Thermodynamic Nature of High Energy Phosphoryl Bonds Originating from the Anomeric Effect.

Eliza A. Ruben, Joshua A. Plumley, Michael S. Chapman, \& Jeffrey D. Evanseck

Supplementary Information.

Supplementary discussion and figures on cooperative effects concerning the anomeric interaction 1
Archive Files 3
Glycerol-3-phosphate (1) 3
Methyl monophosphate (2) 4
Glucose-6-phosphate (3) 5
Glucose-1-phosphate (4) 7
Phosphoenolpyruvate (5) 9
Methyl diphosphate (6) 11
Methyl triphosphate (7) 12
Acetyl phosphate (8) 14
1,3 bisphosphoglycerate (9) 15
Carbamyl phosphate (10) 17
Deprotonated methyl triphosphate (11) 18
Methyl triphosphate protonated once (12) 19
Methyl triphosphate protonated twice (13) 20
Methyl triphosphate with oxygen atoms on $\mathrm{P} \alpha, \mathrm{P} \beta$ and $\mathrm{P} \gamma$ coordinated $\mathrm{Mg}^{2+} 3$ water molecules complete the coordination to $\mathrm{Mg}^{2+}(14)$ 22
Methyl triphosphate with oxygen atoms on $\mathrm{P} \beta$ and $\mathrm{P} \gamma$ coordinated $\mathrm{Mg}^{2+}, 4$ water molecules complete the coordination to $\mathrm{Mg}^{2+}(15)$ 23
Supplementary notes on solvent calculations (dmso vs water). 25
Variations of OH bond lengths with bonding and antibonding orbital occupancy 26
Full Gaussian reference 27

Supplementary discussion and figures on cooperative effects concerning the anomeric interaction

$$
\text { As detailed by Alabugin and coworkers }{ }^{32} \text { an analysis of the combined effect of electron density }
$$ donations to the same antibonding orbital is important when investigating any general trend. This is because anti-cooperative effects i.e. destructive interference between lone pair wavefunctions can remove any correlation. To check that no anti-cooperative effects occur, the deletion method as

implemented in NBO 3.1 is used. Here the combined effect of eliminating all 3 interactions is compared to the effect of individually deleting each interaction and numerically adding all three energy terms. If the combined elimination is less than the numerical addition, then anti-cooperative effects occur. This may change any general trend. Previous work on the same anomeric effect in N—P phosphoryl guanidinium compounds showed that anti-cooperative effects were absent. ${ }^{12}$ Likewise, in this work, comparisons between $\mathrm{E}(2)$, simultaneous (combined) deletions and summed individual deletions showed that the anomeric effect was on the whole slightly cooperative. More importantly, the general trend between the anomeric effect and hydrolysis free energies was not changed no matter what type of anomeric energy was used, Supplementary Figure 2.

Figure S1. Correlation between free energies of hydrolysis and anomeric energy calculated using second order perturbation ($\mathrm{E}(2)$), by summing individual deletions and deleted simultaneously. The $\mathrm{HF} / 6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ method on B3LYP $/ 6-311++G(d, p)$ optimized structures was used for this test due to the inconsistency of deletion operations using DFT as detailed in the NBO manual. ${ }^{110}$

Archive Files

Glycerol-3-phosphate (1)

The C-C-C-OH and C-Os-P-Ot dihedrals were subjected to conformational searches at the PM3 level of theory. Low energy conformers for C-Os-P-Ot were found at values of $180^{\circ}, 60^{\circ}$ and -60°. Since no difference in energy was obtained the choice made between these three structures was arbitrary. A strong intramolecular hydrogen bond between OH and O was observed. Strong intramolecular hydrogen bonds were observed for this compound no matter what conformation was used.

B3LYP/6-311++G(d,p) optimization in water

$1 \backslash 1 \backslash G I N C-C S I T 216 \backslash F O p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 3 H 706 P 1(2-) \backslash R U B E N \backslash 20-A p r-2$
$006 \backslash 0 \backslash 1$ \#P B3LYP/6-311++G** OPT(MAXCYCLE=900, CALCFC) POP=NBO SCRF (PCM, S
OLVENT =WATER) FREQ\|g|yp_pdb1||-2,1|C,-2.2122764945,0.8907081747,-0.60
$10889188 \backslash 0,-2.5173971854,-0.9622508658,0.9782331516 \backslash \mathrm{C},-2.0642522661,-0$
$.6139814769,-0.3351194991 \backslash 0,-1.4933090629,1.7354389185,0.2829421016 \backslash C$,
$-0.6811735444,-1.2148107352,-0.612869217610,0.2754763085,-0.8895059493$
, 0. $3985963113 \backslash$ P, $1.6367374267,0.0522171144,0.0371782644 \backslash 0,2.4208975294$,
$0.0029749324,1.354951823210$, 2. $3328222753,-0.6089410023,-1.162208891610$
, 1. $0644058144,1.4577097433,-0.29783119621 \mathrm{H},-1.9310794792,1.0832408448$,
$-1.6478002624 \mid \mathrm{H},-3.2717202694,1.1452116861,-0.4921526687$ IH, -1.87434181
$49,-0.6002839773,1.61860622661$ H, - $2.7580047867,-1.1131709523,-1.0268549$
$24 \backslash H,-0.5199123077,1.6510347767,0.0777895404 \backslash H,-0.7805710665,-2.306222$
$2244,-0.6279760001$ H, - 0. $3323832786,-0.8979688615,-1.60228646391$ Versio
$\mathrm{n}=\mid \mathrm{BM}$ 64-G03RevC.02\State=1-A|HF=-911.8522915\RMSD=5.681e-09\RMSF=6.104
e-05\Dipole=-5.7492843,-1.1720358,-1.314671\PG=C01 [X(C3H706P1)]\@

B3LYP/6-311++G(d,p) frequencies in water

```
1\1\GINC-CSIT216\Freq\RB3LYP\6-311++G(d,p)\C3H706P1(2-)\RUBEN\ 20-Apr-2
OO6\0\\#P GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311++G(D
,P) FREQ\\g|yp_pdbl\\-2,1\C,-2.2122764945,0.8907081747,-0.6010889188\0
,-2.5173971854,-0.9622508658,0.9782331516\C, - 2.0642522661, - 0.613981476
g, - 0. 3351194991\0, -1.4933090629,1.7354389185,0.2829421016\C, - 0.6811735
444, -1.2148107352,-0.6128692176\0,0.2754763085, -0.8895059493,0.3985963
113\P,1.6367374267,0.0522171144,0.0371782644\0, 2.4208975294,0.00297493
24,1.3549518232\0, 2. 3328222753,-0.6089410023,-1.1622088916\0,1.0644058
```

 $624 \backslash H,-3.2717202694,1.1452116861,-0.4921526687 \backslash H_{1}-1.8743418149,-0.6002$ $839773,1.61860622661$ H, $-2.7580047867,-1.1131709523,-1.026854924$ H, 0.51 $99123077,1.6510347767,0.0777895404 \backslash H,-0.7805710665,-2.3062222244,-0.62$ 79760001 |H, - 0. $3323832786,-0.8979688615,-1.6022864639$ \VVersion=I BM64-G0 3 RevC. $02 \backslash$ State $=1-A \backslash H F=-911.8522915 \backslash R M S D=4.225 e-09 \backslash R M S F=6.105 e-05 \backslash D i p o l$ e $=-5.7492852,-1.1720355,-1.3146702 \backslash$ Dipol eDerivan $0.5535507,0.3796152,0.1$ $967608,0.2189043,0.614027,0.2869815,0.2386277,0.2468702,0.614263,-0.76$ $23093,0.0285815,0.2877811,0.0515956,-0.7731863,0.215335,0.3195361,0.23$ $36845,-1.1431609,0.3506947,0.032396,-0.1768672,0.0017004,0.303841,-0.1$ $822715,-0.2880079,-0.2134181,0.8969713,-1.3683712,-0.1169054,-0.182239$ $4,-0.1368662,-1.0750144,-0.2067851,-0.1138,-0.2399441,-0.8476657,0.811$ $5272,0.0815383,0.2500387,0.2009208,0.4141403,0.0808134,0.5188474,0.193$ $3757,0.5328039,-2.0351844,-0.5678235,-0.1611066,-0.6119194,-1.1126474$, $0.0152672,-0.2460196,0.0009943,-1.0683505,3.4808353,-0.1322735,0.24022$ $69,-0.0807506,3.1808428,0.1712715,0.0090637,0.0283622,3.2762188,-1.542$ $0673,0.0370107,-0.5901203,0.0570158,-1.0955246,0.0130199,-0.678961,0.0$ $026274,-2.0327428,-1.5271118,0.2539461,0.4170882,0.3475674,-1.3003285$, $-0.4029275,0.5707494,-0.3654719,-1.7974565,-1.6461578,0.3644035,-0.091$ $8797,0.3020047,-2.0858358,0.162778,0.0069883,0.21394,-1.1476201,0.0386$ $571,-0.0480076,0.0775366,-0.0514207,-0.0164926,0.0249597,-0.0055513,0$. $0014291,-0.2694344,-0.2273476,0.0477097,-0.0162579,0.0691706,-0.005253$ $5,-0.0189457,0.0392693,-0.031422,0.05894,0.3762534,-0.0705384,0.028393$ $8,-0.0860056,0.399175,0.0065267,0.0006997,0.007943,0.4958448,-0.050580$ $5,-0.0596725,-0.094905,-0.0512628,0.0048985,-0.0643034,-0.0315962,-0.0$ $229591,-0.0453275,1.3713126,-0.1548499,-0.0587094,-0.0921708,0.365226$, - 0. $0555755,-0.1692954,-0.0323957,0.2873253,-0.0404428,-0.0185154,-0.04$ $77416,-0.0605749,-0.2520278,-0.0557641,-0.0620957,-0.0010009,0.0524089$, $0.0160656,-0.0178413,0.0610476,-0.0214627,0.0655274,0.0761517,-0.0268$ $755,0.0201765,-0.1392094 \backslash \mathrm{Pol}$ ar $=127.5429031,0.237425,115.8329267,4.0551$ $762,3.2219601,120.3434549 \backslash \mathrm{PG}=\mathrm{CO1}[\mathrm{X}(\mathrm{C} 3 \mathrm{H} 706 \mathrm{P} 1)] \backslash \mathrm{NI} \mathrm{mag}=0 \backslash \backslash 0.58709367,-0$.

Methyl monophosphate (2)

The C-O-P-O dihedrals were subjected to conformational searches at the PM3 level of theory. Lowest energy conformers for C-O-P-O were found at values of $180^{\circ}, 60^{\circ}$ and -60°. Since no difference in energy was obtained the choice made between these three structures was arbitrary.

B3LYP/6-311++G(d,p) optimization in water

$1 \backslash 1 \backslash G \mid N C-N E W T O N \backslash F O p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 304 P 1(2-) \backslash R U B E N \backslash 21-A p r-20$ $06 \backslash 0 \backslash \$ \#P OPT FREQ B3LYP/6-311++G(D, P) POP =NBO SCRF (PCM, SOLVENT = WATER) \ Iamp new solv\|-2, 1|C, -1.1538799705, 0. $0007969514,-1.8447411277 \backslash 0,-1.17$ $2037 \overline{6} 31,-0.0028781281,-0.4210338845 \backslash$ P, $0.3042500239,-0.0000054516,0.414$ $0149024 \backslash 0,1.0260783552,1.3000096658,0.0037471675 \backslash 0,-0.1706174869,-0.01$ $8968074,1.8794000698 \backslash 0,1.0472788572,-1.2794534583,-0.02250025531$ H, -0.6 $482641553,-0.8894220728,-2.2364948121$ IH, -0.6476490567,0.892764899,-2.2 31901885 \H, - 2. $1901740795,0.0022771965,-2.1902848536$ \Version=|A64-Linu $x-G 03 R e v B .05 \backslash S t a t e=1-A \backslash H F=-682.6932544 \backslash$ RMSD $=1.300 \mathrm{e}-09 \backslash \mathrm{RMSF}=1.233 \mathrm{e}-04 \backslash \mathrm{D}$ ipole $=-2.0066162,0.0007705,-2.9022067 \backslash \mathrm{PG}=\mathrm{CO} 1[\mathrm{X}(\mathrm{ClH304P1)]} \mathrm{\} \mathrm{\ @}$

B3LYP/6-311++G(d,p) frequencies in water

$1 \backslash 1 \backslash G I N C-N E W T O N \backslash F r e q \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 304 P 1(2-) \backslash R U B E N \backslash 21-A p r-20$ 061011 \#P GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311++G(D, P) FREQ \amp new_solv
-2, 1\C, -1. $1538799705,0.0007969514,-1.8447411277$ । 0, - 1. $172037 \overline{6} 31,-0.0028781281,-0.4210338845 \mid$ P, 0.3042500239 , -0.00000545 16, $0.4140149024 \backslash 0,1.0260783552,1.3000096658,0.0037471675 \backslash 0,-0.17061748$ $69,-0.018968074,1.8794000698 \backslash 0,1.0472788572,-1.2794534583,-0.022500255$ $3 \backslash H,-0.6482641553,-0.8894220728,-2.2364948121 \backslash H,-0.6476490567,0.892764$ 899, - 2. 231901885 (H, - 2. $1901740795,0.0022771965,-2.1902848536 \backslash$ Version=1
 $33 e-04 \backslash$ Dipole $=-2.0066162,0.0007705,-2.9022067 \backslash$ DipoleDerive 0.3106411 , 0 . $0036448,-0.1762549,0.0000092,0.4490112,-0.0023824,0.0712627,-0.0053339$, 1. $0389226,-1.5452648,-0.003193,-0.4861463,-0.0045686,-0.81455,0.00313$ $37,-0.4505855,0.0020486,-1.7568118,3.0594069,0.0071088,0.1138918,0.013$ $8001,3.3844404,0.0031424,-0.1792966,-0.0013656,3.3789013,-1.412729,-0$. $489571,0.0820399,-0.5310879,-2.0552588,0.1738478,0.1707184,0.2325282$, -$1.201778,-1.2186797,-0.0113587,0.4005653,-0.0175374,-1.1695741,0.00998$ $98,0.3709479,0.0152258,-2.3481799,-1.4298791,0.4933401,0.0937698,0.539$ $025,-2.0296442,-0.1877125,0.1812682,-0.243082,-1.2073587,0.0377942,0.1$ $005911,0.1040516,0.078987,-0.1256755,-0.1373765,0.0119504,-0.0544146,-$ $0.0732315,0.037376,-0.1012299,0.1038741,-0.0793029,-0.1265092,0.137453$ $7,0.0120691,0.0541056,-0.0721322,-0.1793086,0.0005065,-0.1341976,0.000$ $3789,0.0851325,0.0004535,-0.08323,0.0002741,-0.049125$ Polar=71.2574507 , - $0.0178575,75.0611544,0.2106652,-0.0167894,80.002145 \backslash \mathrm{PG}=\mathrm{CO} 1 \quad[\mathrm{X}(\mathrm{C} 1 \mathrm{H} 304$ P1)] \NI mag = $0 \backslash \backslash 0.58994395,-0.00014868,0.55984401,0.01108715,0.00039283$, $0.43908909,-0.08146883,-0.00004828,-0.00574464,0.21873949,-0.00013625$, $-0.06067544,0.00032396,0.00004273,0.08724748,0.01237954,0.00044715,-0$.

