A New Sparteine Surrogate for Asymmetric Deprotonation of N-Boc Pyrrolidine

Darren Stead, Peter O'Brien* and Adam J. Sanderson

Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.

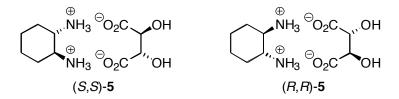
Eli Lilly and Co. Ltd, Lilly Research Centre, Erl Wood Manor, Sunninghill Rd,

Windlesham, Surrey, GU20 6PH, U.K.

paob1@york.ac.uk

Supporting Information Available: Full experimental procedures and characterisation data.

Table of contents:

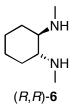

- S2 General
- S3 Full experimental procedures and characterisation data
- S24 Representative GC/HPLC data
- S32 References for supporting information

General

Water is distilled water. Where necessary, solvents were dried on a MBraun SPS solvent purification system or distilled before use. Et_2O and THF were freshly distilled from sodium and benzophenone. *s*-BuLi was titrated against *N*-benzylbenzamide or by acid/base double titration before use. Petrol refers to the fraction of petroleum ether with a boiling point range of 40-60 °C. Diamines used in lithiation reactions were distilled from CaH₂ before use. All reactions were carried out under oxygen-free nitrogen or argon using oven-dried and/or flame dried glassware. Flash column chromatography was carried out using Fluka Silica gel 60 (0.035-0.070 mm particle size). Thin layer chromatography was carried using Merck F_{254} aluminium-backed silica plates. For Kügelrohr distillations, the oven temperatures are quoted.

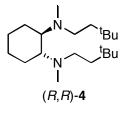
Proton (270 MHz or 400 MHz) and carbon (100.6 MHz) NMR spectra were recorded on a Jeol EX 270 or a Joel ECX-400 instrument using an internal deuterium lock. All samples were recorded in CDCl₃. Chemical shifts are quoted in parts per million and referenced to CHCl₃ (7.27 for ¹H NMR and 77.0 for ¹³C NMR spectroscopy). Carbon NMR spectra were recorded with broadband proton decoupling and were assigned using DEPT and HSQC experiments. Infra-red spectra were recorded on an ATI Matteson Genesis FT-IR spectrometer. Chemical ionisation and high resolution mass spectra were recorded on a Fisons Analytical (VG) Autospec spectrometer. Electrospray ionisation low and high resolution mass spectra were recorded on a Bruker Daltronics micrOTOF spectrometer.

Optical rotations were recorded at rt on a Jasco DIP-370 polarimeter (using the sodium D line; 259 nm) and $[\alpha]_D$ given in units of 10⁻¹ deg cm³ g⁻¹. Chiral stationary phase HPLC was performed on one of three systems: a Gilson system with 712 controller software and a 118 UV/Vis diode array detector or on a Waters system with a Waters 255 pump and a Waters 2487 UV detector or an Agilent 1200 series chromatograph using the column indicated for individual compounds. Chiral stationary phase GC was performed on either an Agilent 6890 gas chromatograph using the column indicated for individual compounds or a Perkin Elmer Autosystem XL gas chromatograph. Melting points were measured on a Gallenkamp melting point apparatus.

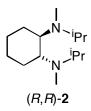

(1S,2S)-Cyclohexane-1,2-diamine 2,3-dihydroxysuccinate salt (S,S)-5 and (1R,2R)-Cyclohexane-1,2-diamine 2,3-dihydroxysuccinate salt (R,R)-5

