Unexpected Formation of (Dimethylaminomethylene)methylamide Complexes from the Reactions between Metal Chlorides and Lithium Dimethylamide

Xin-Hao Zhang,^a Shu-Jian Chen,^b Hu Cai,^b Hee-Jung Im,^b Tianniu Chen,^b Xianghua Yu,^b Xuetai Chen,^c Zhenyang Lin,^{a,*} Yun-Dong Wu,^{a,*} Zi-Ling Xue^{b,*}

^a Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China. E-mail: chzlin@ust.hk, chydwu@ust.hk

^b Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996. E-mail: <u>xue@utk.edu</u>

^c State Key Laboratory of Coordination Chemistry, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

Supporting Information

Complete list of Reference 16.

Gaussian 03, Revision B.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam,

J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;

Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;

Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;

Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.

E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma,

K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;

Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz,

J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;

Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;

Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford, CT, 2004.

Additional Experimental

Analyses by X-ray Photoelectron Spectroscopy (XPS). XPS analyses of solids of 1b, Ta(NMe₂)₅ and a mixture of W(NMe₂)₆ and W₂(NMe₂)₆ were carried out on an upgraded Perkin Elmer Phi 5000 Series ESCA/SAM system using a standard Mg K_{α} excitation. Base pressure in the XPS chamber was 10⁻⁹ torr. The composition was determined according to the XPS multiplex spectrum. Solid of each sample was ground into powders in a glovebox, and then put on a Scotch tape. The tape was then placed into the XPS chamber for analysis. The XPS spectra of 1b, Ta(NMe₂)₅ and W(NMe₂)₆ [containing a small amount of W₂(NMe₂)₆]^{S1} are given in Figures S1-S3. The Ta and W 4*f*_{5/2} and 4*f*_{7/2} peaks were not resolved in the spectra. However, the 4*f*_{5/2}-4*f*_{7/2} peaks for 1b, Ta(NMe₂)₅ and W(NMe₂)₆ are at 30.7, 29.6 and 38.7 eV, respectively.^{S2} Although these spectra for the volatile samples are not high resolution, they show that the chemical shifts of the 4*f*_{5/2}-4*f*_{7/2} peaks in 1b and Ta(NMe₂)₅ are close to each other (and are close to those of other Ta samples)^{S3} but are ca. 8.0 eV less than that of the tungsten sample. The XPS spectra suggest that 1b contains Ta but not W. These results are consistent with other analyses of 1b.

XPS analyses of the residue after sublimation of Ta(NMe₂)₅ (**1b**) and Ta(NMe₂)₄(MeNCH₂NMe₂) (**2b**) were carried out on a Perkin Elmer PHI 5500 Multi-Technique System using a standard Al K_{α} excitation source. Base pressure in the XPS chamber was 10⁻⁹ torr. The Ta $4f_{5/2}$ - $4f_{7/2}$ peaks at >27.3 eV are closed to those of Ta(V) species, suggesting that there are unlikely Ta(0) species in the residue.

Additional References

(S1)W(NMe₂)₆ prepared from WCl₆ is usually contaminated with W₂(NMe₂)₆.^{8b}

- (S2) The chemical shifts in XPS spectra are not calibrated. Thus the relative values are significant.
- (S3) Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation: Minnesota, 1979.

Figure S1. XPS spectrum of Ta(NMe₂)₄(η^2 -MeNCH₂NMe₂) (**2b**).

Figure S2. XPS spectrum of Ta(NMe₂)₅ (1b).

Figure S3. XPS spectrum of a mixture of $W(NMe_2)_6$ [containing a small amount of $W_2(NMe_2)_6$].

Figure S4. IR spectrum of $Ta(NMe_2)_4(\eta^2-MeNCH_2NMe_2)$ (**2b**, KBr pellet).

Figure S5. XPS spectrum of the residue after the sublimation of 1b and 2b.