Glucose-6-phosphate (3)

B3LYP/6-311++G(d,p) optimization in water

$1 \backslash 1 \backslash G \mid N C-C S I T 201 \backslash F O p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 6 H 1109 P 1(2-) \backslash R U B E N \backslash 16-M a y-$ $2006 \backslash 0 \backslash$ \#P FREQ RB3LYP/6-311++G(D,P) OPT(MAXCYCLE=900) GEOM=CHECK GUES S=READ SCRF (SOLVENT=WATER, PCM) POP=NBO
Title Card Required
-2,1\C, 2 $.5726969485,1.4284769594,-0.24901394751 C_{1}-2.5861764562,1.4198750609,1$. 2855044635 \C, - 1.1603533938 , 1.4381932128, 1.8318108586\C, - 0. 2857673877 , 0 $.379366117,1.1540322645$ \C, $-0.4050910045,0.4540827614,-0.3764415102$ C, 0 $.3160921956,-0.6882387036,-1.088916903510,-3.2692333403,2.5667588927,1$ $.7840968341 \backslash 0,-1.2241821932,1.2250556936,3.2430491153 \backslash 0,1.061453,0.592$ $9644593,1.579816337310,-1.7841456977,0.3456917159,-0.747687739410,1.69$ $86171931,-0.6425691998,-0.7435891173 \backslash 0,-3.8800206402,1.2531800174,-0.7$ 009611803 \P, 2. $7474988586,-1.862034482,-1.3503818353 \backslash 0,2.2239764851,-3$. $1836962587,-0.761643249510,4.0974270943,-1.397734629,-0.784589791610,2$ $.6248555064,-1.7706997224,-2.8814241077 \backslash H,-3.9356926535,1.5353594016$, 1.6393964258 I H, - 2. $1494642891,2.3771273953,-0.6181848554 \backslash H,-3.089041653$ $8,0.4981530998,1.6144339433 \backslash H,-0.7240581353,2.4279700917,1.62642333121$ H, - 0. $6309456457,-0.6152228607,1.47955862361$ H, $0.0009614616,1.4181253047$, - 0. 7240474764 \H, $-0.1246051373,-1.6443826214,-0.7792304329$ H, 0.1865256 922, - 0. $5801982705,-2.17160262681 H,-4.2287425891,2.4411749426,1.6431616$ 842 IH, - $0.3640149294,1.4745047044,3.6339083841$ \H, 1. $6205737104,0.0957658$ $438,0.9523152224 \backslash$ Version=| BM64-G03RevC. O2 S State $=1-A \backslash H F=-1254.3634326 \mid$ RMSD $=6.720 \mathrm{e}-09 \backslash \mathrm{RMSF}=7.879 \mathrm{e}-06 \backslash \mathrm{Di} \mathrm{pole} \mathrm{e}=10.5713333,7.4747436,3.3924601 \backslash \mathrm{P}$ $\mathrm{G}=\mathrm{CO} 1[\mathrm{X}(\mathrm{C} 6 \mathrm{H} 1109 \mathrm{P} 1)] \backslash$

B3LYP/6-311++G(d,p) frequencies in water

$1 \backslash 1 \backslash G|N C-C S| T 201 \backslash F r e q \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 6 H 1109 P 1(2-) \backslash R U B E N \backslash 16-$ May$2006 \backslash 0 \backslash 1$ \#P GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311++G1 D, P) FREQ\ITitle Card Required
-2,1\C, 2. $5726969485,1.4284769594,-0.2$ 490139475 \C, $-2.5861764562,1.4198750609,1.2855044635 \backslash C_{1}-1.1603533938,1$. $4381932128,1.8318108586 \backslash C_{1}-0.2857673877,0.379366117,1.1540322645$ \C, - 0 . $4050910045,0.4540827614,-0.3764415102$ C, $0.3160921956,-0.6882387036,-1$. $088916903510,-3.2692333403,2.5667588927,1.7840968341 \mid 0,-1.2241821932,1$, $2250556936,3.2430491153 \backslash 0,1.061453,0.5929644593,1.5798163373 \backslash 0,-1.784$ $1456977,0.3456917159,-0.747687739410,1.6986171931,-0.6425691998,-0.743$ $5891173 \backslash 0,-3.8800206402,1.2531800174,-0.7009611803 \backslash P, 2.7474988586,-1.8$ $62034482,-1.350381835310,2.2239764851,-3.1836962587,-0.761643249510,4$. $0974270943,-1.397734629,-0.784589791610,2.6248555064,-1.7706997224,-2$. 8814241077 \H, - 3. $9356926535,1.5353594016,-1.6393964258$ \H, - 2. 1494642891 , 2. $3771273953,-0.6181848554 \backslash H,-3.0890416538,0.4981530998,1.61443394331 H$, - 0. $7240581353,2.4279700917,1.6264233312$ IH, - $0.6309456457,-0.6152228607$, 1. 4795586236 IH, O. $0009614616,1.4181253047,-0.7240474764$ ।H, 0.124605137 3, - 1. $6443826214,-0.77923043291$ H, $0.1865256922,-0.5801982705,-2.17160262$ $68 \backslash H,-4.2287425891,2.4411749426,1.6431616842$ IH, $0.3640149294,1.4745047$ $044,3.6339083841$ |H, 1. $6205737104,0.0957658438,0.9523152224$ \Version=1 BM

64-G03RevC. 02 \State $=1-\mathrm{A} \backslash \mathrm{HF}=-1254.3634326 \backslash \mathrm{RMSD}=5.639 \mathrm{e}-09 \backslash \mathrm{RMSF}=7.874 \mathrm{e}-06$ \Dipole=-10.571333, 7.4747448, 3.3924594\DipoleDeriv=1.6414966, -0.298505 $1,0.1410703,-0.4704245,1.0885494,0.1230537,0.1358353,0.1070173,0.86282$ $48,0.5575657,-0.3209938,-0.2650797,-0.2425428,0.7411994,0.202338,-0.21$ $0728,0.1290326,0.2948186,0.2919427,0.0385593,0.060208,0.0300051,0.4227$ 15, - 0. $0027284,0.0145241,-0.0098807,1.0972707,0.9530494,0.0735201,0.248$ $971,0.0741773,0.3696299,-0.149514,0.0465641,-0.0325768,0.2052351,0.958$ $9398,0.0176235,0.0798579,0.0723203,0.3551713,-0.0857419,0.0889353,-0.0$ $847198,0.4126787,1.069354,-0.171872,-0.0430333,0.1337762,0.3860088,0.0$ $142153,0.2299307,-0.0927097,0.4243734,-0.8659112,0.419477,0.2459744,0$. $4287034,-1.0002967,-0.2011952,0.2261571,-0.1327366,-0.7996158,-0.53440$ $91,0.0954609,-0.0267956,0.0777535,-0.6832664,0.0067319,0.0132963,-0.04$ $46281,-1.4876731,-1.3663339,0.1158988,-0.0706937,0.0029708,-0.6960939$, $-0.0848832,-0.1695835,-0.0861786,-0.8924516,-1.6150512,0.3531962,-0.06$ $97068,0.5435723,-0.9631922,-0.1422832,0.0786592,-0.208411,-0.8103884, ~-$ $2.0132623,0.6267827,0.2018532,0.6307019,-1.4004539,-0.3371961,0.276119$ $1,-0.3486776,-1.0711669,-1.4458372,0.1061732,-0.3421065,0.0151692,-0.6$ $563791,-0.0791184,-0.3963903,-0.0595602,-0.7226124,3.5056886,0.0504202$, $0.0083842,-0.2262735,3.2776488,-0.0632263,-0.1113397,-0.0551052,3.315$ $1023,-1.2311776,-0.3172376,0.1420086,-0.1324263,-2.1304059,0.3618487,0$ $.1149376,0.4403094,-1.2952075,-2.2477943,-0.2610117,-0.342788,-0.33981$ $36,-1.1960172,-0.1196059,-0.4182932,-0.0998099,-1.268926,-1.1637721,0$. $0168272,-0.0215943,0.0500421,-1.127972,0.0766866,0.1296937,-0.0218292$, $-2.3934846,0.3741494,-0.0544822,0.0721792,-0.0861235,0.4590072,-0.0283$ $714,0.1377839,-0.0095406,0.5101233,-0.0726733,-0.0766414,-0.0123549,-0$ $.021174,-0.1192608,0.0136189,0.0466932,0.047258,-0.0078895,0.0008818$, -$0.0459173,0.0265368,0.0021209,-0.1139143,0.0017651,0.0408734,0.0223684$ $, 0.0336163,0.0213328,-0.0583334,0.0351343,-0.0519762,-0.0864362,0.0637$ $954,-0.0010374,0.0282743,-0.047693,-0.0558819,-0.0514141,0.004253,-0.0$ $988457,-0.1202003,0.0302882,0.0091018,0.0397603,0.0150749,-0.0419785$, -$0.0024996,0.0023287,-0.0886273,-0.1133007,0.0424012,0.0074144,0.045883$ $6,0.0093545,-0.068365,-0.0504704,0.0212434,-0.1333531,-0.0973536,0.035$ $503,0.0378974,0.0783655,0.0269584,-0.0134949,0.0236101,0.0004731,0.011$ $9814,0.0485524,0.01543,-0.0990274,0.0174738,-0.1877482,0.5262895,-0.07$ $95714,-0.0613213,-0.024619,0.3293596,-0.0521141,-0.0532638,-0.0479441$, $0.4447358,0.3767627,-0.0285028,0.1187618,-0.0182637,0.4463233,0.091232$ $4,0.0771942,0.0623149,0.4560421,0.4218653,-0.0938729,-0.1228773,-0.109$ $882,0.4671699,0.1316233,-0.1615115,0.1920525,0.6950617 \backslash \mathrm{Pol}$ ar $=196.52552$ $51,-6.5590627,176.2357407,0.447104,3.2653728,181.2990445 \backslash P G=C 01 \quad[X(C 6 H$ 1109P1)] \mid NI mag=0

Glucose-1-phosphate (4)

B3LYP/6-311++G(d,p) optimization in water

Abstract

$1 \backslash 1 \backslash G \mid N C-C S I T 204 \backslash F 0 p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 6 H 1109 P 1(2-) \backslash R U B E N \backslash 18-$ May $2006 \backslash 0 \backslash$ I \#P FREQ RB3LYP/6-311++G(D, P) SCRF=(SOLVENT=WATER, PCM) OPT(MAXC YCLE=900, GDIIS) $P O P=N B O \backslash T i t|e ~ C a r d ~ R e q u i r e d \backslash|-2,1 \backslash C,-0.4971205505,0.2$ $52710201,0.0225923174|C,-0.5233930943,0.1583921865,1.5536218031| C, 0.89$ $76693934,0.2104169321,2.1188374639 \backslash C, 1.8216071507,-0.8034573429,1.4494$ $892504 \backslash$ C, $1.7170213317,-0.6767710726,-0.0813323217 \backslash$ C, 2. $4674537514,-1.77$ $80029793,-0.8265556136 \backslash H,-0.0767150664,1.2166371848,-0.2971539933 \backslash 0,-1$ $2976517536,1.246749884,2.050633547610,0.798917016,-0.0127597962,3.529$ $20388510,3.1465692605,-0.5458792558,1.924693633210,0.3522748015,-0.802$ $9627788,-0.4818750575 \backslash 0,3.8571549221,-1.6989371999,-0.4794773224 \backslash 0,-1$. $7634608049,0.0721670714,-0.48970059461$ H, -0.9901286275,-0.7996693599, 1. 8273301184 \H, 1. 3039899925 , 1. 2165264483 , 1. 9353484226 (H,1.5076830687, -1. $8189362592,1.73895774891 H, 2.1133093619,0.3063050639,-0.38582070741 H, 2$. $0537659543,-2.752642806,-0.54062701851$ H, $2.3291111136,-1.6408067541,-1$. $9047480247 \backslash \mathrm{H},-1.3602079874,1.1636379021,3.0210998256 \backslash \mathrm{H}, 1.6123577529,0$. $3177453205,3.959536727 \backslash H, 3.7575149051,-1.0551651728,1.3657928861 \backslash \mathrm{P},-2$. $2939087737,0.8274858769,-1.9546391381$ H, $4.3215971923,-2.4909383521,-0.8$ $20973471810,-2.2196786667,-0.2756612815,-3.023249384910,-1.3241749463$, 1. $9991042927,-2.179195313310,-3.7328340722,1.2363404492,-1.60091749811$ IVersion=| BM64-G03RevC. O2 \State=1-A| HF=-1254.3576575\RMSD=6.945e-09|RM SF=1.011e-05\Dipole=10.2838467,-4.1780957,7.5062393\PG=C01 [X(C6H1109P 1)] $\mid 1$