Trans (\pm) -1,2 cyclohexane diamine (20.00 mL, 100.00 mmol) was added dropwise to a stirred solution of D-tartaric acid (12.51 g, 50.00 mmol) in water (45 mL) under air, such that the internal temperature did not exceed 70 °C (during this time a white precipitate forms, but this disappears by the point of complete addition). Then, AcOH (5 mL) was added dropwise such that the internal temperature did not exceed 90 °C. The resulting solution was allowed to cool to 5 °C over 4 h and kept at 5 °C for 2 h (refrigerator). The solids were removed by filtration and the filter-cake was washed with cold water (≤ 5 °C, 20 mL) and MeOH (5 x 10 mL) (Washings kept separate). The resulting white solid was sucked dry to give the (1*S*,2*S*) cyclohexane diamine D-tartaric acid salt (*S*,*S*)-**5** (22.75 g, \geq 95%, \geq 99:1 er by chiral shift ¹H NMR spectroscopy of the TMCDA derivative); mp 283-284 °C (lit.,¹ 280-284 °C). The aqueous filtrate was combined with the aqueous washings and cooled to 0 °C. L-tartaric acid (12.51 g, 50.00 mmol) was then added portionwise to the solution over 5 min. The resulting solution was stirred at 0 °C for 4 h. The solids were removed by filtration and the filter-cake was washed with cold water (≤ 5 °C, 20 mL) and MeOH (5 x 10 mL). The resulting white solid was sucked dry to give the (1R,2R) cyclohexane diamine L-tartaric acid salt (*R*,*R*)-5 (19.05 g, 90%, \geq 99:1 er by chiral shift ¹H NMR spectroscopy of the TMCDA derivative); 275-276 °C (lit.,¹ 273 °C); ¹H NMR (400 MHz, CDCl₃) δ 4.16 (s, 2H, C(O)₂CHOH), 3.22-3.12 (m, 2H, 2 $x CHNH_{3}^{+}$, 2.04-1.92 (m, 2H, 2 x CH₄H_BCHN), 1.72-1.60 (m, 2H, 2 x CH₄H_BCHN), 1.41-1.27 (m, 2H, $2 \times CH_{A}H_{B}CH_{2}$, 1.25-1.11 (m, 2H, 2 x $CH_{A}H_{B}CH_{2}$). Spectroscopic data consistent with that reported in the literature.¹

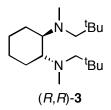
The er of each salt was determined by conversion to TMCDA and ¹H NMR spectroscopy in the presence of 2,2,2 trifluoro-1-(9-anthryl)-ethanol using the following procedure: TMCDA (1 mg) was dissolved in CDCl₃ (0.2 mL) in a NMR sample tube, and to this a solution of (R)-(–)-2,2,2-trifluoro-1-(9-


anthryl)-ethanol (2.8 mg) in CDCl_3 (0.3 mL) was added. ¹H NMR spectroscopy then gave the er of TMCDA and hence tartaric acid salt **5**.

(1R,2R)- N^1 , N^2 -Dimethylcyclohexane-1,2-diamine (R,R)-6


A solution of NaOH (12.24 g, 306.0 mmol) in water (20 mL) and methylchloroformate (6.20 mL, 80.34 mmol) were simultaneously added to a stirred suspension of L-tartaric acid salt (R,R)-5 (10.01 g, 37.9 mmol) in toluene (50 mL) at 0 °C under air. This led to the formation of a gel-like precipitate. The resulting mixture was stirred at rt for 48 h. Then, CHCl₃ (50 mL) was added and the solids were removed by filtration and washed with CHCl₃ (2 x 25 mL). Water (25 mL) was added to the filtrate and the two layers were separated. The aqueous layer was extracted with $CHCl_3$ (2 x 50 mL). The combined organics were dried (K₂CO₃) and evaporated under reduced pressure to give the crude carbamate (8.69 g, \geq 99% crude yield, $\geq 95\%$ purity by ¹H NMR spectroscopy) as a white solid, ¹H NMR (400 MHz, CDCl₃) δ 3.63 (s, 6H, 2 x OMe), 3.40-3.36 (m, 2H, 2 x NHCH), 2.09-1.98 (m, 2 H, NHCHCH₂), 1.78-1.66 (m, 2H, NHCHCH₂), 1.35-1.11 (m, 4H, CH₂CH₂). A solution of the crude carbamate (max. 37.9 mmol) in THF (60 mL) was added dropwise via a dropping funnel to a stirred suspension of LiAlH₄ (7.20 g, 189.6 mmol) in THF (60 mL) at 0 °C under N2. The resulting solution was stirred and heated at reflux for 40 h. Then, the solution was cooled to 0 °C and Et₂O (50 mL) was added, followed by the portionwise addition of Na_2SO_4 ·10H₂O (36.0 g). The resulting mixture was then stirred at rt for 1 h. The solids were removed by filtration through a pad of Celite[®] and were washed with 24:1 CH₂Cl₂-MeOH (2 x 50 mL). The combined organics were dried (K_2CO_2) and evaporated under reduced pressure to give crude diamine (R,R)-6 (5.39 g, ≥99% crude yield) as a yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 6H, 2 x NMe), 2.12-2.04 (m, 2H, 2 x NCH), 2.02-1.97 (m, 2H, NCHCH₂), 1.75-1.64 (m, 2H, NCHCH₂), 1.27-1.13 (m, 2H, CH₂), 1.010.84 (m, 2H, CH₂). Spectroscopic data consistent with that reported in the literature.³ The crude product was used in the next step without further purification (\geq 95% purity by ¹H NMR spectroscopy).