	E (Hartree)	E (with ZPE) (Hartree)	Free energies (Hartree)
CH ₂ =NCH ₃	-133.9393776	-133.8707726	-133.8954956
1b	-730.7837507	-730.3707027	-730.4232487
2b	-864.7504827	-864.2624877	-864.3191237
2b-TS	-864.6909138	-864.2056048	-864.2600868
3b	-864.7256077	-864.2399667	-864.2956337
3b-TS	-864.7228574	-864.2387544	-864.2955704

Table S1. Calculated total energies, energies with zero-point energy corrections, and free energies of the structures in the text.

NMe₂ Me₂N-Ta-NMe₂ 1.992 2.051 Me₂N 1b Та 0.00002900 -0.00001100 0.0193690 -0.00010000 -0.00077600 Ν 2.0119190 Ν -1.96140100 0.47916400 -0.3433600 Ν -0.47007900 -1.85830000 -0.6495520 -0.47859400 1.85879000 0.15089100 ZZUUUUUUUUUUUIIIIIIIIIIII 1.96163300 -0.3434640 0.47005600 -0.6484440 1.18994500 2.8474150 -0.15300900 -1.19036600 2.8470110 -2.50365200 1.72833200 0.1905160 -2.92659000 -0.09999600 -1.2652100 -1.46235800 -2.70058400 0.0042910 0.02844400 -2.49453500 -1.8572160 2.50383900 -1.72796400 0.1900090 -1.2655480 2.92657300 0.10056000 1.46242900 -0.02853000 2.70060000 0.0058240 2.49563200 -1.8557350 1.05025500 1.11381200 3.4803620 -0.71422600 3.5196610 1.31208900 2.08690000 0.23605800 2.2321230 3.5199310 -1.31256900 0.71157500 -1.05289200 -1.11447600 3.4792490 -2.08717500 -0.23755300 2.2314250 2.20601400 0.8738460 -1.79733400 2.44830900 -0.6114820 -2.73875900 -3.44036100 1.54059600 0.7419540 0.61597500 -3.19649300 -2.0620420 -3.86707500 -0.37008700 -0.7540620 -2.51938000 -1.7386840 -0.99347000 -1.86773200 0.8950400 Н -2.21340700 H H H H H -2.31200300 -2.94435500 -0.6570410 -3.65779500 -1.01147100 0.3170670 -0.76536100 -2.61516100 -2.6162850 0.42314100 -3.50330000 -1.6460500 HHHHHH 0.83231500 -1.90172700 -2.3028550 1.79754900 -2.20579800 0.8732750 -2.44775900 2.73875900 -0.6122110 3.44063800 -1.54049000 0.7413840 3.19577800 -0.61519300 -2.0628090 3.86743100 0.37005500 -0.7547700 2.51950800 -1.7384450 HHHHH 0.99440400 2.31238200 2.94428900 -0.6551480 1.01173900 3.65787800 0.3186790 1.86734300 2.21310700 0.8966120 0.76514300 2.61642500 -2.6149270 Н -0.42298500 3.50439700 -1.6441000 -0.83260300 Н 1.90315600 -2.3014610