B3LYP/6-311++G(d,p) frequencies in water

[^0]$274858769,-1.954639138 \backslash H, 4.3215971923,-2.4909383521,-0.8209734718 \backslash 0,-2$. $2196786667,-0.2756612815,-3.023249384910,-1.3241749463,1.9991042927$, 2. $179195313310,-3.7328340722,1.2363404492,-1.6009174981$ VVersion=| BM64 - GO3RevC. 02 \St ate=1-A\HF=-1254.3576575\RMSD=3.885e-09\RMSF=1.011e-05\D i pole=10. $2838478,-4.1780948,7.50623881$ Di poleDeriv=1.9083512, - 0.4839032 , 0. $5616891,-0.4025466,0.9751946,0.1707474,0.1179528,0.0384103,0.989038$ $8,0.6066285,-0.185787,-0.3280931,-0.1932908,0.7272065,0.2543241,-0.190$ $7619,0.2383589,0.2202753,0.2292811,-0.0032518,0.0550359,0.0514153,0.41$ $5407,-0.023493,-0.027011,-0.0428616,1.0626392,0.9369275,0.1693121,0.31$ $19152,0.0864665,0.3631543,-0.1341559,0.1063985,-0.0476935,0.2300987,0$. $8896902,-0.0242197,0.126465,0.1631551,0.3539687,-0.0939341,0.1217183$, -$0.1099785,0.4201539,1.0162727,0.0812947,0.1874094,-0.0002483,0.3707625$ $,-0.0813594,0.1142605,-0.0368307,0.4174218,-0.0655946,-0.0671561,-0.01$ $21571,-0.0469882,-0.0731607,-0.0540455,0.0818463,0.003303,0.0474176,-0$ $.9767139,0.2220636,0.165378,0.3057387,-0.9535653,-0.2957144,0.3088694$, $-0.37846,-0.7164535,-0.5944601,0.1406651,-0.0442369,0.1042079,-0.66543$ $2,0.0392662,0.0141459,-0.0074499,-1.5266283,-1.4147422,0.0359093,-0.19$ $27561,-0.0032193,-0.639272,0.0101792,-0.2415803,0.0149926,-0.8008046$, -$1.5939799,0.3539013,-0.1577287,0.5127436,-0.9336239,-0.0795096,0.06571$ $63,-0.1322278,-0.7494552,-1.3528364,0.0702748,-0.0532935,0.1035764,-0$. $5843477,0.0319953,0.0041128,0.023531,-0.7788953,-1.847247,0.2425502,-0$ $.8715982,0.0356293,-0.9594776,0.3635101,-0.8762413,0.4701488$, 1.803572 $2,-0.0135974,-0.0463451,0.0323183,-0.0132662,-0.144114,-0.0073467,0.01$ $82677,0.0280827,0.0300073,0.0257193,-0.053653,0.0331164,-0.0486862,-0$. $0933035,0.060299,0.004205,0.0215211,-0.044826,-0.0477951,-0.0478221,-0$ $.0038518,-0.093397,-0.1275423,0.025252,-0.0008121,0.0362001,0.0169585$, $-0.0370362,-0.0057713,0.000561,-0.0985799,-0.1158426,0.0330477,0.00439$ $13,0.0361625,0.0101615,-0.0677025,-0.054966,0.0107026,-0.0868937,-0.12$ $08782,0.0252157,0.0217173,0.0805814,0.0412068,-0.0260157,0.018655,-0.0$ $124506,0.0205906,0.0489091,0.0185248,-0.0635274,-0.0032272,-0.1948331$, $0.4763639,0.0249086,-0.0721655,0.046039,0.3487149,0.0532873,-0.0703377$, $0.0765332,0.455353,0.3863365,-0.0330831,0.1179334,-0.0107972,0.434816$ $1,0.1015881,0.0785347,0.0633525,0.4594657,0.4434329,-0.0691604,-0.0740$ $03,-0.0766191,0.4018913,0.0285049,-0.0474892,0.0465851,0.5692307,3.540$ $2742,0.0127891,0.0916885,-0.1650843,3.226847,0.0608069,0.4144759,0.132$ $7321,3.3538384,0.4615079,-0.0949134,-0.0716611,-0.1352935,0.4494386,-0$ $.0222016,-0.0689482,-0.0403792,0.4182205,-1.1674959,0.0172223,-0.00364$ $31,-0.0356737,-1.6985402,-0.7329315,-0.1517333,-0.6238636,-1.8328371$, -$1.5114399,-0.5495487,0.1314251,-0.4318108,-1.8794021,0.2925063,0.01874$ $77,0.2213051,-1.2276196,-2.3850363,0.3445296,0.1523006,0.3608984,-1.18$ $37101,-0.0660454,0.2280382,-0.1154762,-1.1504814 \backslash \mathrm{Pol}$ ar $=195.1519972,-5$. $7365448,175.9689371,4.7450888,4.4444847,182.4798793 \backslash P G=C 01 \quad[X(C 6 H 1109 P$ 1)] $\backslash \mathrm{N}|\mathrm{mag}=0 \backslash|$

Phosphoenolpyruvate (5)

Conformational searches at the PM3 level of theory were performed along both the C-Os-P-Ot dihedral and C(OO)-C-Os-P dihedral. Lowest energy conformers for C-Os-P-Ot were found at values of 180°, 60° and -60°. Since no difference in energy was obtained the choice made between these three structures was arbitrary. The lowest energy conformer for C(OO)-C-Os-P was found at a value of 180°. We note that phosphoenolpyruvate is usually listed as a very high energy with a standard free energy of hydrolysis of $-61.9 \mathrm{~kJ} / \mathrm{mol}$. However, of this total value only $-28.5 \mathrm{~kJ} / \mathrm{mol}$ is due to hydrolysis of the phosphoryl bond. The remaining $-33.6 \mathrm{~kJ} / \mathrm{mol}$ is due to the tautomerization of the enol form to the keto form (Garrett and Grisham, $3{ }^{\text {rd }}$ edition).

B3LYP/6-311++G(d,p) optimization in water

$1 \backslash 1 \backslash G I N C-C S I T 204 \backslash F O p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 3 H 206 P 1(3-) \backslash R U B E N \backslash 20-A p r-2$
$006 \backslash 0 \backslash \mid \# P$ B3LYP/6-311++G** OPT(MAXCYCLE=900) FREQ POP=NBO GEOM=CHECK G
UESS = READ SCRF (PCM, READ, SOLVENT=WATER)
Tit| e Card Required\} | - 3 , 1 \backslash C , 1 . $\\{6129628633,0.0462767553,1.8160713517 \backslash 0,1.5784298288,0.0194947267,3.077} \\{587277610,2.6563928159,0.1162088341,1.11447554581 \text { C, } 0.2609357429,-0.011} \\{6404754,1.0777654073 \backslash C_{1}-0.8943495181,-0.0872021107,1.7562617768 \text { \0,0. } 38} \\{89773276,0.0223794749,-0.2725222993 \backslash P,-0.8768871264,-0.0144415183,-1.4} \\{565620023 \backslash 0,-0.0358462484,0.0627520892,-2.740408863 \backslash 0,-1.7379824099,1 .} \\{2284607343,-1.1901654562 \backslash 0,-1.6013408361,-1.3533578523,-1.256426081 \backslash \mathrm{H} \text {, }} \\{-0.8632663635,-0.1079070259,2.8359931271 \text { IH, -1.8497650927,-0.1275792706 }} \\{\text {, 1. } 251524702 \text { \IVersion=| BM64-G03RevC. O2 S State=1-A\HF=-908.9719364 \RMSD= }} \\{\text { 5. } 291 \mathrm{e}-09 \text { \RMSF=9.848e-05\Dipole=-0.8314953,-0.0941396, 2.0803087\PG=C01 }} \\{\text { [X (C3H2O6P1)] \ @ }} \end{array}$

B3LYP/6-311++G(d,p) frequencies in water

```
1\1\GINC-CSIT204\Freq\RB3LYP\6-311++G(d,p)\C3H2O6P1(3-)\RUBEN\20-Apr-2
    006\0\\#P GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311++G(D
    ,P) FREQ\\Tit|e Card Required\\-3,1\C,1.6129628633,0.0462767553,1.8160
    713517\0,1.5784298288,0.0194947267,3.0775872776\0, 2.6563928159,0.11620
    88341,1.1144755458\C,0.2609357429,-0.0116404754,1.0777654073\C, -0.8943
    495181,-0.0872021107,1.7562617768\0,0.3889773276,0.0223794749, - 0. 27252
    22993\P, -0.8768871264,-0.0144415183,-1.4565620023\0, - 0.0358462484,0.06
    27520892,-2.740408863\0, -1.7379824099,1.2284607343,-1.1901654562\0, -1.
    6013408361,-1.3533578523,-1.256426081\H,-0.8632663635,-0.1079070259, 2.
    8359931271\H, - 1.8497650927,-0.1275792706,1.251524702\\Version=| BM64-G0
    3RevC.02\State=1-A\HF=-908.9719364\RMSD=3.268e-09\RMSF=9.848e-05\Di pol
    e=-0.8314951,-0.09414, 2.0803085\ Di pol eDeriv=2.514091,0.1327372,-0.6116
    148,0.1225345,0.3195092,-0.0733673,-0.310872,-0.060833, 2.6264922,-1.02
    25538,-0.0148507,-0.269011,-0.0177387,-0.6639621,0.0235409,-0.0815051,
    0.0341659,-2.5143588,-2.2475932,-0.1039189,0.9509195,-0.0884297,-0.693
    7383,0.0545729,0.4437772,0.0362688, -1.3201859, - 0.019183,0.0108013, - 0.5
    486062,0.006161,0.0166701,-0.0667428,-0.466874,-0.0673649,1.9764926,-0
    .4280384, - 0.0077065,0.5837095,0.0002735,-0.5510004,0.0269198,0.218989,
    0.0113291,-0.4642282,-1.1281203,-0.0130742,-0.643645,-0.0294053,-0.608
    9502,0.0207952, -0.0634314,0.04377739, -2.9220833, 2.9258469, - 0.0271868,00.
    3492887, -0.0137576, 3. 374133,0.0068302,-0.2857605, - 0.0192846, 3.7188111,
    -1.3939095,-0.0281573,0.605326,-0.0280733,-1.149072,0.0595848,0.633541
```

5, 0. $0581583,-2.2345296,-1.4750019,0.5674479,-0.1075815,0.61287,-1.9658$ $061,0.0375542,0.0488122,-0.0964549,-1.1762041,-1.3536846,-0.4992975,-0$ $.125315,-0.5471804,-2.0897926,-0.0913256,0.0101002,0.0559822,-1.171633$ $, 0.1139364,-0.0049199,-0.009035,-0.005494,0.2093527,0.004838,0.0160476$ $, 0.0064441,-0.0572479,-0.0392609,-0.0118103,-0.0681137,-0.0117255,0.20$ $61634,-0.0010673,-0.0674352,-0.0009218,0.0646065 \backslash \mathrm{Pol}$ ar $=137.2049077,2.2$ $367921,100.5334237,-11.4268649,-1.4249443,140.65170221 \mathrm{PG}=\mathrm{CO} 1 \quad[\mathrm{X}(\mathrm{C} 3 \mathrm{H} 206$ P1)] \NI mag=0
0.60167233, 0.02287574, 0. 22329165, -0.10984892, -0.01648388 , $0.73561786,-0.10376472,-0.00149320,0.00507506,0.11186395,-0.00082351$, $-0.07668215,0.00697014,0.00478832,0.02991973,-0.02738170,0.00558086,-0$

Methyl diphosphate (6)

The initial conformation for a diphosphate structure was obtained from prior work ${ }^{98}$ (Hwang et al). A conformation search about Os $\beta-\mathrm{P} \alpha-\mathrm{Os} \alpha-\mathrm{C}$ was performed at the PM3 level to obtain the best dihedral for the methyl group. As detailed by both Hwang et al and Meagher ${ }^{99}$ et al unnaturally strong hydrogen bonds between $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{P}$ are observed in the lowest energy structures. To alleviate this problem, the C-O-P-O dihedral was fixed at 180°.

B3LYP/6-311++G(d,p) optimization in water

$1 \backslash 1 \backslash G \mid N C-D I R A C \backslash F O p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 307 P 2(3-) \backslash R U B E N \backslash 12-M a y-200$ $6 \backslash 0 \backslash \mid \# P$ FREQ RB3LYP/6-311++G(D, P) OPT (MAXCYCLE=900, GDIIS) POP=NBO SCRF (PCM, SOLVENT = WATER) \|adp_a||||-3,1\0,-1.6917835881, 0.7206049278,-1.564 $4833397 \backslash$ P, - $1.7303841502,0.8193183749,-0.0334555305 \backslash 0,-0.1335432585,0.4$ $561595206,0.5147710374 \backslash \mathrm{P}, 0.946339712,-0.717498134,0.307928854410,1.640$ $0741703,-0.9666614912,1.636522448 \backslash 0,-1.8998925996,2.2511495957,0.50165$ $50555 \backslash 0,1.9966689803,0.1048767444,-0.68366968810,0.4041639871,-1.92319$ $74447,-0.432037496210,-2.6337612115,-0.2153792029,0.6542863861 \backslash C, 3.257$ $7598076,-0.5018246746,-0.9855816726$ (H, $3.1226322834,-1.4712561935,-1.47$ 677539731 H, $3.8540906956,-0.6367165276,-0.0780538784 \backslash H, 3.7819729096,0.1$ $711959566,-1.6651357716 \backslash$ Version=|A64L-G03RevC.O1 St ate=1-A\HF=-1250.0 847727 \RMSD=4.910e-09\RMSF=8.668e-05\Dipole=5.6586531,-0.8261723,-1.12 80312 |PG=C01 [X(C1H307P2)]
@

B3LYP/6-311++G(d,p) frequencies in water

$1 \backslash 1 \backslash G|N C-D| R A C \mid F r e q \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 307 P 2(3-) \backslash R U B E N \backslash 12-M a y-200$ $6 \backslash 0 \backslash \ \# P$ GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311++G/D, P) FREQ\|adp al|||-3,1\0,-1.6917835881,0.7206049278, -1.5644833397\P, -1. $7303841502, \overline{0} .8193183749,-0.033455530510,-0.1335432585,0.4561595206,0.5$ $147710374 \backslash P, 0.946339712,-0.717498134,0.3079288544 \backslash 0,1.6400741703,-0.96$
$66614912,1.636522448 \backslash 0,-1.8998925996,2.2511495957,0.5016550555 \backslash 0,1.996$ $6689803,0.1048767444,-0.68366968810,0.4041639871,-1.9231974447,-0.4320$ 374962 \O, - 2. $6337612115,-0.2153792029,0.6542863861$ C, 3. $2577598076,-0.50$ $18246746,-0.9855816726$ H, $3.1226322834,-1.4712561935,-1.47677539731$ H, 3. $8540906956,-0.6367165276,-0.0780538784 \backslash H, 3.7819729096,0.1711959566,-1$. $6651357716 \backslash$ IVersion=|A64L-G03RevC. 01 \St ate=1-A\HF=-1250.0847727\RMSD=3 . $305 \mathrm{e}-09$ \RMSF=8. $667 \mathrm{e}-05 \backslash$ Dipole=5. $6586534,-0.826172,-1.1280316 \backslash$ DipoleDe riv $=-1.1631293,0.0492613,-0.0115698,0.01404,-1.1107661,0.0082863,-0.15$ $38397,0.0582314,-2.3756116,3.5891956,-0.3311148,-0.1211957,-0.0115813$, $3.4589495,0.0312452,0.0672999,-0.1162623,3.3389994,-2.827842,0.9518414$, - 0. $320199,1.0289082,-1.6927884,-0.0136366,-0.2825591,-0.0324591,-1.09$ $42279,3.5807478,-0.1857747,0.2039949,-0.2583533,3.2588198,-0.1049762$, -$0.1323257,0.1738717,3.2231026,-1.3600416,0.1259339,-0.5016595,0.103076$ $8,-1.1110481,0.1766095,-0.4365055,0.1846923,-2.0000706,-1.1745473,0.19$ $47747,0.0891738,0.2439377,-2.3315223,-0.4128881,0.1017481,-0.4262259$, -$1.2782016,-1.8408062,-0.0498885,0.4991136,-0.1315744,-1.0446786,0.2243$ $737,0.59977,0.1619965,-1.14009,-1.1966251,-0.1995278,-0.1551823,-0.236$ $1793,-1.8428143,-0.3764757,-0.1543419,-0.4561794,-1.2601966,-1.7083112$, - 0. $4280381,0.3687209,-0.5580622,-1.5931012,0.3490506,0.4136418,0.3715$ $908,-1.3696638,0.8788142,-0.1774419,-0.1264948,-0.3469839,0.4782777,0$. $1468224,-0.0525893,0.0576176,0.4228746,-0.0053518,-0.0333612,-0.013204$ 5, 0. $0763606,-0.1290057,-0.1377668,0.0151809,-0.1061541,0.0148089,-0.08$ $6469,0.0386731,-0.0499279,0.0698624,0.0605677,-0.0182183,-0.1558726,0$. $0192627,-0.0851898,-0.0498429,-0.0268478,0.0874306,-0.0649458,-0.01373$ $23,0.1007064,0.1173511,0.0787891,-0.0135136 \backslash \mathrm{Pol}$ ar $=122.9377474,-3.04047$ $99,118.1837256,-1.0542544,1.1767369,118.1043935 \backslash P G=C 01 \quad[X(C 1 H 307 P 2)] \backslash N$ I mag $=0 \backslash \backslash 0.05153831,0.00890108,0.04160694,-0.00884914,0.01345075,0.4038$ $9540,-0.06060289,-0.00030098,0.01468567,0.35721617,-0.00090966,-0.0681$ $1390,-0.01843944,0.08145084,0.63314014,0.02019317,-0.02615460,-0.34511$

Methyl triphosphate (7)

The initial conformation for a triphosphate structure was obtained from prior work ${ }^{98}$ (Hwang et al). A conformation search about Os $\beta-\mathrm{P} \alpha-\mathrm{Os} \alpha-\mathrm{C}$ was performed at the PM3 level to obtain the best dihedral for the methyl group. As detailed by both Hwang et al and Meagher ${ }^{99}$ et al unnaturally strong hydrogen bonds between $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{P}$ are observed in the lowest energy structures. To alleviate this problem, the C-O-P-O dihedral was fixed at 180°.