(1R,2R)- N^1,N^2 -Dimethyl- N^1,N^2 -bis(3,3-dimethylbutyl)cyclohexane-1,2-diamine (R,R)-4



A solution of t-butylacetylchloride (10.76 mL, 77.5 mmol) in CH₂Cl₂ (20 mL) was added dropwise to a stirred biphasic mixture of crude diamine (R,R)-6 (max. 37.9 mmol) in CH₂Cl₂ (50 mL) and NaOH (7.06 g, 176.5 mmol) in water (25 mL) at 0 °C under air. The resulting mixture was stirred at rt for 40 h. The two layers were separated and the aqueous layer was extracted with CH₂Cl₂ (5 x 100 mL). The combined organic extracts were dried (K_2CO_2) and evaporated under reduced pressure to give the bis-amide as a white solid. A solution of the crude bis-amide in THF (60 mL) was added dropwise via a dropping funnel to a stirred suspension of LiAlH₄ (7.20 g, 189.6 mmol) in THF (60 mL) at 0 °C under N₂. The resulting solution was stirred and heated at reflux for 40 h. Then, the solution was cooled to 0 °C and Et₂O (50 mL) was added, followed by the portionwise addition of Na₂SO₄·10H₂O (36.0 g). The resulting mixture was then stirred at rt for 1 h. The solids were removed by filtration through a pad of Celite® and washed with 24:1 CH₂Cl₂-MeOH (2 x 50 mL). The combined organic extracts were dried (K₂CO₃) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by Kügelrohr distillation gave diamine (*R*,*R*)-6 (8.42 g, 72% over 4 steps) as a colourless oil, bp 180-190 °C/1.5 mm Hg (lit., 2 150 °C/1.0 mm Hg); [α]_D –38.1 (c 1.0 in CHCl₃) (lit.,³ [α]_D –31.1 (c 1.02 in CHCl₃)); ¹H NMR (400 MHz, CDCl₃) δ 2.58-2.36 (m, 6H, 2 x NCH₂ and 2 x NCH), 2.25 (s, 6H, 2 x NMe), 1.83-1.63 (m, 4H, 2 x NCHCH₂), 1.39 (t, J = 8.0 Hz, 4 H, 2 x CH₂CMe₃), 1.20-1.06 (m, 4H, 2 x CH₂), 0.90 (s, 18 H, 2 x CMe₃); ¹³C NMR (100.6 MHz, CDCl₃) δ 62.6 (NCH), 50.1 (NCH₂), 42.2 (CH₂CMe₃), 37.0 (NMe), 29.8 (CMe₃), 29.6 (CMe_3) , 25.9 (CH_2) , 25.1 (CH_2) , Spectroscopic data consistent with that reported in the literature.³

(1R,2R)- N^1 , N^2 -Diisopropyl- N^1 , N^2 -dimethylcyclohexane-1,2-diamine (R,R)-2

