<Supporting Information>

Synthesis and Anti-HIV Activity of 4'-Substituted 4'-Thiothymidines: A New Entry Based on Nucleophilic Substitution of 4'-Acetoxy Group

Kazuhiro Haraguchi,* Hisashi Shimada, Hiromichi Tanaka, Takayuki Hamasaki,

Masanori Baba, Elizabeth A. Gullen, Ginger E. Dutschman,

and Yung-Chi Cheng

CONTENTS

Page S2 – S6 General Experimental Section and procedures for compounds 8-13.

Page S7 – S9 Table for elemental analysis of compounds 8-37.

Chemistry Melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded either at 400 MHz or at 500 MHz. Chemical sifts are reported relative to Me₄Si. Mass spectra (MS) were taken in FAB mode with *m*-nitrobenzyl alcohol as a matrix. Column chromatography was carried out on silica gel. Thin-layer chromatography (TLC) was performed on silica gel. When necessary, analytical samples were purified by high performance liquid chromatography (HPLC). THF was distilled from benzophenone ketyl.

 $\label{eq:2-1} 1-[2-Deoxy-2-iodo-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-4-thio-\beta-D-ribofuranosyl]thymine (8)$

To an CH₃CN (30.0 mL) solution of bis-*O*-TMS-thymine, prepared from thymine (4.40 g, 34.88 mmol) and *N*,*O*-bis-trimethylsilylacetamide (17.21 mL, 69.75 mmol), was added an CH₃CN (40 mL)/CH₂Cl₂ (20 mL) solution of **7** (8.71 g, 23.25 mmol). To the

mixtute was added *N*-iodosuccimide (7.85 g, 34.88 mmol) at 0 °C under Ar atmosphere. The reaction mixture was stirred for 5 h, and was partitioned between CHCl₃/saturated aq NaHCO₃-0.2 M Na₂S₂O₃. Column chromatography (hexane/AcOEt = 3/1) of the organic layer gave **8** (10.86 g, 75%) as foam: UV (MeOH) λ_{max} 270 nm (£11500), λ_{min} 236 nm (£3000); ¹H NMR (CDCl₃) δ 0.96-1.12 (32H, m), 1.93 (3H, d, *J* = 1.2 Hz), 3.37 (1H, dd, *J* = 4.4 and *J* = 8.8 Hz), 3.68 (1H, ddd, *J* = 8.8, *J* = 2.0 and *J* = 3.2 Hz), 4.01 (1H, dd, *J* = 2.0 and *J* = 13.2 Hz), 4.12 (1H, dd, *J* = 3.2 and *J* = 13.2 Hz), 4.47 (1H, dd, *J* = 1.6 and *J* = 4.4 Hz), 6.07 (1H, d, *J* = 1.6 Hz), 8.07 (1H, d, *J* = 1.2 Hz), 8.44 (1H, br); NOE experiment: H-1'/H-4' (1.0%), H-6/H-3' (7.6%), H-6/H-5'a (0.3%) and H-6/H-2' (1.7%); ¹³C NMR (CDCl₃) δ : 12.6, 12.7, 13.1, 13.2, 13.4, 16.91, 16.95, 16.97, 17.06, 17.3, 17.4, 17.5, 38.7, 54.0, 58.2, 67.2, 71.4, 76.7, 110.5, 136.3, 150.4, 163.3. FAB-MS (*m*/*z*) 627 (M⁺+H). *Anal.* Calcd for C₂₂H₃₉IN₂O₅SSi₂: C, 42.16; H, 6.27; N, 4.47. Found: C, 42.25; H, 6.28; N, 4.42.