B3LYP/6-311++G(d,p) optimization in water

Abstract

$1 \backslash 1 \backslash G \mid N C-C S I T 215 \backslash F O p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 3010 P 3(4-) \backslash R U B E N \backslash 08-M a y-$ $2006 \backslash 0 \backslash$ I \#P B3LYP/6-311++G** OPT(MODREDUNDANT, MAXCYCLE=900, GDIIS) FREQ $P O P=N B O$ SCRF (PCM, SOLVENT=WATER) $\quad|O P(1 / 8=1) \backslash \backslash i t| e ~ C a r d ~ R e q u i r e d \backslash-4,1 \backslash$ $0,-2.5017375935,0.1672912145,-2.122045395$ \P, - 2. $4714207874,0.1693667596$, - 0. $611846478810,-0.9564068824,0.1635357411,-0.0130493061 P, 0.544824858$ $6,-0.2304177842,-0.633660573 \backslash 0,1.2921753103,-0.2228711409,0.7934080647$ IP, 2. $9102450687,-0.5121852031,1.322021862810,3.2728674079,0.7994073572$, 2. $0371631413 \backslash 0,2.7548131455,-1.7141150433,2.2675519762 \backslash 0,3.7338211652$, - 0. $7984755431,0.0602312523 \backslash 0,1.0051182003,0.9096229174,-1.51524011041$ $0,0.4671239685,-1.6210127246,-1.224936295610,-2.8578107165,1.678092611$ 8, - 0. $05567132 \backslash 0,-3.2910714544,-0.8654817403,0.1286440235 \backslash \mathrm{C},-4.12727359$ $18,2.2396077247,-0.41435390881 H,-4.0375358459,3.3228623612,-0.32564036$ 92 IH, - $4.393165307,1.9873916069,-1.4447801382$ IH, -4.9115348029,1.8826939 $021,0.2603735468$ \ \Version=| BM64-G03RevC. 02 IState=1-A\HF=-1817.47308321 RMS D $=4.836 e-09 \backslash$ RMSF $=4.026 e-04 \backslash$ Di pole $=-7.7448309,3.5960509,-1.0694001 \backslash P$ $\mathrm{G}=\mathrm{Co1}[\mathrm{X}(\mathrm{ClH3010P3)]} \mathrm{\backslash} \mathrm{\ @}$

B3LYP/6-311++G(d,p) frequencies in water

$1 \backslash 1 \backslash G|N C-C S| T 215 \backslash F r e q \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 3010 P 3(4-) \backslash R U B E N \backslash 08-M a y-$ $2006 \backslash 0 \backslash$ I P GEOM=ALLCHECK GUESS=READ SCRF=CHECK TEST GENCHK RB3LYP/6-31 $1++G(D, P) \quad F R E Q \backslash \backslash i t \mid e ~ C a r d ~ R e q u i r e d \backslash 1-4,1 \backslash 0,-2.5017375935,0.1672912145$, - 2. $122045395 \backslash$, - 2. $4714207874,0.1693667596,-0.611846478810,-0.95640688$ $24,0.1635357411,-0.013049306 \backslash P, 0.5448248586,-0.2304177842,-0.633660573$ । 0, 1. $2921753103,-0.2228711409,0.7934080647 \backslash \mathrm{P}, 2.9102450687,-0.512185203$ 1, 1. $3220218628 \backslash 0,3.2728674079,0.7994073572,2.0371631413 \backslash 0,2.7548131455$, -1. $7141150433,2.267551976210,3.7338211652,-0.7984755431,0.06023125231$ $0,1.0051182003,0.9096229174,-1.5152401104 \backslash 0,0.4671239685,-1.6210127246$, - $1.2249362956 \mid 0,-2.8578107165,1.6780926118,-0.05567132 \backslash 0,-3.291071454$ $4,-0.8654817403,0.1286440235 \backslash C_{,}-4.1272735918$, 2. $2396077247,-0.414353908$ 8। H, - 4. $0375358459,3.3228623612,-0.3256403692$ IH, -4.393165307, 1.98739160 69, - 1.44478013821H, - 4.9115348029,1.8826939021, 0. 26037354681 iVersion=1 B M64-G03RevC. 02 S State $=1-\mathrm{A} \backslash \mathrm{HF}=-1817.4730832$ \RMSD=2.739e-09\RMSF=4.026e-0 $4 \backslash$ Dipole $=-7.7448309,3.596051,-1.069401 \backslash$ Di pole Derive-1.1480681, -0.00181 $66,-0.1214859,0.0287742,-1.027067,0.0412108,-0.1183883,-0.0382154,-2.0$ $507885,3.7353832,-0.0120907,-0.1176866,-0.1333102,3.2168195,-0.1232891$, 0. $1164003,-0.0563307,3.1423772,-3.4510308,0.3458604,-0.0140583,0.2985$ $491,-0.9871681,-0.0651914,-0.0162114,-0.0505351,-1.1860982,3.9295886$, -$0.0232481,0.2200157,-0.1016771,3.3088057,-0.040129,0.2251348,-0.065451$ $7,3.4318563,-2.5567434,0.2051164,-1.0377913,0.2091679,-0.9897011,0.088$ $5828,-1.1731215,0.1051805,-2.1497237,3.5016223,0.038682,0.4181973,-0.0$ $21274,3.399023,-0.0749693,0.0797403,0.0043116,3.5069658,-1.2371369,-0$. $2907304,-0.2400457,-0.3544508,-2.0341623,-0.5766145,-0.2184357,-0.5303$ $482,-1.4867584,-1.1269957,-0.0735481,0.0007095,-0.0020096,-1.9047528,0$ $.6947009,-0.015445,0.6482321,-1.7116541,-1.6950319,0.159404,0.5010362$, $0.17443,-1.1509479,-0.1650286,0.6001789,-0.1843622,-1.7810661,-1.23097$ $23,-0.2207809,0.1511337,-0.287449,-1.7085471,0.5731903,0.1867884,0.509$ $7534,-1.4654348,-1.1284251,-0.0768035,-0.0807671,0.0082566,-1.9920719$, $-0.4540484,-0.0428202,-0.4004526,-1.2365475,-1.3907918,0.5219626,0.012$ $4723,0.6642982,-1.735014,-0.2167885,-0.012389,-0.234393,-0.8904833,-1$. $4909931,-0.4493535,0.320111,-0.3957584,-1.5581997,0.3639268,0.3126103$, $0.3985381,-1.3108175,0.9178859,-0.3105613,0.0465585,-0.1825558,0.43635$ $24,-0.0577217,0.1589304,-0.1515552,0.4039679,0.0118241,-0.0033112,-0.0$ $092052,0.0495212,-0.1730515,-0.0103137,-0.0069511,-0.016947,0.0939367$, $-0.004593,0.0405526,-0.0304096,-0.0121204,0.0792623,-0.0534994,-0.1085$ 626, 0. $005424,-0.1151207,-0.1508813,0.0405595,0.0829466,-0.0546696,0.03$ $23457,0.0699412,0.1257264,0.0532572,-0.02710891 \mathrm{Pol}$ ar $=166.0541383,-1.45$ $12759,162.0535244,1.4141698,-2.3065663,161.2688749 \backslash P G=C 01 \quad[X(C 1 H 3010 P 3$)] \NI mag $=0 \backslash \backslash 0.05214828,0.00473526,0.05698219,0.00027031,0.00313283,0.4$ $8415947,-0.06327161,-0.00051507,-0.00128207,0.49452460,-0.00023662,-0$. $06159239,0.00182498,0.09567872,0.50273910,0.00613277,0.00622999,-0.424$ $76433,-0.06079902,-0.09245930,0.73420158,-0.01163953,-0.00030309,-0.02$

Acetyl phosphate (8)

Conformational searches at the PM3 level of theory were performed along both the C-Os-P-Ot dihedral and C-C-Os-P dihedral. Lowest energy conformers for C-Os-P-Ot were found at values of $180^{\circ}, 60^{\circ}$ and -60°. Since no difference in energy was obtained the choice made between these three structures was arbitrary. The lowest energy conformer for C-C-Os-P was found at a value of 0°.

B3LYP/6-311++G(d,p) optimization in water

```
1\1\GINC-NEWTON\FOpt\RB3LYP\6-311++G(d,p)\C2H305P1(2-)\RUBEN\21-Apr-20
06\0\\#P B3LYP/6-311++G** OPT(MAXCYCLE=900) FREQ POP=NBO SCRF(PCM,SOLV
ENT=WATER)\\acety\ fingas\\-2,1\C,-1.9947410001,0.1120409261,-0.90464
51538\C, -1.6047270713,0.1403632436,0.5517578332\0, - 0. 3222092485 2,0.0571
307537,0.8654032168\P,1.1164097364, -0.090525793,-0.216814171\0,1.05979
63472,1.1763937368,-1.0680574333\0, - 2.4408857356,0.2350434132,1.446409
9382\0,0.8803413508, -1.4079827431, - 0.95251953310, 2. 205440801, - 0. 117769
9014,0.8537996501\H,-1.6671739973,-0.8308762063,-1.3487472549\H,-3.072
8065393,0.2259114752, -1.0015013605\H, -1.4701593062,0.9059045349, -1.440
5016051\\Version=| A64-Li nux-G03RevB.05\State=1-A\HF=-796.0952422\RMSD=
2.630e-09\RMSF=4.066e-05\Di pole=-3.3535525,0.2118988,-0.8442703\PG=C01
    [X(C2H305P1)]\\@
```


B3LYP/6-311++G(d,p) frequencies in water

```
1\1\GINC-NEWTON\Freq\RB3LYP\6-311++G(d,p)\C2H305P1(2-)\RUBEN\21-Apr-20
06\O\\#P GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311++G(D,
P) FREQ\\acety\ fin gas\\-2,1\C,-1.9947410001,0.1120409261,-0.90464515
38\C, -1.6047270713,0.1403632436,0.5517578332\0, - 0.32209244852,0.0571307
537,0.8654032168\P,1.1164097364, - 0.090525793, - 0. 216814171\0, 1.05979634
72,1.1763937368, -1.0680574333\0, - 2.4408857356,0.2350434132,1.446409938
2\0,0.8803413508, -1.4079827431,-0.952519533\0, 2. 205440801, - 0. 117769901
4,0.8537996501\H,-1.6671739973,-0.8308762063,-1.3487472549\H,-3.072806
5393,0.2259114752,-1.0015013605\H,-1.4701593062,0.9059045349, -1.440501
6051\\Version=| A64-Linux-G03RevB.05\St ate=1-A\HF=-796.0952422\RMSD=5.8
71e-09\ RMSF=4.067e-05\ Di pole=-3.3535528,0.2118987,-0.8442702\Di pol eDer
iv = - 0.070926, -0.0034281, -0.1105144, -0.0043832,0.0479423,-0.0253217, -0.
1041035,-0.012871,-0.4563441,3.1124134,-0.2256446,-0.6340024,-0.212672
```

```
5,0.3703492,0.1006067,-0.2146509,0.0767912,1.7659875,-3.0700423,0.2030
292,0.6478288,0.1815423,-0.6554726, -0.0639454,0.0023496, -0.01918, -1.11
30604,3.6436661, -0.0190637,0.1674961, -0.0316195,3.3319556, - 0.0224708,.
0.1252773,0.0010123,3.1368245,-1.1998218, - 0.0309936,0.01823388, - 0.17294
77,-1.9059549,0.5901148,0.136505,0.484,-1.4499526,-1.7961908,0.1183679
,0.6839417,0.1287131,-0.5687771,-0.084598,0.9730151,-0.1124816,-1.5152
919,-1.1808345,-0.0789686,-0.0625924,0.0758611,-2.0146194,-0.534143,0.
0639791, - 0.4508547,-1.3616585,-1.8391672,0.023164, - 0.5920338,0.0164695
,-1.1344685,0.0210628,-0.7217304,0.0312267,-1.6014492,0.1433173,0.0448
393,-0.0287969,0.03398,0.0063552,-0.0505098, - 0.0026783,-0.020462,0.061
7857, - 0. 1358324,0.0234775,-0.04609008,0.0259989,0.1074404,0.005291, -0.0
048331,-0.001598,0.0677921,0.1337407, -0.0627005, -0.01113705, -0.0490586,
0.0399667,0.0609556,0.0086909,0.0224517,0.0521734\Polar=105.441716, -1.
9545666,81.1408093,-4.1821102,0.8845545,93.3016326\PG = C01 [X(C2H305P1)
]\NI mag=0\\0.60781238,-0.00780615,0.52604114, - 0.02538486, - 0.00237366,0
.47077584,-0.09147613,-0.00113793,-0.02730728,0.66056445, - 0.00164602,-
0.09394955,-0.00072115,-0.03644671,0.23829514,-0.03552838,0.00051138,-
0.17168350, - 0.14389770,0.02939172,0.73497422, - 0.02070377,0.00205367,-0
```


1,3 bisphosphoglycerate (9)

The large number of dihedral angles present in this structure created difficulties in finding the lowest energy structure. Initial conformations were generated from crystal structures of 3-phosphosglyceric acid phosphorylated at alternate oxygen atoms at the acid end. The three different 3-phosphosglyceric acid structures used were each obtained from the pdb database in complex with enzyme structures.