Acetone (206 μ L, 2.82 mmol) was added to a stirred solution of diamine (*R*,*R*)-6 (104 mg, 0.73 mmol) in CH₂Cl₂ (3 mL) at rt under N₂. The resulting solution was stirred at rt for 5 min and NaBH(OAc)₃ (604 mg, 2.83 mmol) was added portionwise over 5 min. The resulting mixture was stirred at rt for 16 h. Then, water (5 mL) and CH₂Cl₂ (5 mL) were added and the two layers were separated. The aqueous layer was extracted with CH₂Cl₂ (4 x 5 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product as a colourless oil. A solution of the crude product in toluene (1 mL) was added to a solution of HCl in EtOH (prepared by adding acetyl chloride (61 μ L, 0.88 mmol) to EtOH (389 µL)) at 0 °C. Petrol was then added until a cloudy solution resulted. After 1 h at 0 °C, the solid was collected by filtration and washed with petrol (2 x 2 mL). The solid was dissolved in hexane (5 mL) and 2 M NaOH_(aq) (5 mL) was added and the two layers were separated and the aqueous layer was extracted with hexane (4 x 5 mL) and the combined organic extractss were dried (MgSO₄) and evaporated under reduced pressure to give diamine (R,R)-2 (122 mg, 74%) as a colourless oil, ¹H NMR (400 MHz, $CDCl_3$) δ 2.93 (septet, J = 6.5 Hz, 2 H, 2 x NCHMe₂), 2.65-2.56 (m, 2H, 2 x NCH), 2.20 (s, 6H, 2 x NMe), 1.81-1.71 (m, 2H, 2 x NCHC H_AH_B), 1.14-1.07 (m, 2H, CH₂), 1.06 (d, J = 6.5 Hz, 6H, CH Me_2), 1.02 (d, J = 6.5 Hz, 6H CHMe₂). Spectroscopic data consistent with that reported in the literature.⁴ Diamine (R,R)-2 was purified by Kügelrohr distillation before use: bp 180 °C/1.5 mm/Hg.

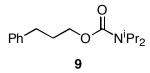
Trimethylacetaldehyde (1.93 mL, 17.80 mmol) was added to a stirred solution of diamine (R,R)-6 (623 mg, 4.39 mmol) in CH₂Cl₂ (25 mL) at rt under N₂. The resulting solution was stirred at rt for 5 min and NaBH(OAc)₃ (3.77 g, 17.80 mmol) was added portionwise over 5 min. The resulting mixture was stirred at rt for 16 h. Then, water (30 mL) and CH₂Cl₂ (20 mL) were added and the two layers were separated and the aqueous layer was extracted with CH₂Cl₂ (4 x 50 mL) and the combined organic extracts were dried $(MgSO_4)$ and evaporated under reduced pressure to give the crude product as a colourless oil. A solution of the crude product in toluene (5 mL) was added to a solution of HCl in EtOH (prepared by adding acetyl chloride (364 µL, 5.18 mmol) to EtOH (2.3 mL)) at 0 °C. Petrol was then added until a cloudy solution resulted. After 1 h at 0 °C, the solid was collected by filtration and washed with petrol (2 x 5 mL). The solid was dissolved in hexane (20 mL) and 2 M NaOH_(aq) (20 mL) was added and the two layers were separated and the aqueous layer was extracted with hexane (4 x 20 mL) and the combined organic extractss were dried (MgSO₄) and evaporated under reduced pressure to give diamine (R,R)-3 (777 mg, 63%) as a colourless oil, ¹H NMR (400 MHz, CDCl₃) δ 2.37-2.32 (m, 2H, 2 x NCH), 2.34-2.30 (m, 4H, CH₂CMe₃), 2.29 (s, 6H, 2 x NMe), 1.78 (br dt, J = 13.5, 3.0 Hz, 2H, NCHC H_AH_B), 1.71-1.62 (m, 2H, NCHC H_AH_B), 1.29-1.15 (m, 2H, 2 x CH_AH_B), 1.10-1.01 (m, 2H, 2 x CH_AH_B), 0.89 (s, 18H, 2 x CMe₃). Spectroscopic data consistent with that reported in the literature.² Diamine (R,R)-3 was purified by Kügelrohr distillation before use: bp 210 °C/2.5 mm/Hg (lit.,² 120 °C/1 mm/Hg).