The Calculated Geometries with Cartesian coordinates

Me ₂ N Me ₂ N	NMe ₂ NMe ₂ NMe ₂ NMe ₂	2.038 1.992 2.038 2.038 2.629 58.5° 1.435 1.490	Me ₂ N—T Me ₂ N 2b-	NMe ₂ NMe ₂ N N N TS	2.268
A ZZZZZOUUUUUUUUUUUITITITITITITITITITITITITITIT	0.23246400 -2.38934200 2.06128700 0.24481400 0.52389300 -0.92621300 -2.99973300 -3.11740100 2.91224400 0.74995500 -0.45350800 -2.32058100 -0.13068200 -0.13068200 -2.32058100 -2.45293000 -2.45293000 -2.45293000 -2.45293000 -2.45293000 -2.45293000 -2.45293000 -2.45156800 2.42360000 3.87295800 3.14509000 1.02338100 -0.059732000 -0.57749400 0.577749400 0.74255300 -2.89681100 -2.79669300 -2.79669300 -2.89681100 -2.79669300 -1.43576600 2.17525200 1.82451900 2.58570800 -1.03136300 0.42279800 -1.12962800 3.74229100 3.74229100 3.01555300 2.19367200 0.013743200 0.11374200 0.94292000 0.11374200 0.9493900 -0.79063700 -0.79063700 -0.79063700 -0.79063700 -0.79063700 -0.79063700 -0.79063700 -0.79063700 -0.79063700 -0.79063700 -0.79063700 -0.58635100 -0.58635100 -0.39136900 -1.31542100	-0.00604200 -0.02426200 0.11044000 0.13019900 -0.09027300 -0.80955700 2.07342300 0.16250700 -0.14496900 1.98846400 0.17261400 -1.69136300 1.35501600 0.62720400 -1.05515800 0.65763000 1.06094500 -1.12444700 2.83149300 1.30220100 0.0635500 3.04980100 0.10071200 -1.35801400 3.03710000 -0.86669200 -0.42169000 2.5634800 0.29201300 -3.10795300 -1.31240900 -1.17865300 2.21128000 0.23455400 1.38552800 1.71907800 1.42855900 0.33205900 -1.03803100 0.36214400 -1.05501400 1.75036100 -1.97042600 0.29144500 1.99037300 -0.84176100 0.98732900 -0.58906800 1.09115900 -2.20147300 2.5602800 2.4210500 0.25602800 2.64627100 -0.91767700 3.6466700 0.8094000 3.75205300 -0.81963300 -1.72645500 3.61550700 -1.22280900 3.78406700 -1.428198500 0.40976700 3.20819700 -1.32737400 3.9581900 -1.32737400 3.9581900 -1.32737400 3.9581900 -1.32737400 3.27764800 1.318671800 -3.54598300 -1.32737400 3.27764800 1.3125400 -2.2566900 2.53729400 -1.72645500 3.641550700 -1.22280900 3.78406700 -0.48198500 0.40976700 3.20819700 -1.32737400 3.9581400 -0.5770200 -3.67973400 0.36414900 -3.27764800 1.13871800 -3.54598300 -1.3126400 -1.734200 -3.72671400 0.8384500 -2.19495900 -0.93840500 -2.19495900 -0.93840500 -2.19495900 -0.93840500 -3.15240500 -2.45568100 -3.4570600 -1.15796100 -2.84370500 -1.228090 -3.5541190 -1.54558100 -3.5541190 -1.54558100 -3.554190 -1.54558100 -3.55	A FZZZZZOUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	-0.10767600 -0 1.35772000 -1 1.29706300 -1 1.29706300 -1 1.29706300 -0 2.55319600 1 0.98879400 3 0.78303100 -3 0.95128000 -2 -0.69265300 1 1.79214100 0 2.66697800 -1 -2.37459800 -0 1.9228100 -1 2.87526800 -1 2.87526800 -1 2.87526800 -1 2.87526800 -1 2.87526800 -1 2.87526800 -1 2.3748500 -2 3.38861600 2 0.19246700 3 0.21034600 -3 -1.4882500 -3 -0.8247800 -1 1.08402200 -3 -0.8247800 -1 1.08402200 -3 -0.8247800 -1 1.2285600 1 2.275394600 -2 3.33223000 -1 1.226611900 0 -2.68869600 -1 1.226611900 0 -2.68869600 -1 1.60090800 -1 1.60090800 -1 1.70712600 -2 3.31290400 0 -2.68869600 -1 1.60090800 -1 1.226611900 0 -2.68869600 -1 1.226611900 0 -2.68869600 -1 1.0090800 -1 1.22651100 -2 3.31290400 0 -2.68869600 -1 1.22651100 -2 -2.43150200 -1 -2.90534300 0 -3.27811100 1 -2.264773600 3 -1.42438600 1 -2.264773600 3 -1.42438600 1 -2.264776500 1 -1.13135500 2	0.04979300 0.0369590 66180300 0.2861140 .65978800 -0.5479360 .27541900 0.9507730 30649100 1.7309920 .17014500 -1.8724660 64827200 1.1267040 05688300 0.0690840 06062300 -0.4999630 00987400 2.1710760 25373700 2.7562510 99965000 -1.8149770 63064200 0.6114080 3194500 -2.4070130 61091600 -1.2131640 63327100 1.3421060 14660900 2.0968500 13916400 -0.6719960 65502900 -2.786420 53544900 0.995240 15824700 -0.0666880 66512500 0.948480 49803000 -1.5128130 .83175500 2.4651370 09858600 2.0405000 71033400 3.075830 0870900 -1.9839620 99593200 -1.88680 <

