriaens, F. Brian Talbot

Manuscript title: Green Roof Valuation: A Probabilistic Economic Analysis of Environmental Benefits

Number of pages: 4

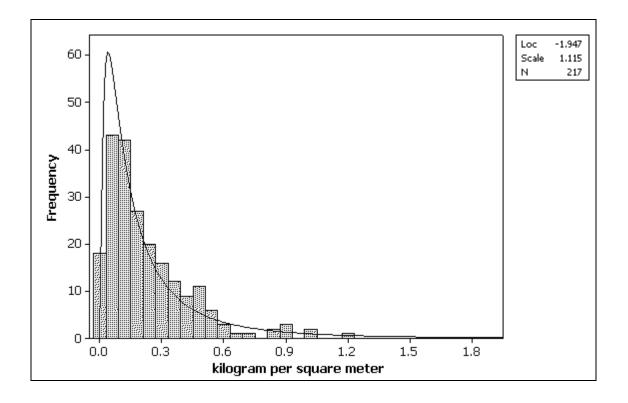

Figure S1. Distribution of nitrogen oxide uptake per area.

 Table S1. Municipal stormwater fees per area of impervious surface.

Table S2. Net present value for model framework.

City	State	Annual Rate $(2006\$/m^2)$	Green Roof Benefit	Notes	Source
Ann Arbor	MI	0.37		2006 Stormwater fees. New 2007 policy evaluated separately.	(36)
Atlanta	GA	0.08		Rate applies to Gwinnett County	(37)
Bellevue	WA	0.09-0.38		Varies according to degree of imperviousness.	(38)
Boulder	СО	0.06-0.08		Residential rates based on parcel size.	(39)
Gainesville	FL	0.35			(40)
Minneapolis	MN	0.06-0.09	50%	50% reduction for control of 10-year, 24 hr storm. 100% for control of 100- yr, 24 hr storm.	(22)
Portland	OR	0.07	35%	35% fee reduction.	(41)
Seattle	WA	0.04-0.36		Varies according to degree of imperviousness.	(42)
Takoma	WA	0.21			(43)
Washington	DC	0.03		Residential rate used.	(44)

 Table S1. Municipal stormwater fees per area of impervious surface.

Figure S1. Distribution (frequency) of assumed annual NOx uptake potentials (kg/m²) from 217 plant taxa under green house conditions (32).

Table S2. Net present value for model framework.

Conventional roof installation and replacement net present value

NPV_{conventional} = C_{installation} +
$$\sum_{n=20,40} \frac{C_{replacement}}{(1+i_d)^n} \cdot (1+i_f)^n$$

Green roof installation net present value

$$NPV_{green roof} = C_{installation}$$

Net present value of benefits due to reduced stormwater fees

$$NPV_{stormwater} = \sum_{n} \frac{C_{stormwater}}{(1+i_{d})^{n}} \cdot (1+i_{f})^{n}$$

Net present value of benefits due to reduced energy consumption

NPV_{energy savings} =
$$\sum_{n} \frac{C_{energy savings}}{(1+i_{d})^{n}} \cdot (1+i_{f})^{n}$$

Net present value of benefits due to improved air quality

$$NPV_{air pollution} = \sum_{n} \frac{C_{air pollution}}{\left(1 + i_{d}\right)^{n}} \cdot \left(1 + i_{f}\right)^{n}$$

where *n* is number of years, i_d is discount rate, and i_f is the inflation rate.