Watson, H.C., Walker, N.P., Shaw, P.J., Bryant, T.N., Wendell, P.L., Fothergill, L.A., Perkins, R.E., Conroy, S.C., Dobson, M.J., Tuite, M.F., et, al. Sequence and structure of yeast phosphoglycerate kinase. EMBO J. vl pp.1635-1640, 1982
Crowhurst, G.S., Dalby, A.R., Isupov, M.N., Campbell, J.W., Littlechild, J.A. Structure of a phosphoglycerate mutase:3-phosphoglyceric acid complex at 1.7 A. Acta Crystallogr., Sect.D $v 55$ pp.1822-1826, 1999
Kovari, Z., Flachner, B., Naray-Szabo, G., Vas, M. .Crystallographic and Thiol-Reactivity Studies on the Complex of Pig Muscle Phosphoglycerate Kinase with ATP Analogues: Correlation between Nucleotide Binding Mode and Helix Flexibility Biochemistry v41 pp.8796-8806, 2002

In all 6 different structures were used as starting configurations for optimization at higher levels of theory. The lowest energy structure was found was used for Figure 1 in the main text.

B3LYP/6-311++G(d,p) optimization in solvent

Abstract

$1 \backslash 1 \backslash G|N C-C S I T 213 \backslash F O p t| R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 3 H 4010 P 2(4-) \backslash R U B E N \backslash 06-M a y-$ $2006 \backslash 0 \backslash$ I \#P B3LYP/ 6-311 + +G** OPT (MAXCYCLE=900) FREQ POP =NBO SCRF (PCM, SO LVENT=WATER) GEOM(CHECK, STEP=13) GUESS=READ IOP(1/8=1)
Tit|e Card Req uired $\backslash \mid=4,1 \backslash 0,2.1895647978,0.4502859557,-0.0157472128 \backslash \mathrm{C}, 1.1823342612$, $0.2789773914,-0.4340378655$ \0, 1. $2096630174,-1.4733791925,-0.691889426 \backslash C$, - $0.1101795061,0.5348771265,-0.650043111810,-0.0228364297,1.8848829438$, - 0. $2180601783 \backslash C_{, ~-~}^{\prime} .2938043601,-0.1235610745,0.0505825651 \backslash 0,-2.5026418$ 88, 0. $4301847341,-0.45169038331$ P, - $3.9857154786,-0.1353437386,0.15974599$ 8910, - 3. $9854416774,0.2077542544,1.6628805266 \backslash 0,-4.0109424633,-1.650148$ $3781,-0.1264865944 \backslash 0,-4.9893167738,0.6819132707,-0.6731532086 \backslash \mathrm{H},-0.293$ $8932395,0.4933664267,-1.73688535931 H, 0.8154381088,2.2659712198,-0.5445$ $8019691 \mathrm{H},-1.2108351138,0.0511676429,1.1317535491 \backslash H,-1.2614079013,-1.20$ $10885099,-0.13456934681$ P, $3.9117579017,-0.0781382227,0.20792359910,4.32$ $49651515,-0.5596495607,-1.180078364810,3.8363369446,-1.1379001301,1.30$ $34257951 \backslash 0,4.4993942495,1.2659036875,0.6370775287$ \VErsion=| BM64-G03Re vC. O2 $\operatorname{State}=1-\mathrm{A} \backslash \mathrm{HF}=-1552.831585 \backslash \mathrm{RMSD}=2.975 \mathrm{e}-09 \backslash \mathrm{RMSF}=8.194 \mathrm{e}-05 \backslash \mathrm{Di} \mathrm{pole}=2$. $1753242,1.6788858,-1.7090508 \backslash P G=C 01[X(C 3 H 4010 P 2)] \backslash \mid @$

B3LYP/6-311++G(d,p) frequencies in solvent

$1 \backslash 1 \backslash G|N C-C S| T 213 \backslash F r e q \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 3 H 4010 P 2(4-) \backslash R U B E N \backslash 06-M a y-$ 20061011 \#P GEOM=ALLCHECK GUESS =READ SCRF=CHECK TEST GENCHK RB3LYP/6-31 $1++G(D, P) \quad F R E Q \backslash|T i t| e ~ C a r d ~ R e q u i r e d \backslash \mid-4,1 \backslash 0,2.1895647978,0.4502859557$, - 0.0157472128\C, 1. 1823342612 , - 0. 2789773914 , - 0. 4340378655 \0, 1.209663017 $4,-1.4733791925,-0.691889426 \backslash C_{,}-0.1101795061,0.5348771265,-0.650043111$ 810, - 0.0228364297, 1.8848829438, - 0. $2180601783 \mid C_{1}-1.2938043601,-0.123561$ $0745,0.0505825651 \backslash 0,-2.502641888,0.4301847341,-0.4516903833 \backslash P,-3.98571$ $54786,-0.1353437386,0.159745998910,-3.9854416774,0.2077542544,1.662880$ $526610,-4.0109424633,-1.6501483781,-0.126486594410,-4.9893167738,0.681$ $9132707,-0.6731532086 \backslash \mathrm{H},-0.2938932395,0.4933664267,-1.73688535931 \mathrm{H}, 0.8$ $154381088,2.2659712198,-0.54458019691 H,-1.2108351138,0.0511676429$, 1. 13 $17535491 \backslash H,-1.2614079013,-1.2010885099,-0.1345693468 \backslash \mathrm{P}, 3.9117579017,-0$ $0781382227,0.20792359910,4.3249651515,-0.5596495607,-1.1800783648 \backslash 0,3$ $.8363369446,-1.1379001301,1.303425795110,4.4993942495,1.2659036875,0.6$ $370775287 \backslash$ Version=| BM64-G03RevC. O2 1 State $=1$ - A\HF=-1552.831585\RMSD=2. 5 92e-09\RMSF=8. 194e-05\Dipole=2.1753237,1.6788856, -1.7090506\Dipolederi $v=-2.9593829,-0.441194,-0.6028073,-0.3290236,-1.1938523,-0.1969985,-0$. $6354635,-0.2221167,-0.8015075,2.0975095,0.2764421,0.4755373,0.742246,2$ $.1029412,0.5898898,0.688346,0.4560943,0.6012237,-0.8957419,0.1237023$, -$0.0481032,-0.3213639,-1.9072219,-0.3865405,-0.1713231,-0.3434251,-0.62$ $50698,-0.0576067,0.2244455,0.0228667,0.0516894,1.022816,0.1987573,-0.0$ $087062,0.2383973,0.4409282,-0.6388766,-0.0903084,-0.09254,-0.0242771$, -$1.4191027,-0.1459115,-0.0933282,-0.1086698,-0.6378064,1.18659,-0.19900$ $09,0.1045632,-0.2272095,0.3749208,-0.0041705,0.3060353,0.0491043,0.443$ $357,-2.4754568,-0.0783385,0.1623182,-0.0744201,-0.921733,0.1725265,0.1$ $374499,0.1693578,-0.9725715,3.4669891,-0.1931349,0.1754851,0.0622363,3$ $.2834636,0.0842906,-0.0786832,0.0991456,3.290361,-1.2108079,0.0438335$, $0.0688668,0.0264244,-1.1942264,-0.3096616,0.2175186,-0.2973072,-2.3097$ $405,-1.2290646,-0.0938141,-0.0429805,-0.2415545,-2.3153269,-0.2413164$, $-0.016317,-0.2707659,-1.1752905,-1.8179257,0.4919876,-0.4911057,0.5185$ $45,-1.4778538,0.3526634,-0.5260077,0.3599081,-1.4966263,0.0298427,0.01$ $37234,-0.022892,0.0176854,-0.0315078,-0.0137793,-0.009001,-0.0880568$, -$0.0953762,0.4422566,0.0578532,0.05685,0.0113549,0.4878944,-0.0581242,0$ $.0680153,-0.103288,0.3940246,-0.0419421,0.0048897,-0.0169668,0.0266497$ $, 0.0625242,-0.0524089,-0.1049944,-0.0092316,-0.1853911,0.0194424,-0.00$ $15011,-0.0139211,0.0940741,-0.1295989,-0.0111959,-0.0325229,-0.0485665$, $0.0518104,3.592817,0.4161203,0.1491684,-0.0274884,3.1988983,-0.047716$ $7,0.0445481,0.0423137,3.4151952,-1.3546226,0.0952129,0.2954978,0.18432$

88, - $1.1448253,-0.2591955,0.5128098,-0.3152118,-2.0271376,-1.1797685,-0$, $0257363,-0.0188159,0.1550721,-1.5835654,0.6140395,-0.1506406,0.598076$ $3,-1.7677496,-1.3906058,-0.4917009,-0.1728314,-0.5775617,-2.0378035,-0$. $3304292,-0.1810862,-0.2971159,-1.2244557$ \Polar=188.9086142, 2.0093474, $176.7412186,6.6742963,4.6568113,163.3331641 \backslash \mathrm{PG}=\mathrm{Co1}[\mathrm{X}(\mathrm{C} 3 \mathrm{H} 4010 \mathrm{P} 2)]$ I NI ma $g=0 \backslash 1 \backslash .36360438,0.10791012,0.26075083,0.09670291,0.07432069,0.10018934$, - 0. $23827883,-0.07895276,-0.06037901,0.53830234,-0.03919369,-0.1447026$ $7,-0.03010042,-0.00239389,0.83914220,-0.05278658,-0.03834613,-0.085614$

Carbamyl phosphate (10)

B3LYP/6-311++G(d,p) optimization in water

$1 \backslash 1 \backslash G \mid N C-C S I T 216 \backslash F O p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 2 N 105 P 1(2-) \backslash R U B E N \backslash 02-M a y$ - $2006 \backslash 0 \backslash$ I RF (PCM, SOLVENT =WATER)
Cphos fin_gas
-2, 1\N, -1. $6037215947,0.197293490$ 7, - 1. $3217258596 \backslash C_{1}-1.6984985901,-0.0685966443,0.000911493410,-0.554692$ $3467,-0.2809128772,0.66222366581 \mathrm{P}, 1.1214099104,0.0190317163,0.12815651$ $96 \backslash 0,1.3227665969,1.5018517634,0.4340934274 \backslash 0,-2.7748926464,-0.1188391$ $152,0.6071319385 \backslash 0,1.1069073268,-0.3412551664,-1.3649704236 \mid 0,1.869435$ $5496,-0.9553394671,1.03157368551 \mathrm{H},-2.4606363419,0.2451900097,-1.861366$ $14631 \mathrm{H},-0.699665451,0.0558185772,-1.7747879392$ IV Version=1 BM64-G03RevC. $02 \backslash \mathrm{State}=1-\mathrm{A} \backslash H F=-812.1712888 \backslash \mathrm{RMSD}=6.426 \mathrm{e}-09 \backslash \mathrm{RMSF}=3.416 \mathrm{e}-05 \backslash \mathrm{Di} p \mathrm{ole}=-2.8$ $774212,-0.036292,-2.18015591 \mathrm{PG}=\mathrm{CO} 1[\mathrm{X}(\mathrm{C} 1 \mathrm{H} 2 \mathrm{~N} 105 \mathrm{P} 1)] \backslash$ @

B3LYP/6-311++G(d,p) frequencies in water

1 \1\GINC-CSIT216\Freq\RB3LYP\6-311++G(d, p) \C1H2N105P1(2-) \RUBEN $02-$ May - $2006 \backslash 0 \backslash$ \#P GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311++G (D, P) FREQ
CPhos fin_gas
-2, 1\N, -1.6037215947, 0.1972934907,-1.321725 $8596 \backslash C,-1.6984985901,=0.0685966443,0.0009114934 \backslash 0,-0.5546923467,-0.280$ $9128772,0.66222366581$ P, 1. $1214099104,0.0190317163,0.128156519610,1.3227$ $665969,1.5018517634,0.434093427410,-2.7748926464,-0.1188391152,0.60713$ $19385 \backslash 0,1.1069073268,-0.3412551664,-1.3649704236 \backslash 0,1.8694355496,-0.955$
$3394671,1.0315736855$ H, - 2. $4606363419,0.2451900097,-1.8613661463$ \H, 0.6
 $A \backslash H F=-812.1712888 \backslash R M S D=3.037 \mathrm{e}-091$ RMSF $=3.416 \mathrm{e}-05 \backslash \mathrm{Di} p o l e=-2.8774208,-0.0$ $362925,-2.1801558$ IDipole Deriv = - 0. $834119,0.0095969,-0.0142585,0.0043474$, - 0. $7814484,0.3405174,0.1336798,0.210243,-1.5800516,3.3335613,-0.03008$ $66,-0.3916922,-0.2254834,0.5279104,-0.3718475,0.0280028,-0.4027917,2.6$ $193036,-2.9811983,-0.0139467,-0.1818304,0.083009,-0.685936,0.1314242$, -$0.4084841,0.1186276,-1.1180234,3.5011215,-0.1122296,0.3601929,0.035527$ $8,3.3532341,0.0600952,0.0906136,0.0612092,3.1564638,-1.1980462,-0.1173$ $224,-0.1023842,-0.3747015,-2.1868145,-0.2587722,-0.0975249,-0.2502505$, -1.1337734, -2. $2711127,-0.1152576,0.7493576,-0.0257464,-0.6158206,0.052$ $761,0.6202641,0.0914494,-1.2136857,-1.341555,0.0293055,0.0097278,0.065$ $4324,-1.1863492,-0.2946131,0.1408516,-0.2686698,-2.1097853,-1.4610253$, $0.3761762,-0.4007307,0.4880004,-1.6075207,0.4360239,-0.4764439,0.42075$ $35,-1.4962348,0.2733215,-0.0072172,0.0982672,-0.0107826,0.4263865,-0.0$ $474293,0.0591863,0.0025534,0.3092724,0.7568904,-0.0227924,-0.0130512$, -$0.0326653,0.3790428,-0.0396473,-0.0234922,0.0227377,0.2486757 \backslash \mathrm{Polar}=10$ $0.5421557,-1.3021971,77.305194,0.3986241,-2.9043723,90.6620685 \backslash \mathrm{PG}=\mathrm{CO} 1$ $[\mathrm{X}(\mathrm{C} 1 \mathrm{H} 2 \mathrm{~N} 105 \mathrm{P} 1)] \backslash \mathrm{NI} \mathrm{mag}=0 \backslash 10.83282200,-0.07780029,0.04442992,0.00242818$,

Deprotonated methyl triphosphate (11)

B3LYP/6-311++G(d,p) optimization in gas

$1 \backslash 1 \backslash G \mid N C-C S I T 204 \backslash F O p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 3010 P 3(4-) \backslash R U B E N \backslash 28-O c t-$
 as _out
 - 4, 1\0, -1.99740487, -1.0433090398, -3.0902028443\P, -1.996552605, -1.0314528685, -1. $5702853114 \backslash 0$, $0.5532434051,-1.0344803272$, - 0.876656912 8IP, 1. $0417893267,-0.3061941407,-0.702583074 \mid 0,0.8641077777,0.284792681$ $7,0.7721941409 \backslash P, 1.6808757326,1.0386612811,2.2119117471 \backslash 0,0.6443311168$, 2. $1098192671,2.6187832756 \backslash 0,1.8118626656,-0.1234397075,3.2182407003 \backslash 0$, $3.0202849151,1.6002160119,1.697819701310,1.148861782,0.7701193133,-1$. $7656459631 \backslash 0,1.9736689654,-1.5025647154,-0.7850791004 \backslash 0,-2.6113764272$, $0.4931989895,-1.157323745210,-2.8816535985,-2.0668686192,-0.8729084325$ IC, - 2. $4786051502,0.9115193695,0.1960652883$ \H, $3.0640577084,0.260876872$ $8,0.8675844651 \backslash H_{1}-1.4381756613,0.9195503076,0.5364980007 \backslash H_{1}-2.87783391$
 816.4431879\RMSD=4.997e-09\RMSF=6.252e-06\Dipole=-2.7279597,-0.0316727 ,-1.3582032|PG=C01 [X(C1H3010P3)]
@