General Procedure for lithiation/electrophilic trapping of N-Boc pyrrolidine 7

s-BuLi (1.61 mL of a 1.27 M solution in cyclohexane, 2.04 mmol) was added dropwise to a stirred solution of *N*-Boc pyrrolidine **7** (1.57 mmol) and the diamine (1.75 mmol) in Et₂O (5 mL) at -78 °C under Ar. The resulting solution was stirred at -78 °C for 3 h. Then, Me₃SiCl (358 μ L, 2.82 mmol) was added

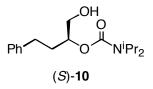
dropwise and the reaction mixture was allowed to warm to rt and stirred at rt for 16 h. Saturated $NH_4Cl_{(aq)}$ (5 mL) was added and the mixture stirred for 20 min at rt. The two layers were separated and the aqueous layer was extracted with Et_2O (5 x 5 mL). The combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product.

(S)-2-Trimethylsilylpyrrolidine-1-carboxylic acid tert-butyl ester (S)-8


Using the general procedure for lithiation/electrophilic trapping, *s*-BuLi (1.05 mL of a 1.10 M solution in cyclohexane, 1.16 mmol), *N*-Boc pyrrolidine **7** (157 μ L, 0.90 mmol), diamine (*R*,*R*)-**4** (361 mg, 1.16 mmol) and Me₃SiCl (252 μ L, 1.98 mmol) after 3 h lithiation in Et₂O (3 mL) gave the crude product as a yellow oil. Purification by flash column chromatography on silica with petrol-Et₂O (95:5) as eluent gave pyrrolidine (*S*)-**8** (166 mg, 72%, 95:5 er by chiral GC) as a colourless oil, [α]_D +76.7 (*c* 1.0 in CHCl₃)(lit.,⁵ [α]²⁰_D +71.8 (*c* 2.6 in CHCl₃) for (*S*)-**8** of 98:2 er); *R*_F(95:5 petrol-Et₂O) 0.3; ¹H NMR (400 MHz, CDCl₃) δ 3.36-3.39 (br m, 1H, NCH), 3.38-3.06 (br m, 2H, NCH₂), 2.12-1.92 (br m, 1H, CH_AH_B), 1.89-1.65 (br m, 3H, CH_AH_B and CH₂), 1.47 (s, 9H, CMe₃), 0.06 (s, 9H, SiMe₃); GC: Betadex 120, 30 m x 0.25 mm i.d.(β -cyclodextrin) T 91 °C isothermal, He carrier gas at 12 psi constant pressure, 103 min [(*S*)-**8**], 105 min [(*R*)-**8**] and recovered *N*-Boc pyrrolidine **7** (10 mg, 7%) as a colourless oil. Spectroscopic data consistent with that reported in the literature.⁵

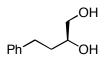
Using the general procedure for lithiation/electrophilic trapping, *s*-BuLi (560 μ L of a 1.20 M solution in cyclohexane, 0.67 mmol), *N*-Boc pyrrolidine **7** (73 μ L, 0.42 mmol) and diamine (*R*,*R*)-**2** (153 mg, 0.67 mmol) and Me₃SiCl (189 μ L, 1.47 mmol) after 3 h lithiation in Et₂O (2 mL) gave the crude product as a yellow oil. Purification by flash column chromatography on silica with petrol-Et₂O (95:5) as eluent gave

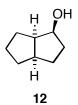
pyrrolidine (*S*)-**8** (31 mg, 29%, 50:50 er by chiral GC) as a colourless oil and recovered *N*-Boc pyrrolidine **7** (30 mg, 42%) as a colourless oil.


Using the general procedure for lithiation/electrophilic trapping, *s*-BuLi (710 μ L of a 1.20 M solution in cyclohexane, 0.85 mmol), *N*-Boc pyrrolidine **7** (93 μ L, 0.53 mmol), diamine (*R*,*R*)-**3** (239 mg, 0.85 mmol), and Me₃SiCl (160 μ L, 1.26 mmol) after 3 h in Et₂O (2 mL) gave the crude product as a yellow oil. Purification by flash column chromatography on silica with petrol-Et₂O (95:5) as eluent gave pyrrolidine (*S*)-**8** (4 mg, 4%, 50:50 er by chiral GC) as a colourless oil and recovered *N*-Boc pyrrolidine **7** (47 mg, 51%) as a colourless oil.