Me ₂ N Me ₂ N M Me ₂ N Me ₂ N M Me ₂ N M Me ₂ N M Me ₂ N M M M M M M M M M M M M M M M M M M M	2.001 2.086 2.554 4.60 7.22	Me ₂ N Me ₂ N 3	IMe ₂ a ^{mNMe₂} a ^{mNMe₂} NMe ₂ b-TS	3.262
C 1.3475590 N 0.9256011 C 1.239015 Ta 0.142454 N 0.201328 C -0.893804 N -0.959287 C -0.935930 N -0.430674 C -1.313442 N 1.903936 C 2.117393 N -2.095336 C -3.341876 C -3.341876 H 0.821562 H 0.832917 H -1.968098 H -1.440153 H -2.836495 H 0.712584 H 0.712584 H 0.712584 H -0.725456 H 0.694346 H 3.088979 H 3.915244 H -3.130599 H -1.257197 H -1.630870 H -2.217083 H -2.217083 H -0.6213042 H -3.319478 H -0.811372 H 2.598529 H -1.630870 H -1.630870	0 2.11117200 -1.9467930 00 1.77971400 -0.5882250 00 2.92403600 0.2589770 00 -0.06391700 -0.0048700 00 0.5422500 1.9641900 00 0.5422500 1.9641900 00 0.40529400 -1.9582980 00 -1.2785700 0.55280 00 -1.01289300 -0.055280 00 -1.01289300 -0.258280 00 -1.01289300 -0.248670 00 -1.4057500 0.248670 00 -1.05839000 -2.6931080 00 -2.56261600 -2.818070 00 -2.673100 -2.6853130 00 -2.673100 -2.6853130 00 2.43715250 0.488590 00 2.37753300 -1.9788400 00 2.3775300 -1.2647430 00 -2.14280900 -1.2114980 00 -2.18653100 -3.242570 00 -2.1863100	υzυμ [®] zυzυzυzυυυυυυυττιτιτιτιτιτιτιτιτιτιτιτιτ	-0.64659900 -0.19378900 0.34752000 0.34752000 0.09045400 1.26375800 0.09819000 1.18228000 0.18218600 -2.29959600 -3.03841500 0.85171700 0.85171700 0.85171700 0.85171700 0.83402900 -1.06166600 0.17562300 1.12851200 0.42852400 0.78156200 1.73243300 -1.54087300 0.17562300 1.73243300 -1.54087300 0.1365400 0.13455200 0.13455200 0.1365600 1.73243300 -1.54087300 0.1349500 -1.15863400 -2.37143300 -3.39088400 -3.88579000 4.63112100 2.95751000 1.75437100 1.88928700 0.8456100 0.8456100 0.34576100 0.34576100 1.75437100 1.85205300 4.82549400 -0.64961600 0.7688700 0.76774600 -1.19827600 1.190179600 0.35964700 1.8957200	2.32352500 2.0232090 1.92886000 0.6907580 3.10706500 0.0296740 0.01317100 -0.0049750 0.68106700 -1.8847050 0.43112400 -2.7054960 -1.9039700 -0.6781970 -2.37625300 -2.0263830 -0.42426000 1.8953740 -0.23640900 2.7630320 -0.17535300 -0.0562860 -1.41002300 -0.5763020 -0.23640900 2.7630320 -0.17535300 -0.0562860 0.9202400 0.0751610 -2.97830400 0.25682660 0.9202400 0.56826030 1.56309100 -2.5680130 1.4544010 2.5681710 3.10374100 1.9587040 2.74874400 2.6249200 3.87640400 -0.1360430 2.84519200 -0.349600 -2.64434900 1.86620 3.85715400 0.1636620 -3.3360700 -0.5349620 -1.23187400 3.4941460 1.86897

