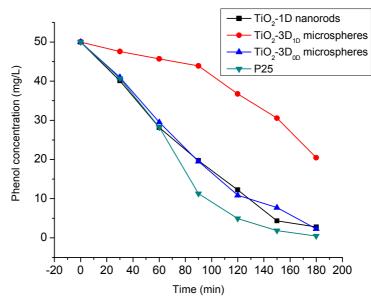

Directed Synthesis of Hierarchical Nano-Structured TiO₂ Catalysts and their Morphology-Dependent Photocatalysis for Phenol Degradation

Lu Liu*, Huajie Liu, Ya-Ping Zhao*, Yuqiu Wang, Yuqin Duan, Guandao Gao,

Ming Ge, Wei Chen*

Figure. I.a. Samples $TiO_2 3D_{1D}$ microspheres for HPLC/MS/MS analysis were taken at 180min, MRM chromatogram of intermediates of phenol degradation: RT1.72min-maleic anhydride, RT2.53min-benzoquinone, RT4.93min-4,4'-dihydroxybiphenyl, RT2.30min-p-dihydroxybenzene, RT2.49-m-dihydroxybenzene, RT2.70-o-dihydroxybenzene.

Figure. I.b. Samples TiO₂ 1D nanorods for HPLC/MS/MS analysis were taken at 180min,MRM chromatogram of intermediates of phenol degradation: RT1.72min-maleic anhydride, RT2.53min-benzoquinone, RT4.93min-4,4'-dihydroxybiphenyl, RT2.30min-p-dihydroxybenzene, RT2.49-m-dihydroxybenzene, RT2.70-o-dihydroxybenzene.


Annotation I: Intermediates of phenol was identified in the negative ion mode in the m/z 40-200 for HPLC/LC/MS/MS(Quattro MicroTM Api, Waters, USA) equipped with an electrospray ionization source (ESI). HPLC series (waters 2695, USA) is equipped with a reversed-phase C18 column (Xterra, USA) of 150×2.1 mm and 5µm particle diameter. Column temperature was maintained at 25°C. The mobile phase used for eluting phenol from the HPLC columns consisted of acetonitrile and water (40:60v/v) at a flow-rate of 0.2 mL/min.

Negative ions were acquired in multiple reaction monitoring (MRM) mode with a dwell time of 200 ms. For the negative model, the temperature of the heated capillary and source were 350 °C and 90°C, respectively. The source voltage was set to 4.0 kV. Analysis of the intermediates of phenol was performed using LC-ESI-MS/MS with multiple reaction monitoring (MRM). The optimal conditions for MS/MS analysis of the compounds and the precursor, [M-H]-, and product ions monitored in MRM mode are summarized in Table.I.

analyte	Precursor	Product ion	Cone voltage	Collision energy
	ion,	(m/z)	(V)	(eV)
	[M-H] ⁻ (m/z)			
4,4'-dihydroxybiphenyl	185	156	30	33
benzoquinone	123	39	30	28
p-dihydroxybenzene	109	81	30	16
m-dihydroxybenzene	109	65	30	12
o- dihydroxybenzene	109	81	30	12
maleic anhydride	97	80	30	17

Table.I. Optimal ESI-MS/MS Conditions for Analysis of intermediates of phenol

The result of intermediates of phenol degradation obtained at Figure. I.a and Figure. I.b.

Figure.II. Phenol concentration decreased as irradiation time, using $TiO_2 3D_{0D}$ microspheres, $TiO_2 1D$ nanorods, $TiO_2 3D_{1D}$ microspheres, and Degussa P25.

Annotation II:

Experimental results obtained in the present study showed that when Degussa P25 was used as the photocatalyst, white emulsion was formed in solution after treatment for 180 minutes; this emulsion makes it difficult to separate the photocatalyst, a difficult issue that has to be handled in treatment processes. The synthetic TiO_2 $3D_{0D}$ microspheres, however, can precipitate from wastewater much more easily after treatment because the diameters of these microspheres are approximately 5000-10000 times as large as those of Degussa P25 (with diameters from 21 to 24 nm). Therefore, the synthetic TiO_2 $3D_{0D}$ microspheres are much easier to separate than the Degussa P25 nanoparticles. This is a significant advantage of the synthetic TiO_2 $3D_{0D}$ microspheres over Degussa P25.