3-Phenylpropyl N,N-diisopropylcarbamate 9

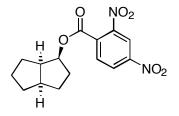
A solution of diisopropylcarbamoyl chloride (2.16 g, 13.21 mmol) in Et₂O (10 mL) was added dropwise over 10 min to a stirred solution of NaH (579 mg of 60% wt dispersion in mineral oil, 14.47 mmol, prewashed with Et₂O (3 x 10 mL)) and 3-phenyl-1-propanol (1.70 mL, 12.58 mmol) in Et₂O (30 mL) at rt under N₂. The resulting mixture was stirred at rt for 16 h. Then, 2 M HCl_(aq) (30 mL) was added and the resulting mixture was stirred vigorously for 5 min. The two layers were separated and the aqueous layer was extracted with Et₂O (4 x 30 mL). The combined organic extracts were dried (2:1 Na₂SO₄-NaHCO₃) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by flash column chromatography on silica with petrol-Et₂O (5:1) as eluent gave carbamate **9** (2.77 g, 84%) as a colourless oil; R_F (5:1 petrol-Et₂O) 0.35; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.27 (m, 2H, Ph), 7.23-7.17 (m, 3H, Ph), 4.28-3.58 (br m, 2 x NCH), 4.13 (t, *J* = 6.5 Hz, 2H, OCH₂), 2.73 (t, *J* = 8.0 Hz, 2H, CH₂Ph), 2.03-1.95 (m, 2H, CH₂), 1.23 (d, *J* = 7.0 Hz, 12H, 2 x NCHMe₂); ¹³C NMR (100.6 MHz, CDCl₃) δ 158.7 (C=O), 141.5 (*ipso*-Ph), 128.4 (Ph), 128.3 (Ph), 125.8 (Ph), 63.9 (OCH₂), 45.7 (NCH), 32.5 (CH₂), 30.8 (Me), 21.0 (CH₂). Spectroscopic data consistent with that reported in the literature.⁶


Diisopropylcarbamic acid (S)-1-hydroxymethyl-3-phenyl-propyl ester (S)-10


s-BuLi (1.38 mL of a 1.12 M solution in cyclohexanes, 1.54 mmol) was added dropwise to a stirred solution of diamine (S,S)-4 (478 mg, 1.54 mmol) in Et₂O (2 mL) at -78 °C under Ar. After stirring for 30 min at -78 °C, a solution of carbamate 9 (279 mg, 1.06 mmol) in Et₂O (2 mL) was added dropwise over 1 min. The resulting solution was stirred at -78 °C for 5 h. Then, a stream of CO₂ was bubbled into the solution for 1 h. The solution was then allowed to warm to rt over 10 min. Water (4 mL) and concentrated HCl_(aq) (1 mL) were added and the two layers were separated. The aqueous layer was extracted with EtOAc (3 x 10 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude acid as a colourless oil. BH₃·DMS (3.50 mL of a 2 M solution in THF, 7.00 mmol) was added dropwise over 2 min to a stirred solution of the crude acid (max. 1.06 mmol) at 0 °C under Ar. The resulting solution was allowed to warm to rt over 15 min and stirred at rt for 16 h. Then, the solution was cooled to 0 °C and MeOH (20 mL) was added over 10 min. The resulting solution was then stirred at rt for 1 h and then stirred and heated at reflux for 1 h. After being allowed to cool to rt, the solvent was evaporated under reduced pressure to give the crude product as a yellow oil. Purification by flash column chromatography on silica with petrol-EtOAc (1:1) as eluent gave alcohol (S)-10 (259 mg, 84%, 84:16 er by chiral HPLC of the diol obtained after LiAlH₄ reduction) as a white solid, mp 56-57 °C, (lit.,⁶ 55-57 °C); $R_{\rm F}(1:1 \text{ petrol-EtOAc}) 0.3$; $[\alpha]_{\rm D} -20.7 (c \ 1.0 \text{ in CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.26 (m, 2H, Ph), 7.24-7.16 (m, 3H, Ph), 4.93-4.84 (m, 1H, CHO), 4.19-4.00 (m, 2H, CHMe₂), 3.76 (dd, J = 12.0, 3.0 Hz, 1H, CH_AH_BOH), 3.69 (dd, J = 12.0, 3.0 Hz, 1H, CH_AH_BOH), 2.80-2.64 (m, 2H, CH_2Ph), 2.01-1.82 (m, 2H, CH₂), 1.25 (d, J = 7.0 Hz, 12H, 4 x CHMe); ¹³C NMR (100.6 MHz, CDCl₃) δ 156.5 (C=O), 141.4 (ipso-Ph), 128.5 (Ph), 128.3 (Ph), 126.1 (Ph), 76.4 (CHO), 66.2 (CH₂O), 46.3 (CHN), 45.6