Empirical formula	C12 H35 N6 Nb	
Formula weight	356.35	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Cubic	
Space group	Im-3m	
Unit cell dimensions	a = 9.8520(11) Å	$\alpha = 90^{\circ}$
	b = 9.8520(11) Å	$\beta = 90^{\circ}$
	c = 9.8520(11) Å	$\gamma = 90^{\circ}$
Volume	956.25(18) Å ³	
Z	2	
Density (calculated)	1.241 Mg/m ³	
Absorption coefficient	0.629 mm ⁻¹	
F(000)	382	
Crystal size	$0.25\times0.23\times0.20~\text{mm}^3$	
Theta range for data collection	2.92 to 28.41°	
Index ranges	-12 \leq h \leq 13, -13 \leq k \leq 13, -13 \leq l \leq 12	
Reflections collected	2686	
Independent reflections	143 [R(int) = 0.0678]	
Completeness to theta = 28.41°	96.0 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.8845 and 0.8586	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	143 / 0 / 11	
Goodness-of-fit on F ²	1.192	
Final R indices [I > 2sigma(I)]	R1 = 0.0465, wR2 = 0.112	23
R indices (all data)	R1 = 0.0465, wR2 = 0.112	23
Largest diff. peak and hole	0.432 and -0.540 e.Å ⁻³	

	x	у	Z	U(eq)	
Nb(1)	0	0	0	52(1)	
Ν	2142(6)	0	0	80(2)	
С	3030(11)	1133(18)	0	152(8)	

Table S3. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **2a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S4. Bond lengths (Å) and angles (°) for 2a.

Nb(1)_N#1	2 110(6)	N-C	1 / 18(1/)
110(1)-11#1	2.110(0)	IN-C	1.418(14)
Nb(1)-N#2	2.110(6)	N-C#6	1.418(14)
Nb(1)-N#3	2.110(6)	N-C#7	1.418(14)
Nb(1)-N#4	2.110(6)	N-C#8	1.418(14)
Nb(1)-N#5	2.110(6)	C-C#7	1.58(3)
Nb(1)-N	2.110(6)	C-C#6	1.58(3)
N#1-Nb(1)-N#2	180.0	N#2-Nb(1)-N	90.0
N#1-Nb(1)-N#3	90.0	N#3-Nb(1)-N	180.0
N#2-Nb(1)-N#3	90.0	N#4-Nb(1)-N	90.0
N#1-Nb(1)-N#4	90.0		
N#2-Nb(1)-N#4	90.0	N#5-Nb(1)-N	90.0
N#3-Nb(1)-N#4	90.0	C-N-C#6	67.6(7)
N#1-Nb(1)-N#5	90.0	C-N-C#7	67.6(7)
N#2-Nb(1)-N#5	90.0	C#6-N-C#7	103.8(14)
N#3-Nb(1)-N#5	90.0	C-N-C#8	103.8(14)
N#4-Nb(1)-N#5	180.0	C#6-N-C#8	67.6(7)
N#1-Nb(1)-N	90.0	C#7-N-C#8	67.6(7)

C-N-Nb(1)	128.1(7)	N-C-C#7	56.2(4)
C#6-N-Nb(1)	128.1(7)	N-C-C#6	56.2(4)
C#7-N-Nb(1)	128.1(7)	C#7-C-C#6	90.002(2)
C#8-N-Nb(1)	128.1(7)		

Symmetry transformations used to generate equivalent atoms:

#1 -y,-z,-x	#2 y,z,x	#3 -x,-y,-z	#4 z,x,y
#5 -z,-x,-y	#6 x,z,y	#7 x,z,-y	#8 x,-y,z

Nb(1) 52(1) 52(1) 0	0	0
N 48(3) 95(3) 95(3) 0	0	0
C 58(4) 137(13) 260(20) 0	0	-30(6)

Table S5. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **2a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2hka^* b^* U^{12}]$

Table S6. Hydrogen coordinates (× 10^4) and isotropic displacement parameters (Å² × 10^3) for **2a**.

	Х	у	Z	U(eq)	
H(0)	2902	2120	0	182	

Figure S6. ORTEP of 2a showing 30% probability thermal ellipsoids.

Figure S7. Packing diagram of **2a** along the a axis.