B3LYP/6-311++G(d,p) frequencies in gas

$1 \backslash 1 \backslash G|N C-C S| T 204 \backslash F r e q \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 3010 P 3(4-) \backslash R U B E N \backslash 28-0 c t$ $2005 \backslash 0 \backslash$ I P GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311++G(D, P) FREQ
atpjccf gas out
-4,1\0, -1.99740487, -1.0433090398, -3.09020 $28443 \backslash \mathrm{P},-1.996252605,-1.0314528685,-1.570285311410,-0.5532434051,-1.03$ $44803272,-0.8766569128$ IP, 1. $0417893267,-0.3061941407,-0.702583074 \backslash 0,0.8$ $641077777,0.2847926817,0.77219414091 \mathrm{P}, 1.6808757326,1.0386612811,2.2119$ $117471 \backslash 0,0.6443311168,2.1098192671,2.6187832756 \backslash 0,1.8118626656,-0.1234$ $397075,3.218240700310,3.0202849151,1.6002160119,1.6978197013 \backslash 0,1.14886$ $1782,0.7701193133,-1.7656459631 \backslash 0,1.9736689654,-1.5025647154,-0.785079$ $1004 \backslash 0,-2.6113764272,0.4931989895,-1.1573237452 \backslash 0,-2.8816535985,-2.066$
$8686192,-0.8729084325 \backslash \mathrm{C},-2.4786051502,0.9115193695,0.1960652883 \backslash \mathrm{H},-3.0$ $640577084,0.2608768728,0.8675844651 \backslash H,-1.4381756613,0.9195503076,0.536$ 4980007 \H, $2.8778339183,1.9353716898,0.26010882031$ VVersion =| BM64-G03Re vC. O2 St ate=1-A\HF=-1816.4431879\RMSD=4.118e-09\RMSF=6.254e-06\Dipole= $-2.7279597,-0.0316734,-1.3582028 \backslash$ Dipole Deriv $=-0.8951274,-0.0767797,-0$. $0768692,-0.0415887,-0.7937222,-0.0567509,-0.1897735,-0.1633822,-1.7287$ $933,2.9019902,0.4451756,0.1740824,0.1741325,2.2544302,0.3308859,0.3847$ $899,0.2264422,2.4972375,-2.8182227,-0.5151176,-0.6433715,-0.5167645,-0$ $.8410659,-0.2033062,-0.6738398,-0.174098,-0.9265909,2.9710447,-0.06171$ $12,0.0982514,0.336341,2.341812,0.4015905,0.3484433,0.3579279,2.8694288$, - $1.0017942,-0.1513921,-0.3869369,-0.2905623,-1.0347818,-0.9032524,-0$. $6857274,-0.9240223,-2.6342226,2.4296665,0.1263372,0.3902288,0.0256625$, 2. $334897,0.2582162,0.2344522,0.2652023,2.8583952,-1.2227332,0.4049076$, $0.1582733,0.3780087,-1.298903,-0.2856406,0.1088111,-0.234607,-0.999931$ $7,-0.8655916,0.0493312,-0.1165694,0.126226,-1.2543491,0.5258582,-0.148$ $5023,0.3678925,-1.3913428,-1.5949028,-0.3604182,0.0314443,-0.3344109$, $0.9804132,0.0013815,0.2077435,0.0808323,-0.9220277,-0.9149644,-0.02809$ $56,0.045385,-0.1646564,-1.0970225,0.3411246,0.0904205,0.2721713,-1.274$ $2943,-1.2035735,0.3861505,0.0863367,0.4414934,-1.303096,-0.1816548,0.0$ $061962,-0.1063705,-0.8950856,-0.768991,0.1705566,0.0167549,0.2761232$, 1. $2254624,-0.4333571,0.103272,-0.4178715,-1.1136903,-1.2648113,-0.4498$ $356,0.0898815,-0.4330849,-1.2573166,0.0585304,0.1994101,0.2214782,-0.9$ $267462,0.2041202,-0.0099164,-0.0739557,-0.0193899,0.5215023,0.0779659$, -0. $2214443,0.2920879,0.8068905,-0.0998802,-0.0475836,0.1613428,-0.1374$ $836,-0.0363282,0.1542318,0.1402358,0.0188359,-0.1950117,0.1628744,-0.0$ $350238,0.002655,-0.0007033,0.0245627,0.0213115,0.0794938,-0.0273671,0$. $0022865,-0.0191038,0.1534151,0.0430663,0.1806572,-0.3547432,-0.1071344$ $, 0.0160189,-0.0551521,-0.0265012 \backslash \mathrm{Pol}$ ar $=159.8943408,2.6101218,141.12701$ $17,5.8888811,11.8444645,158.8451695 \backslash P G=C 01 \quad[X(C 1 H 3010 P 3)] \backslash N I m a g=0 \backslash \backslash 0.0$ $5270219,0.00416909,0.05482295,-0.00744939,0.00168118,0.48471255,-0.06$

Methyl triphosphate protonated once (12)

Conformational searches at the PM3 level was performed for the P-Os-P-OH dihedral only.

B3LYP/6-311++G(d,p) optimization in gas phase

$1 \backslash 1 \backslash G I N C-C S I T 213 \backslash F O p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 4010 P 3(3-) \backslash R U B E N \backslash 28-0 c t-$ $2005 \backslash 0 \backslash$ I gats_out
-3, 1\0, - 2. $5313678287,0.0658596294,-2.7245647494 \backslash P,-2 . \overline{3} 394345$ 263, = 0. $3216934771,-1.284081483910,-0.7681269942,-0.6297739584,-0.89842$ 295691 P, 0. $7829275944,-0.0476925911,-0.926556064310,0.9112369774,0.4721$ $167878,0.6447784175 \backslash P, 2.059296635,0.2059898545,1.8455019365 \backslash 0,2.482467$ $3906,-1.3557924545,1.506902423910,3.2444505982,1.1227301918$, 1. 62813868 5810, 1.3441847668, 0. $2384391351,3.177137014910,0.9168694942,1.104444289$ 5, -1. $8756353654 \backslash 0,1.6860402936,-1.2696408324,-1.0557168829 \mid 0,-2.635322$ $0509,1.065843825,-0.390156450510,-3.1534013693,-1.446487301,-0.6792485$ $25 \backslash C_{1}-2.4390249775,1.0024702151,1.0178995709 \backslash H,-3.0550750664,0.2080127$ $069,1.46191868771$ H, - 1. $389650174,0.8280861745,1.2726344602$ IH, 2.7487245 896, 1.9728511809, 1.42885310891H, 2. 3095039257 , -1. 5147426466 , 0.540537597
 RMSF = 5. $747 \mathrm{e}-06$ Di pole $=-1.0458402,0.0812027,0.4355924$ IPG=CO1 [X(C1H4010 P3)]
@

B3LYP/6-311++G(d,p) frequencies in gas phase

$1 \backslash 1 \backslash G \mid N C-C S I T 213 \backslash F r e q \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 4010 P 3(3-) \backslash R U B E N \backslash 28-O c t-$ $2005 \backslash 0 \backslash$ IP GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311++G1 D, P) FREQ
atp_jccf 7 gas_out \1-3, 1\0, - 2. 5313678287, 0.0658596294, -2.72 456474941 P, - 2. $\overline{3} 3943 \overline{4} 5263,-0.3216934771,-1.284081483910$, 0.7681269942 , -$0.6297739584,-0.89842295691 \mathrm{P}, 0.7829275944,-0.0476925911,-0.92655606431$ $0,0.9112369774,0.4721167878,0.6447784175 \backslash P, 2.059296635,0.2059898545,1$. $8455019365 \backslash 0,2.4824673906,-1.3557924545,1.506902423910,3.2444505982,1$. $1227301918,1.6281386858 \backslash 0,1.3441847668,0.2384391351,3.1771370149 \backslash 0,0.9$ $168694942,1.1044442895,-1.8756353654 \backslash 0,1.6860402936,-1.2696408324,-1.0$ $557168829 \mid 0,-2.6353220509,1.065843825,-0.3901564505 \backslash 0,-3.1534013693,-1$ $.446487301,-0.679248525 \backslash C_{1}-2.4390249775,1.0024702151,1.0178995709$ \H, -3 $.0550750664,0.2080127069,1.4619186877 \backslash \mathrm{H},-1.389650174,0.8280861745,1.27$ 26344602 \H, -2.7487245896 , 1.9728511809, 1.42885310891H, 2. $3095039257,-1.5$
 11733 | RMS D $=3.985 \mathrm{e}-091 \mathrm{RMSF}=5.762 \mathrm{e}-06 \backslash \mathrm{Dipole}=-1.0458415,0.0812029,0.4355$ $931 \backslash$ Di pol eDeriv $=-0.9344529,-0.0214273,-0.1622178,0.0509712,-0.773209,0$ $.160552,-0.2730488,0.0969945,-1.5125241,3.0860228,0.2671707,0.1800647$, - 0.0174854, 2. $0934387,0.2490316,0.2713882,0.0511733,2.4997469,-3.004173$ $7,-0.1324218,-0.3460097,-0.2408522,-0.7003138,-0.0353508,-0.3035194,0$. $0262982,-0.7558752,3.1307167,-0.1394797,0.261574,0.2778313,2.092313,0$. $0126787,0.3693746,-0.1109768,2.6001543,-1.3519121,0.0515236,-0.7095741$, 0. $001526,-0.7116656,-0.1990759,-0.8914425,-0.1609895,-2.1738334,2.518$ $4686,0.2759686,0.427102,0.1951295,2.0794417,0.1675586,0.2792567,0.2371$ $848,2.7926267,-0.7804426,0.1384115,-0.1125829,0.156821,-1.2640325,-0.2$ $133003,-0.1459463,-0.1914864,-1.0424288,-1.3660517,-0.4017936,-0.10307$ $29,-0.4346519,-1.0285829,-0.0705229,0.0307888,0.0141386,-0.8752161,-0$. $9665664,-0.0376014,0.2620516,-0.0413754,-0.7462572,-0.0085822,0.165328$ $5,-0.0573515,-1.5248189,-0.9150776,-0.0337909,0.0330281,-0.139977,-1.0$ $65706,0.4003567,0.0531953,0.3002288,-1.1096652,-1.1753858,0.3232617,-0$ $.0775076,0.4131871,-1.1503418,-0.0694928,-0.1374385,-0.0291563,-1.0733$ $669,-0.6983945,0.054043,-0.0052588,0.154358,-0.9936011,-0.4101371,0.11$ $25035,-0.4025884,-1.3377578,-1.1804037,-0.3491791,0.0410007,-0.3904444$, - $1.1793451,0.0329946,0.1588231,0.1737799,-0.8927917,0.2490735,0.01254$ $57,-0.0178834,0.0287549,0.3841109,-0.0282863,-0.1055725,0.1872534,0.82$ $6816,-0.069881,-0.0739027,0.118017,-0.129761,-0.0456591,0.1621755,0.06$ $43969,0.0381171,-0.0949149,0.08093,-0.0243314,-0.0614762,-0.0088785,0$. $0358605,0.0229881,0.0006257,-0.0212591,-0.0212221,0.0143414,0.0972435$, $0.0583087,0.122241,-0.2517671,-0.196994,0.0458763,-0.1344352,-0.101250$ $7,0.3631889,-0.0062403,0.2144367,0.0026058,0.2253163,0.0234067,0.30541$ $04,-0.0169254,0.796322$ PPolar $=137.0745011,1.9151092,115.4867493,6.25538$, 2. $4930984,138.5405822 \backslash \mathrm{PG}=\mathrm{CO} 1[\mathrm{X}(\mathrm{ClH} 4010 \mathrm{P} 3)] \backslash \mathrm{NI} \mathrm{mag}=0 \backslash \backslash 0.05847329,-0.01$

Methyl triphosphate protonated twice (13)

Conformational searches at the PM3 level was performed for the P-Os-P-OH dihedral only.

B3LYP/6-311++G(d,p) optimization in gas phase

$1 \backslash 1 \backslash G \mid N C-C S I T 202 \backslash F 0 p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 5010 P 3(2-) \backslash R U B E N \backslash 28-0 c t$.
 g gas out
-2, 1\0, -1.8536037741, -0.4312031511, -0.7186266991\P, =1.8528 $\overline{7} 99114--0.4315638979,0.7921308661 \backslash 0,-0.3085648609,-0.4315253316,1.3753$ $943585 \backslash P, 1.2383353462,-0.5183541827,0.849622416 \backslash 0,1.2651331415,0.68007$ $61898,-0.33767534121$ P, 1. $2502989193,0.6114217834,-1.960692733710,-0.280$ $9435721,0.7309402877,-2.3662733421 \backslash 0,2.0838342003,1.6526795193,-2.6135$ $568916 \backslash 0,1.740635261,-0.8830952982,-2.2876006181$ \0,1.4610507173,-1.821 $9128189,0.103694792410,2.1168148575,-0.0837920728,1.972070616910,-2.29$ $13278121,1.1133947575,1.224777386610,-2.6613619161,-1.4120562137,1.583$ 1390259 \C, $-2.2698565713,1.4499392639,2.6016054442$ IH, - $2.8994480728,0.76$ $67508851,3.1852443341$ \H, - 1. $2480799376,1.4163279632,2.9966745172$ VH, -2.6 $57780632,2.4701162273,2.6913578031 \backslash H,-0.9256469118,0.2706806722,-1.722$ 2967944 IH, 1. $6403897313,-1.4541138166,-1.4592670578$ IV Version=IBM64-GO3R evC. 02 S State=1-A\HF=-1818.1472545\RMSD=3.822e-09\RMSF=5.032e-06\Dipole $=-0.9839097,0.7481113,0.7451716 \backslash \mathrm{PG}=\mathrm{Co1}[\mathrm{X}(\mathrm{C} 1 \mathrm{H} 5010 \mathrm{P} 3)] \backslash \mid @$