$1-[2-Deoxy-3,5-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-4-thio-\beta-D-ribo-furanosyl]thymine (9)$

To a toluene (70 mL) solution of **8** (10.76 g, 17.17 mmol) was added Bu₃SnH (5.1 mL, 18.89 mmol) and Et₃B (1 M THF solution) (1.7 mL, 1.7 mmol) at -70 °C under Ar atmosphere. The reaction mixture was stirred under O₂ atmosphere at -70 °C for 1.5 h. The reaction mixture was chromatographed on silica gel column (hexane/AcOEt = 2/1) to give **9** (8.56 g, 100%) as solid: mp 147-149 °C; UV (MeOH) λ_{max} 271 nm (£10900), λ

min 242 nm (ε5200); ¹H NMR (CDCl₃)δ1.00-1.15 (32H, m), 1.93 (3H, d, J = 1.2 Hz), 2.26 (1H, dd, J = 13.6 and J = 6.0 Hz), 2.48 (1H, ddd, J = 8.0, J = 13.6 and J = 12.0 Hz), 3.33 (1H, ddd, J = 9.2, J = 1.6 and J = 3.2 Hz), 3.96 (1H, dd, J = 1.6 and J = 12.8 Hz), 4.13 (1H, dd, J = 3.2 and J = 12.8 Hz), 4.46 (1H, ddd, J = 6.0, J = 12.0 and J = 9.2 Hz), 6.05 (1H, d, J = 8.0 Hz), 7.89 (1H, d, J = 1.2 Hz), 8.42 (1H, br); ¹³C NMR (CDCl₃)δ: 12.4, 12.5, 12.9, 13.2, 13.4, 16.89, 16.97, 17.06, 17.14, 17.3, 17.4, 17.5, 43.0, 54.9, 57.1, 58.1, 70.9, 110.8, 136.6, 150.6, 163.5. FAB-MS (m/z) 501 (M⁺+H). Anal. Calcd for C₂₂H₄₀N₂O₅SSi₂: C, 52.76; H, 8.05; N, 5.59. Found: C, 52.58; H, 8.17; N, 5.51.

1-[2-Deoxy-3,5-di-*O*-acetyl-4-thio-β-D-ribofuranosyl]thymine (10)

To a THF (70 mL) solution of **9** (8.52 g, 17.01 mmol) was added Ac₂O (8.0 mL, 85.05 mmol) and Bu₄NF (1 M THF solution) (51 mL, 51.03 mmol) at 0 °C under Ar atmosphere. After stirring for 5 h at rt, the reaction mixture was partitioned between CHCl₃/saturated aq NaHCO₃. Silica gel column chromatography (hexane/AcOEt = 1/2) of the organic layer gave **10** (5.41 mg, 93%) as foam: UV (MeOH) λ_{max} 270 nm (ϵ 9900), λ_{min} 236 nm (ϵ 2500); ¹H NMR (CDCl₃) δ 1.98 (3H, d, *J* = 1.2 Hz), 2.13 and 2.15 (6H, each as s), 2.20 (1H, ddd, *J* = 9.2 and *J* = 13.6 and *J* = 4.4 Hz), 2.54 (1H, ddd, *J* = 6.4, *J* = 13.6 and *J* = 2.4 Hz), 3.71 (1H, ddd, *J* = 2.0, *J* = 7.6 and *J* = 6.0 Hz), 4.20 (1H, dd, *J* = 2.4 and *J* = 2.0 Hz), 6.56 (1H, dd, *J* = 9.2 and *J* = 6.4 Hz), 7.53 (1H, ddd, *J* = 1.2 Hz), 8.66 (1H, br); ¹³C NMR (CDCl₃) δ 12.7, 20.8, 21.0, 39.4, 52.6, 61.1, 64.9, 76.4, 112.3, 135.4,

150.7, 163.2, 170.1, 170.5. FAB-MS (*m/z*) 343 (M⁺+H). *Anal*. Calcd for C₁₄H₁₈N₂O₆S: C, 49.11; H, 5.30; N, 8.18. Found: C, 49.14; H, 5.33; N, 7.93.

1-[-2,5-Dideoxy-5-iodo-4-thio-β-D-ribofuranosyl]thymine (11)