Table S7. Crystal data and structure refinement for 2b.

Empirical formula	C12 H35 N6 Ta	
Formula weight	444.39	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Cubic	
Space group	Im-3m	
Unit cell dimensions	a = 9.835(3) Å	$\alpha = 90^{\circ}$
	b = 9.835(3) Å	$\beta = 90^{\circ}$
	c = 9.835(3) Å	$\gamma = 90^{\circ}$
Volume	951.2(5) Å ³	
Z	2	
Density (calculated)	1.555 g/cm^3	
Absorption coefficient	5.778 mm ⁻¹	
F(000)	446	
Crystal size	$0.19\times0.12\times0.10~mm^3$	
Theta range for data collection	2.93 to 26.27°	
Index ranges	$-12 \le h \le 12, -12 \le k \le 12,$	$-12 \le l \le 12$
Reflections collected	4518	
Independent reflections	123 [R(int) = 0.0497]	
Completeness to theta = 26.27°	100.0 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.5958 and 0.4065	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	123 / 0 / 12	
Goodness-of-fit on F ²	1.147	
Final R indices [I>2sigma(I)]	$R1 = 0.0143, wR2 = 0.03^{\circ}$	70
R indices (all data)	$R1 = 0.0143, wR2 = 0.03^{\circ}$	70
Largest diff. peak and hole	0.219 and -0.274 e.Å ⁻³	

	Х	у	Z	U(eq)
Та	0	0	0	50(1)
Ν	0	2110(6)	0	81(2)
C(1)	0	3040(11)	1146(13)	164(7)

Table S8. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **2b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S9.Bond lengths (Å) and angles (°) for 2b

Ta-N#1	2 075(6)	Ta-N	2 075(6)
Ta-N#2	2.075(6)	N-C(1)#6	1.451(11)
Ta-N#3	2.075(6)	N-C(1)	1.451(11)
Ta-N#4	2.075(6)	N-C(1)#7	1.451(11)
Ta-N#5	2.075(6)	N-C(1)#8	1.451(11)
N#1-Ta-N#2	180.0	N#4-Ta-N	90.0
N#1-Ta-N#3	90.0	N#5-Ta-N	90.0
N#2-Ta-N#3	90.0	C(1)#6-N-C(1)	66 6(6)
N#1-Ta-N#4	90.0	C(1)#6-N- $C(1)$ #7	101.9(11)
N#2-Ta-N#4	90.0	C(1)-N-C(1)#7	66 6(6)
N#3-Ta-N#4	90.0	C(1)#6-N- $C(1)$ #8	66 6(6)
N#1-Ta-N#5	90.0	C(1)-N-C(1)#8	101.9(11)
N#2-Ta-N#5	90.0	C(1)#7-N- $C(1)$ #8	66 6(6)
N#3-Ta-N#5	90.0	C(1)#6-N-Ta	129 1(6)
N#4-Ta-N#5	180.0	C(1)-N-Ta	129 1(6)
N#1-Ta-N	90.0	C(1)#7-N-Ta	129.1(6)
N#2-Ta-N	90.0	C(1)#8-N-Ta	129 1(6)
N#3-Ta-N	180.0		(*)

Sy	mmetry	transformations	used	to generate equivalent atoms	:

#1 -y,-z,-x	#2 y,z,x	#3 -x,-y,-z	#4 z,x,y
#5 -z,-x,-y	#6 z,y,-x	#7 -z,y,-x	#8 x,y,-z

Table S10. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **2b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\text{\AA}^2 a^{*2} U^{11} + ... + 2\text{\AA} a^{*b} U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Та	50(1)	50(1)	50(1)	0	0	0
Ν	95(3)	52(3)	95(3)	0	0	0
C(1)	262(19)	69(5)	160(12)	-36(6)	0	0

Table S11. Hydrogen coordinates (× 10^4) and isotropic displacement parameters (Å² × 10^3) for **2b**.

	х	у	Z	U(eq)
H(1A)	492	3849	909	246
H(1B)	428	2612	1912	246
H(1C)	-920	3274	1375	246

Figure S8. ORTEP of 2b showing 5% probability thermal ellipsoids.