B3LYP/6-311++G(d,p) frequencies in gas phase

$1 \backslash 1 \backslash G I N C-C S I T 202 \backslash F r e q \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 5010 P 3(2-) \backslash R U B E N \backslash 28-0 c t-$ 20051011 \#P GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311++G1 D, P) FREQ
atp_jccf 7 g gas_out \|-2, 1\0, -1.8536037741, -0.4312031511, -0
 , $-0.4315253316,1.3753943585 \backslash$ P, 1. $2383353462,-0.5183541827,0.84962241610$, 1. $2651331415,0.6800761898$, - 0. 33767534121 P, $1.2502989193,0.6114217834$, $1.9606927337 \backslash 0,-0.2809435721,0.7309402877,-2.3662733421 \mid 0,2.0838342003$, 1. $6526795193,-2.613556891610,1.740635261,-0.8830952982,-2.28760061811$ $0,1.4610507173,-1.8219128189,0.103694792410,2.1168148575,-0.0837920728$, 1.9720706169\0, - 2. $2913278121,1.1133947575,1.2247773866 \backslash 0,-2.661361916$ $1,-1.4120562137,1.5831390259 \backslash C_{1}-2.2698565713$, 1.4499392639, 2. 6016054442 \H, - 2. $8994480728,0.7667508851,3.1852443341 \mid H,-1.2480799376,1.416327963$ 2, 2. 9966745172 \H, - 2. $657780632,2.4701162273,2.6913578031 \backslash H,-0.925646911$ 8, 0. $2706806722,-1.7222967944$ IH, 1. 6403897313 , - 1. 4541138166 , - 1.459267057 8
Version=| BM64-G03RevC. O2 St ate=1-A\HF=-1818.1472545\RMSD=2.619e-09| RMSF=5.035e-06\Dipole=-0.9839092,0.7481122,0.7451717\DipoleDeriv=-1.04 $58718,-0.1103071,0.2882019,-0.15729,-0.7362386,0.1308338,0.2493092,0.0$ $762788,-1.6516906,2.8636935,0.0076275,-0.5098432,-0.0265253,2.2697865$, $0.3744003,-0.1606331,-0.0232545,2.3813047,-2.6787775,0.1462449,0.33362$ $77,0.0960233,-0.6196811,-0.0574776,0.0407764,-0.0123948,-0.8347832,2.9$ $098391,-0.1300803,0.0059531,-0.1256285,2.0257494,-0.1913167,-0.2216508$ $, 0.0295329,2.7231625,-0.7296304,-0.004534,0.0438139,-0.0596401,-1.0132$ $949,0.5517805,0.1495507,0.5155184,-2.1358243,2.4552963,0.0925559,-0.30$ $06843,0.061123,2.2497857,-0.2925207,-0.2279089,-0.5150094,2.5973679,-1$ $.6181557,-0.0877246,0.2036391,-0.1828291,-0.6819516,0.2265422,0.179281$ $2,0.2080328,-0.9831963,-0.9670881,-0.2540261,0.2806286,-0.2674856,-1.0$ $304559,0.3252369,0.2080032,0.2736377,-0.9610175,-0.7190807,0.1434913,0$ $1139061,0.1877961,-1.2431258,0.1302206,0.1260546,0.107715,-1.0460964$, $-0.8402775,0.0962664,0.0618207,0.2099359,-1.1568467,-0.1137891,0.16242$ 93, - $0.155034,-1.2316051,-1.1084024,-0.0255019,-0.3181319,-0.1073354,-0$ $.7336072,-0.1586465,-0.3204448,-0.0873299,-1.2000663,-0.692189,0.14797$ $53,0.1724408,0.3097957,-1.2137439,-0.5339935,0.2394269,-0.4223076,-1.1$ $480901,-1.0871396,-0.2424156,0.230101,-0.2904594,-1.0696433,0.1012979$, $0.3075327,0.2232015,-0.9348021,0.3257971,-0.0192349,-0.0289373,-0.0278$ $852,0.412474,0.105123,-0.1651402,0.315153,0.8065142,-0.0503986,-0.0472$ $889,0.115718,-0.108318,0.0079217,0.1277969,0.0898935,0.0029793,-0.1072$ $01,-0.0918596,-0.0482932,-0.133177,-0.0048607,0.0524057,0.011507,-0.03$ $74382,-0.0435989,-0.0397614,0.0136006,0.1188156,0.0413164,0.1347102,-0$ $.2464603,-0.1196634,0.0212236,-0.0461866,-0.007681,0.7847024,0.2073532$, - 0. $5295971,0.3387122,0.3779768,-0.3334451,-0.5458306,-0.2213088,0.821$ $7713,0.275942,0.0090764,-0.0707965,0.0201607,0.3489495,-0.2838863,-0.0$ $944348,-0.2256248,0.9516948 \backslash \mathrm{Pol}$ ar $=120.3906897,1.6998014,107.8100854,-1$ $1.0686585,-2.0173713,127.8463052 \backslash \mathrm{PG}=\mathrm{CO} 1 \quad[\mathrm{X}(\mathrm{C} 1 \mathrm{H} 5010 \mathrm{P} 3)] \backslash \mathrm{NI} \mathrm{mag}=0 \backslash \mid$

Methyl triphosphate with oxygen atoms on $P \alpha, P \beta$ and $P \gamma$ coordinated $M g^{2+} 3$ water molecules complete the coordination to Mg^{2+} (14)

This conformation of triphosphate in complex with $\mathrm{Mg} 2+$ was obtained from the transition state anologue structure of arginine kinase ${ }^{23}$ (Zhou et al).

B3LYP/6-311++G(d,p) optimization in gas phase

$1 \backslash 1 \backslash G \mid N C-B O H R \backslash F O p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 9 M g 1013 P 3(2-) \backslash R U B E N \backslash 28-S e p-$ $2005 \backslash 0 \backslash$ \#P B3LYP/6-311++G** OPT (MAXCYCLE=500) FREQ POP=NBO SCF=DAMP GU ESS = READ GEOM=CHECK\Imgatp\|-2,1\C,-3.6142540182,0.0205819176, -1.08271 $2322810,-3.5391038716,0.0701624575,0.33573022541 \mathrm{P},-2.0949515683,0.0331$ $26384,1.1433897259$ \0, - $1.3100982566,-1.1803911982,0.39369428741$ P, -0.282 $1657363,-1.3681758884,-0.916729226710,1.0751946516,-1.8520878429,-0.24$ 861362031 P, 2. $4093886367,-0.9919210037,0.4929875867 \backslash 0,1.6444944779,0.25$ $64913511,1.0963361224 \backslash 0,2.9907902065,-1.9432462651,1.489544326 \backslash 0,3.274$ $7567266,-0.5152274553,-0.681939118410,-0.0970084059,0.0805827964,-1.45$ $98796809 \backslash \mathrm{Mg}, 0.5006408932,1.4243920411,-0.036741645310,-0.879818981,-2$. $375831605,-1.8375633651 \backslash 0,-0.8568196022,2.7303236273,-1.3832650154 \backslash 0$, 1. $3542481558,1.348077317,0.797536562410,1.797417029,2.8092130646,1.103$ 413259 \0, $-2.4051383721,-0.278220402,2.5595189245 \backslash 0,2.134125532,1.63510$ $73552,-1.5735588895$ \H,-1.4705024474, 2. $5273255674,-0.6586505627$ \H, 0.89 $9200907,1.9098753212,-1.9133426731$ H, 2.4431146434, 3.0173095748, 0.405245 7078 \H, 2. $0743373915,1.901136535,1.4239565677 \backslash \mathrm{H}, 2.7008338752$, 0.92297629 3, - 1. $2730125695 \backslash \mathrm{H},-4.6753245036,-0.0599976873,-1.3377881827 \backslash \mathrm{H},-3.07888$ $10375,-0.8433482295,-1.48685448711$ H, -3.2157394762,0.9339167054, -1. 5416 461993 IH, 1. 5187820418 , 1. $0995419395,-2.2030873488$ VVersion=|A64-Linux-G 03 RevB. $05 \backslash$ State $=1-A \backslash H F=2246.6196233 \backslash$ RMSD=9. $143 \mathrm{e}-09 \backslash$ RMSF=1.086e-02\Dip ole $=-1.7180418,3.2224041,-2.0855995|P G=C 01[X(C 1 H 9 M g 1013 P 3)] \backslash| @$

B3LYP/6-311++G(d,p) frequencies in gas phase

$1 \backslash 1 \backslash G I N C-B O H R \backslash F r e q \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 9 M g 1013 P 3(2-) \backslash R U B E N \backslash 29-S e p-$ $2005 \backslash 0 \backslash$ \#P GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311++G(D, P) FREQ \ mgat \mid | $-2,1|C,-3.6142540182,0.0205819176,-1.0827123228| 0,-3$, $5391038716,0.0701624575,0.33573022541 \mathrm{P},-2.0949515683,0.033126384,1.14$ $3389725910,-1.3100982566,-1.1803911982,0.39369428741 P,-0.2821657363,-1$. $3681758884,-0.9167292267 \backslash 0,1.0751946516,-1.8520878429,-0.2486136203 \backslash P$, 2. $4093886367,-0.9919210037,0.492987586710,1.6444944779,0.2564913511,1$
$0963361224 \backslash 0,2.9907902065,-1.9432462651,1.489544326 \backslash 0,3.2747567266,-0$ $5152274553,-0.6819391184 \backslash 0,-0.0970084059,0.0805827964,-1.4598796809 \backslash \mathrm{M}$ g, 0. $5006408932,1.4243920411,-0.036741645310,-0.879818981,-2.375831605$, -1.8375633651\0, - 0.8568196022, 2. 7303236273 , - $1.3832650154 \backslash 0,-1.35424815$ $58,1.348077317,0.7975365624 \backslash 0,1.797417029,2.8092130646,1.10341325910$, -$2.4051383721,-0.278220402,2.559518924510,2.134125532,1.6351073552,-1.5$ 735588895 \H, - 1. $4705024474,2.5273255674,-0.6586505627 \backslash \mathrm{H},-0.899200907,1$. $9098753212,-1.9133426731$ H, 2. $4431146434,3.0173095748,0.40524570781$ H, 2. 0 $743373915,1.901136535,1.4239565677 \backslash H, 2.7008338752,0.922976293,-1.27301$ $25695 \backslash \mathrm{H},-4.6753245036,-0.0599976873,-1.3377881827 \backslash \mathrm{H},-3.0788810375,-0.8$ $433482295,-1.4868544871 \backslash H,-3.2157394762,0.9339167054,-1.5416461993 \backslash H, 1$. 5187820418 , 1.0995419395, -2. 20308734881 VVersion =|A64-Linux-G03RevB.05 St ate=1-A\HF=-2246.61962331RMSD=9.143e-091RMSF=1.086e-02|Dipole=-1.718 $0418,3.2224041,-2.0855995 \backslash$ Di pol eDeriva $=0.345277,0.0606374,0.0446202,0.0$ $4452,0.2759854,-0.0332613,0.2465061,-0.0529998,0.7471256,-1.2062477$, 0 . $0042539,-0.3744967,0.0230052,-0.510631,-0.0238752,-0.4803411,0.0342003$, -1. $2148621,2.7363645,0.0517336,-0.0719952,-0.1639164,2.1487205,0.1303$ $037,-0.3581488,-0.0242136,2.5478364,-1.5172315,0.3484261,0.5570559,0.5$ $310984,-1.0835902,-0.3934468,0.8886545,-0.441459,-1.3078464,2.9869765$, $0.0162397,0.1039895,-0.1259094,2.3395007,0.1240598,-0.0327329,0.467038$ $6,2.2328432,-2.1694134,-0.0940709,-0.6070232,-0.1384999,-0.9003301,-0$. $0941124,-0.7839718,-0.1093366,-0.9064615,2.8251774,-0.3447028,0.164985$ $8,0.0502807,2.2567964,-0.1505987,0.3214435,-0.2588315,2.2201209,-1.108$ $1878,0.3451441,0.0582968,0.2512374,-1.5919558,-0.2406604,-0.0215069,-0$ $.2235663,-0.9009538,-0.9912793,0.2340824,-0.200604,0.2732114,-1.040420$ $4,0.329125,-0.3259204,0.3620096,-1.0636939,-1.1666274,0.0416105,0.1965$ $492,-0.043274,-1.0180025,0.3140425,0.318137,0.2834771,-1.1479202,-1.04$ $3246,-0.1337075,0.0210783,-0.1198535,-1.504227,0.2547953,0.0318512,0.1$ $245543,-0.8827395,1.702808,0.088944,0.0191438,0.0005351,1.3784421,0.01$ $82249,0.0784309,0.0051001,1.1619135,-0.993211,-0.1670633,-0.1881975,-0$ $.1347699,-1.0900059,-0.3417492,-0.1647915,-0.3748158,-0.9932958,-0.674$ $0889,0.0928538,0.0001638,0.1364445,-0.7513031,0.162822,-0.0177364,0.17$ $56087,-0.7045787,-1.1785426,-0.2824648,0.1155745,-0.3186129,-1.3200468$, 0. $1283169,0.2530598,0.2344958,-0.9179595,-0.5531458,-0.0876658,-0.153$ $2081,-0.1634817,-1.1035867,-0.1390511,-0.1572806,-0.0322511,-0.561756$, $-0.8484044,-0.0392161,0.1990895,-0.0290746,-0.7157428,0.1244286,0.2477$ $887,0.0880174,-1.3747255,-0.8539877,0.0831684,0.0047243,0.0496084,-0.8$ $418978,0.2819637,0.0089629,0.1742853,-0.7367779,0.2759494,0.0139851,-0$ $.0589404,-0.0038343,0.4092028,-0.1264072,-0.0641042,-0.214188,0.449235$ $4,0.3018962,-0.1015084,0.0138939,-0.1104699,0.44569,-0.0948728,0.00192$ $03,-0.0224501,0.2854477,0.2252861,0.0371008,0.0697478,0.0713917,0.3409$ $152,0.0175863,0.075624,0.0679955,0.276183,0.2123935,0.0488853,0.040371$ $3,0.0874288,0.9671905,0.1236924,0.0367102,-0.0154868,0.2830957,0.38376$ $29,-0.2821217,0.1502214,-0.1905461,0.6892162,-0.3342224,0,0652264,-0.2$ $620591,0.3680002,-0.2761874,-0.0191619,-0.1374353,-0.0241641,0.069015$, $-0.0031256,-0.077613,-0.0014904,-0.0233227,0.1030218,0.0283689,0.04721$ $79,0.0080165,-0.0117208,-0.0485603,-0.0300762,0.0019905,-0.0271813,0.0$ $379966,-0.0885392,0.0626269,-0.0564566,-0.1296592,0.1283051,-0.0131311$, 0.0616268, -0.0892378, 0.4428909, 0. $1447883,-0.07745,0.0960852,0.2924454$, - 0. $1137231,-0.0469607,-0.0472519,0.281511 \backslash \mathrm{Pol}$ ar $=160.8725258,-0.296268$ $9,147.2258876,4.8950643,-2.7976092,145.8506851$ | PG=C01 [X(C1H9Mg1013P3)] $\backslash \mathrm{NI} \mathrm{mag}=0$

Methyl triphosphate with oxygen atoms on $\mathrm{P} \beta$ and Py coordinated $\mathrm{Mg}^{2+}, 4$ water molecules complete the coordination to Mg^{2+} (15).

This conformation of triphosphate in complex with $\mathrm{Mg} 2+$ was obtained from the bis($\mathrm{Mg} 2+$)-ATPoxalate complex of the pyruvate kinase ${ }^{34}$ (Larsen et al).
35)Larsen TM, Benning MM, Rayment I, Reed GH.