Compound **10** (5.94 g, 17.35 mmol) was treated with NH₃/MeOH (200 mL) at rt for 12 h. The reaction mixture was evaporated to dryness and the residue was dried in vacuo overnight. To a dioxane (120 mL) solution of the residue was added pyridine (3.5 mL, 43.38 mmol), PPh₃ (9.1 g, 34.7 mmol) and iodine (8.81 g, 34.7 mmol) at 0 °C under Ar atmosphere. The reaction mixture was stirred at rt for 10 h and chromatographed on silica gel (4% MeOH in CH₂Cl₂) to give **11** (5.16 g, 81%) as solid: mp 184-186 °C; UV (MeOH) λ_{max} 269 nm (£11300), λ_{min} 236 nm (£4800); ¹H NMR (CDCl₃) δ 1.91 (3H, d, *J* = 1.2 Hz), 2.29–2.38 (2H, m), 3.58 (1H, br), 3.58 (2H, br), 4.56 (1H, dd, *J* = 2.4 and *J* = 3.6), 6.48 (1H, dd, *J* = 8.0 and *J* = 7.6 Hz), 7.74 (1H, d, *J* = 1.2 Hz), 8.66 (1H, br); ¹³C NMR (DMSO-d₆) δ : 11.0, 12.0, 58.3, 61.2, 75.7, 95.4, 110.3, 136.7, 150.6, 163.4. FAB-MS (*m*/*z*) 369 (M⁺+H). *Anal*. Calcd for C₁₀H₁₃IN₂O₃S: C, 32.62; H, 3.56; N, 7.61. Found: C, 32.91; H, 3.36; N, 7.23.

1-[3-O-Acetyl-2,5-dideoxy-β-D-glycero-4-eno-4-thiofuranosyl]thymine (12)

To an CH₃CN (30 mL) suspension of **11** (5.16 g, 14.01 mmol) was added *i*-Pr₂NEt (7.3 mL, 42.03 mmol), Ac₂O (2.6 mL, 28.02 mmol) and DMAP (856.4 mg, 7.01 mmol) at 0°C under Ar atmosphere. After stirring for 18 h at rt, the reaction mixture was partitioned between CHCl₃/saturated aq NaHCO₃. Silica gel column chromatography

(5% MeOH in CH₂Cl₂) of the organic layer gave the 5'-*O*-acetate. To an CH₃CN (35 mL) solution of the acetate was added DBN (4.1 mL, 33.48 mmol) at 0 °C under Ar atmosphere. The reaction mixture was stirred at rt for 24 h, neutralized with acetic acid, and partitioned between CHCl₃/sat. NaHCO₃. The organic layer was chromatographed on a silica gel column (3% MeOH in CH₂Cl₂) to give **12** (3.29 g, 83%) as foam: ¹H NMR (CDCl₃)δ1.97 (3H, d, *J* = 0.8 Hz), 2.12 (3H, s), 2.20 (1H, ddd, *J* = 8.4, *J* = 13.6 and *J* = 4.8 Hz), 2.57 (1H, ddd, *J* = 6.4, *J* = 13.6 and *J* = 3.2 Hz), 5.26 (1H, s), 5.52 (1H, s), 5.85 (1H, dd, *J* = 4.8 and *J* = 2.4 Hz), 6.77 (1H, dd, *J* = 8.4 and *J* = 6.4 Hz), 7.35 (1H, d, *J* = 0.8 Hz), 9.31 (1H, br); ¹³C NMR (CDCl₃)δ: 12.1, 20.9, 61.3, 77.0, 108.9, 110.7, 136.3, 145.6, 150.6, 163.4, 169.6, 170.3. FAB-MS (*m*/*z*) 283 (M⁺+H). High resolution FAB-MS (*m*/*z*): calcd for C₁₂H₁₅N₂O₄S : 283.0753 (M⁺ + H). Found: 283.0745.

1-[3-*O*-(*t*-Butyldimethylsilyl)-2,5-dideoxy-β-D-*glycero*-4-eno-4-thiofuranosyl]thy mine (13)