Structure of the bis($\mathrm{Mg} 2+$)-ATP-oxalate complex of the rabbit muscle pyruvate kinase at 2.1 A resolution: ATP binding over a barrel.
Biochemistry. 1998 May 5;37(18):6247-55.
B3LYP/6-311++G(d,p) optimization in gas phase
$1 \backslash 1 \backslash G \mid N C-C S I T 204 \backslash F O p t \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 11 M g 1014 P 3(2-) \backslash R U B E N \backslash 15-$ Mar-2006\0\I\#P B3LYP/6-311++G** OPT(MAXCYCLE=900, MODREDUNDANT) FREQ PO $\mathrm{P}=\mathrm{NB} 0 \backslash \mathrm{mg}$ at p 3 a final_check\1-2,1\P,-0.7329595632,1.8181613772,2.05081 $01267 \backslash 0,-0.7592 \overline{4} 12222,1.8758379048,3.5442954156 \backslash 0,0.7133314558,1.79540$ $7044,1.395808043810,-1.5793836849,2.8280531542,1.2474653621 \backslash \mathrm{P},-1.46033$ $11691,-0.5095596023,0.228100277410,-2.8249459742,-1.043087699,-0.01858$ $53702 \backslash 0,-0.7946515376,0.3677086985,-0.859752070910,-1.3257708078,0.258$ $1372425,1.63165975381 P, 0.6341717937,-2.6303209879,-0.4507608717 \backslash 0,1.69$ $18696847,-1.6990973935,-1.0748635401 \backslash 0,1.1184863078,-3.8390600705,0.28$ $1106964310,-0.3840729152,-1.771287545,0.465075916310,-0.3819922795,-3$. $0637620567,-1.6869900182 \backslash$ C, $0.0972786451,-4.0052452122,-2.6278805906 \backslash \mathrm{Mg}$, 0. $8656724472,1.5067171704,-0.59651098721$ H, $0.9526342434,-3.6098126859$, - 3. 192286225 IH, $0.3993971661,-4.9378179936,-2.1364398226$ H, 0.722071406 , - $4.2104621848,-3.3228748893 \backslash 0,1.2073595034,0.5199036221,-2.5301323372$ 10, 1.9613585723, 3.4691752243,-0. $212149143210,-0.6336586744,3.081582355$ 9, - 1. $0785910264 \backslash 0,2.583405148,0.4357453391,0.0992360121 \backslash H, 1.6628614618$, 3. $1956433838,0.6886491399$ | H, 1. $2384988654,4.0226151289$, - 0. 5360486253 | H , 2. $2764781039,0.5157316001,1.01924499631$ H, $2.4019381116,-0.498336354,-0$. 1939159244 IH, 1. $5198550621,-0.3464226988,-2.1539880001 \backslash \mathrm{H}, 0.2540365862$, $0.3307419692,-2.5743924036$ (H,-1.0555825687, 3.0712308266,-0.15099099351 H, -1. $2497513942,2.5214958686,-1.57245654331$ IVersion=| BM64-G03RevC. 02 IS tate=1-A\HF=-2323.1040818\RMSD=5.386e-09\RMSF=2.759e-03\Dipole=1.48677 $05,0.3079602,-3.6934205 \backslash \mathrm{PG}=\mathrm{C} 01[\mathrm{X}(\mathrm{C} 1 \mathrm{H} 11 \mathrm{Mg} 1014 \mathrm{P} 3)] \backslash \ @$

B3LYP/6-311++G(d,p) frequencies in gas phase

$1 \backslash 1 \backslash G|N C-C S| T 204 \backslash F r e q \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 1 H 11 M g 1014 P 3(2-) \backslash R U B E N \backslash 15-$ Mar-2006\0\I\#P GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311 $++G(D, P) \quad F R E Q \backslash \operatorname{mgatp} 3 a$ final check
$-2,1 \backslash P,-0.7329595632,1.8181613772$, 2. $050810126710,-0.7592412222,1.8758379048,3.544295415610,0.7133314558$, 1. $795407044,1.395808043810,-1.5793836849,2.8280531542,1.2474653621$ 1P, -1.4603311691, - 0. $5095596023,0.228100277410,-2.8249459742,-1.043087699$, $-0.0185853702 \backslash 0,-0.7946515376,0.3677086985,-0.859752070910,-1.32577080$ $78,0.2581372425,1.6316597538 \backslash P, 0.6341717937,-2.6303209879,-0.450760871$ $7 \backslash 0,1.6918696847,-1.6990973935,-1.0748635401 \backslash 0,1.1184863078,-3.8390600$ $705,0.2811069643 \backslash 0,-0.3840729152,-1.771287545,0.465075916310,-0.381992$
$2795,-3.0637620567,-1.6869900182$ C, $0.0972786451,-4.0052452122,-2.62788$ $05906 \backslash \mathrm{Mg}, 0.8656724472,1.5067171704,-0.5965109872 \backslash \mathrm{H}, 0.9526342434,-3.609$ $8126859,-3.192286225$ IH, O. $3993971661,-4.9378179936,-2.1364398226$ H, - 0.7 $22071406,-4.2104621848,-3.3228748893 \backslash 0,1.2073595034,0.5199036221,-2.53$ $01323372 \mid 0,1.9613585723,3.4691752243,-0.2121491432 \backslash 0,-0.6336586744,3.0$ $815823559,-1.0785910264 \backslash 0,2.583405148,0.4357453391,0.0992360121 \backslash H, 1.66$ $28614618,3.1956433838,0.6886491399 \backslash H, 1.2384988654,4.0226151289,-0.5360$ $486253 \backslash H, 2.2764781039,0.5157316001,1.0192449963 \backslash H, 2.4019381116,-0.4983$ $36354,-0.1939159244$ IH, $1.5198550621,-0.3464226988$, - 2. 1539880001 \H, 0.254 $0365862,0.3307419692,-2.5743924036 \backslash H,-1.0555825687,3.0712308266,-0.150$ 9909935\H, -1.2497513942, 2. 5214958686 , -1. $5724565433 \backslash$ Version =l BM64-G03R evC. 02 S State $=1-A \backslash H F=-2323.1040818 \backslash R M S D=3.634 e-09 \backslash R M S F=2.759 e-03 \backslash$ Dipole $=1.4867686,0.3079597,-3.69341951$ DipoleDeriv $=2.1261744,0.0854497,0.0382$ $936,-0.0525296,2.5947753,0.4284689,-0.1848897,0.1953751,2.7273635,-0.7$ $278273,0.0035072,-0.0046022,0.0162762,-0.7924314,-0.0822756,0.0864291$, $-0.1719228,-1.6133209,-1.5596915,-0.0886273,0.3414174,-0.0107125,-0.99$ $92737,-0.0511879,0.43028,-0.0071439,-1.1182027,-0.9487119,0.2868156,0$. $0060221,0.2570079,-1.1654869,0.1904726,-0.0719186,0.3378922,-1.339191$, $2.6178176,-0.1280349,-0.2986741,-0.0420352,2.9655844,0.4473935,0.05760$ $26,0.4892149,2.1662292,-1.3471068,-0.1757367,-0.0202193,-0.2189066,-0$. $9100582,-0.1025089,-0.0885652,-0.1169138,-0.715258,-1.0273438,-0.24538$ $96,0.3195427,-0.1733125,-1.26101,0.1769986,0.2090303,0.188866,-1.13812$ $63,-0.7694169,-0.4071522,-0.1432148,-0.2926203,-1.8780141,-0.76009,-0$. $0815903,-0.8824056,-1.3950254,2.2701499,-0.0076944,0.1015062,-0.242355$ 5, 3. $0343031,0.1295758,-0.3301682,0.4503858,2.2925393,-1.0931547,-0.430$ $2954,0.0430315,-0.3413554,-1.6111109,0.0734202,0.1745257,0.1217162,-0$. $9294464,-0.796753,0.1469994,-0.120427,0.2222532,-1.3373031,0.2146288$, -$0.0908129,0.2030377,-0.9134881,-1.4700993,1.0115256,0.4141157,0.781823$ $7,-1.8198856,-0.384702,0.2987312,-0.3348707,-0.842113,-0.6871615,-0.14$ $1973,-0.2503629,-0.0063599,-1.1041281,-0.5216396,-0.1514361,-0.6993677$, - $1.3299635,0.3323021,-0.1750133,-0.2003724,-0.0007067,0.6768766,0.371$ $5396,-0.0210067,0.3356965,0.6880702,1.3705897,0.0213024,-0.0847066,-0$. $0005661,1.6411668,0.1146903,-0.0721535,0.1665776,1.2998,-0.0959214,0.0$ $150615,0.1818555,-0.0770176,-0.0012498,0.0472806,0.0913883,-0.0202816$, $-0.0836149,0.037235,0.0929497,0.0354833,0.0417803,-0.1950969,-0.023856$ 8, - 0.0160155, 0.0990661, 0.0150574, -0.0856658, -0.0766666, -0.166004, -0.02 $36798,0.0124557,-0.0704036,-0.1090974,-0.1180381,-0.117353,-0.5925472$, $0.1421089,0.09579,0.0704172,-0.8689093,0.0726869,0.0835822,0.0965896$, -$0.8629002,-0.6288098,-0.2838097,0.0304905,-0.2889755,-0.8655443,0.0688$ $107,0.0943659,0.1465824,-0.6733764,-0.6414363,0.0668193,0.1945631,0.10$ $34827,-0.7977792,0.1160717,0.0553131,0.1700496,-1.1671271,-0.8609269,0$ $.0508249,-0.0857441,-0.0037595,-0.984705,-0.254864,-0.0721504,-0.28083$ $57,-0.6247359,0.3913743,0.2099312,-0.0754601,0.256758,0.5080104,-0.154$ $7806,-0.1806105,-0.2399838,0.4197864,0.3005234,0.1327291,0.012721,0.08$ $72038,0.3285564,-0.0092016,0.0598994,-0.0050576,0.2712018,0.448547,-0$. $1295449,-0.0157799,-0.1527625,0.3249522,0.1023548,-0.0582192,0.1092745$, 0. 2813408, 0. $3934399,0.2060385,0.1226372,0.2439986,0.8363645,0.2964852$, 0. $1719247,0.3568707,0.3508992,0.2495634,-0.13877,0.0404089,-0.0237877$ $, 0.736805,-0.2510342,-0.0234663,-0.2945783,0.4438534,0.3236828,-0.0148$ $107,-0.1480597,-0.0423757,0.246332,-0.0030338,-0.0921631,-0.0153655,0$. $4399935,0.2720382,0.0521952,-0.3549157,-0.0132189,0.285652,-0.0917702$, $-0.2100013,-0.237143,1.1879266,0,1991363,-0.0807394,-0.0093361,-0.0739$ $641,0.4001523,-0.0895294,0.0411925,-0.0432868,0.2791814 \backslash \mathrm{Pol}$ ar $=149.1910$ $422,0.3303116,175.8577644,-4.2642688,11.6286232,160.8289699 \mid P G=C 01 \quad[X($ C1H11Mg1014P3)] $\mathrm{NI} \operatorname{mag}=0 \backslash \backslash 0.51777396,-0.10302436,0.41335673,-0.00338538$ $,-0.07426416,0.88170405,-0.06544865,0.00230569,0.00863232,0.05220481,0$

Supplementary notes on solvent calculations (dmso vs water).

The DMSO system was made up of a simple methyl monophosphate molecule coordinated to three DMSO molecules and optimized in DMSO using the PCM method. The water system was made up of a simple methyl monophosphate molecule coordinated to three water molecules and optimized in water using the PCM method. This way both the dielectric and stereoelectronic effects of DMSO and water are modeled.

Results

DMSO	Water
$\mathrm{O}-\mathrm{P}$ bond length $=1.71 \AA$	$\mathrm{O}-\mathrm{P}$ bond length $=1.68 \AA$
$\mathrm{E}(2) \mathrm{n}(\mathrm{O}) \rightarrow \sigma^{*}(\mathrm{O}-\mathrm{P})=61 \mathrm{kcal} / \mathrm{mol}$	$\mathrm{E}(2) \mathrm{n}(\mathrm{O}) \rightarrow \sigma^{*}(\mathrm{O}-\mathrm{P})=50 \mathrm{kcal} / \mathrm{mol}$

Variations of OH bond lengths with bonding and antibonding orbital occupancy

Figure S2 : Decrease in $\sigma(\mathrm{O}-\mathrm{H})$ and increase in $\sigma^{*}(\mathrm{O}-\mathrm{H})$ occupancies and their correlation with $\mathrm{O}-\mathrm{H}$ bond lengths. All calculations were performed using the B3LYP/6-311++G(d,p) level in PCM with Pauling explicit hydrogen radii. All points were calculated using default G 03 convergence criteria except for acetic acid which could not reach convergence and so was calculated using a loose optimization.

Full Gaussian reference

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; N. Rega; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision A. 1 ed.; Gaussian, Inc.: Pittsburgh, PA, 2003.

[^0]: $1 \backslash 1 \backslash G \mid N C-C S I T 204 \backslash F r e q \backslash R B 3 L Y P \backslash 6-311++G(d, p) \backslash C 6 H 1109 P 1(2-) \backslash R U B E N \backslash 18-$ May $2006 \backslash 011$ \#P GEOM=ALLCHECK GUESS=READ SCRF=CHECK GENCHK RB3LYP/6-311++G1 D, P) FREQ
Title Card Required
-2,1\C, -0.4971205505, 0.252710201, 0.022 59231741 C, $-0.5233930943,0.1583921865,1.5536218031 \mid$ C, 0. $8976693934,0.210$ $4169321,2.1188374639$ | C, 1. 8216071507 , $-0.8034573429,1.4494892504 \backslash$ C, 1. 717 $0213317,-0.6767710726,-0.0813323217 \backslash C, 2.4674537514,-1.7780029793,-0.82$ $65556136 \backslash H,-0.0767150664,1.2166371848,-0.2971539933 \backslash 0,-1.2976517536,1$. $246749884,2.0506335476 \backslash 0,0.798917016,-0.0127597962,3.529203885 \backslash 0,3.146$ $5692605,-0.5458792558,1.924693633210,0.3522748015,-0.8029627788,-0.481$ $8750575 \backslash 0,3.8571549221,-1.6989371999,-0.4794773224 \backslash 0,-1.7634608049,0.0$ $721670714,-0.4897005946$ H, - $0.9901286275,-0.7996693599,1.8273301184$ IH, 1 . $3039899925,1.2165264483$, 1. 9353484226 IH, 1. $5076830687,-1.8189362592$, 1.7 389577489 |H, 2. $1133093619,0.3063050639,-0.3858207074$ \H, 2. $0537659543,-2$. $752642806,-0.54062701851 \mathrm{H}, 2.3291111136,-1.6408067541,-1.9047480247$ H, $1.3602079874,1.1636379021,3.02109982561 \mathrm{H}, 1.6123577529,0.3177453205,3.9$ $59536727 \backslash H, 3.7575149051,-1.0551651728,1.3657928861$ | P, - 2. $2939087737,0.8$