Compound **12** (3.5 g, 12.40 mmol) was treated with NH₃/MeOH (80 mL) for 10 h at rt. The reaction mixture was evaporated and dried in vacuo overnight. To a DMF (40 mL) solution of the residue was added imidazole (2.5 g, 37.2 mmol) and *t*-butyldimethylsilyl chrolide (3.7 g, 24.8 mmol) at 0 °C under Ar atmosphere. After stirring for 10 h at rt, the reaction mixture was partitioned between AcOEt/H₂O. Silica gel column chromatography (hexane/AcOEt = 3/1) of the organic layer to give **13** (3.15 g, 72%) as foam: UV (MeOH) λ_{max} 268 nm (£11000), λ_{min} 251 nm (£300). ¹H NMR (CDCl₃) δ 0.11 (6H, s), 0.91 (9H, s), 1.96 (3H, d, J = 1.2 Hz), 2.04 (1H, ddd, J = 7.0, J = 13.0 and J = 4.4 Hz), 2.40 (1H, ddd, J = 6.2, J = 13.0 and J = 4.8 Hz), 4.76 (1H, dd, J = 4.4 and J = 4.8 Hz), 5.12 (1H, d, J = 1.2 Hz), 5.32 (1H, d, J = 1.2 Hz), 6.62 (1H, dd, J = 7.0 and J = 6.2 Hz), 7.37 (1H, d, J = 1.2 Hz), 8.47 (1H, br); ¹³C NMR (CDCl₃) δ : -4.7, -4.6, 12.7, 18.0, 25.7, 44.2, 61.4, 76.6, 106.2, 111.9, 135.8, 149.1, 150.5, 163.4. FAB-MS (m/z) 355 (M⁺+H). Anal. Calcd for C₁₆H₂₆N₂O₃SSi: C, 54.20; H, 7.39; N, 7.90. Found: C, 54.28; H, 7.52; N, 7.79.

Microanalytical Data

no	Empirical Formula		Calcd.			Found	
		С	Н	N	С	Н	N
8	$C_{22}H_{39}IN_2O_5SSi_2$	42.16	6.27	4.47	42.25	6.28	4.42
9	$C_{22}H_{40}N_2O_5SSi_2$	52.76	8.05	5.59	52.58	8.17	5.51
10	$C_{14}H_{18}N_2O_6S$	49.11	5.30	8.18	49.14	5.33	7.93
11	$C_{10}H_{13}IN_2O_3S$	32.62	3.56	7.61	32.91	3.36	7.23
13	$C_{16}H_{26}N_2O_3SSi$	54.20	7.39	7.90	54.28	7.52	7.79
14	$C_{20}H_{32}N_2O_7SSi$	50.83	6.82	5.93	50.93	6.86	5.87
15	$C_{20}H_{32}N_2O_7SSi$	50.83	6.82	5.93	50.83	6.88	5.83

16	$C_{16}H_{26}N_2O_4SSi$	51.86	7.07	7.56	51.98	7.15	7.49
17a	$C_{24}H_{34}N_2O_5S_2Si$	55.14	6.56	5.36	54.79	6.54	5.32
20b	$C_{17}H_{30}N_2O_5SSi$	50.72	7.51	6.96	50.81	7.60	6.81
21a	$C_{21}H_{34}N_2O_5SSi$	55.48	7.54	6.16	55.68	7.75	5.99
23	$C_{28}H_{46}N_2O_4S_2Si_2$	56.52	7.79	4.71	56.47	7.85	4.66
24	$C_{24}H_{44}N_2O_6SSi_2$	52.91	8.14	5.14	53.06	8.28	5.14
26a	$C_{23}H_{41}N_3O_4SSi_2$	53.97	8.07	8.21	54.26	8.30	7.85
27	$C_{22}H_{40}N_2O_4SSi_2$	54.50	8.32	5.78	54.87	8.55	5.84
28a	$C_{15}H_{17}N_3O_6S$	49.04	4.66	11.44	49.00	4.53	11.04

29	$C_{23}H_{42}N_2O_5SSi_2$	53.66	8.22	5.44	53.85	8.37	5.40
31	C ₁₆ H ₁₈ N ₃ O ₆ S·1/2AcOEt	62.67	5.40	6.83	53.02	5.55	6.94
32	$C_{16}H_{18}N_2O_4S_2$	52.44	4.95	7.64	52.71	5.08	7.48
33	$C_{10}H_{13}N_5O_4S\cdot 1/2AcOMe$	41.07	4.79	20.82	41.00	4.44	21.22
34	$C_{11}H_{16}N_2O_5S$	45.82	5.59	9.72	45.95	5.57	9.41
35	$C_{13}H_{19}N_2O_4S$	52.33	6.08	9.39	52.10	5.98	9.05
36	$C_{11}H_{13}N_3O_4S$	46.63	4.63	14.83	46.70	4.60	14.47
37	$C_{12}H_{14}N_2O_4S\cdot 1/4H_2O$	50.25	5.10	9.77	50.21	4.96	9.90