(CHN), 33.1 (CH₂), 31.9 (CH₂). 21.3 (CH Me_2) 20.6 (CH Me_2). Spectroscopic data consistent with that reported in the literature.⁶

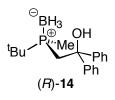
(S)-4-Phenylbutane-1,2-diol



LiAlH₄ (175 mg, 4.55 mmol) was added portionwise to a stirred solution of alcohol (*S*)-**10** (259 mg, 0.89 mmol) in THF (20 mL) at 0 °C under Ar. The resulting solution was stirred and heated at reflux for 18 h. After being allowed to cool to rt, the solution was cooled to 0 °C and Na₂SO₄·10H₂O (1.0 g) was added portionwise. The resulting suspension was then stirred at rt for 1 h. The solids were removed by filtration through a pad of Celite[®] and washed with CH₂Cl₂ (25 mL), 1:1 CH₂Cl₂-MeOH (25 mL) and MeOH (25 mL). The combined organic extracts were evaporated under reduced pressure to give the crude product as a white oil. Purification by flash column chromatography on silica with CH₂Cl₂-MeOH (19:1) as eluent gave (*S*)-4-phenylbutane-1,2-diol (73 mg, 50%, 84:16 er by chiral HPLC) as a colourless oil, $R_{\rm F}$ (19:1 CH₂Cl₂-MeOH) 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.28 (m, 2H, Ph), 7.23-7.19 (m, 3H, Ph), 3.75-3.69 (m, 1H, CHOH), 3.65 (dd, *J* = 11.0, 3.0 Hz, 1H, CH_AH_BOH), 3.46 (dd, *J* = 11.0, 7.5 Hz, 1H, CH_AH_BOH), 2.83-2.65 (m, 2H), 1.79-1.72 (m, 2H); Chiral HPLC: Daicel Chiralcel OD, 1:4 v/v *i*PrOH-hexane, 0.5 mL min⁻¹, 254 nm, 14.5 min [(*R*)] 18.5 min [(*S*)]. Spectroscopic data consistent with that reported in the literature.⁶

s-BuLi (1.46 mL of a 1.12 M solution in cyclohexanes, 1.64 mmol) was added dropwise to a stirred solution of diamine (*R,R*)-4 (507 mg, 1.64 mmol) in Et₂O (2 mL) at -78 °C under Ar. The resulting solution was stirred at -78 °C for 30 min and then a solution of cyclooctene oxide **11** (154 mg, 1.22 mmol) in Et₂O (2 mL) was added dropwise over 2 min. The resulting solution was stirred at -78 °C for 5 h and then allowed to warm to rt and stirred at rt for 16 h. The solution was cooled to 0 °C and 2 M HCl_(aq) (10 mL) was added. The two layers were separated and the aqueous layer was extracted with EtOAc (4 x 10 mL). The combined organic extracts were washed with saturated NaHCO_{3(aq)} (10 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product as a colourless oil. Purification by flash column chromatography on silica with petrol-Et₂O (7:3) as eluent gave alcohol **12** (141 mg, 92%, 50:50 er by chiral HPLC of the dinitrobenzoate) as a colourless oil, *R*_F(1:1 petrol-Et₂O) 0.3; ¹H NMR (400 MHz, CDCl₃) δ 4.17-4.13 (m, 1H, CHOH), 2.45-2.35 (m, 2H, 2 x CH), 1.81-1.07 (m, 11H, 5 x CH₂ and OH). Spectroscopic data consistent with that reported in the literature.⁷

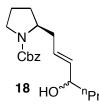
2,4-Dinitro-benzoic acid (S)-(octahydro-pentalen-1-yl) ester

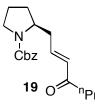

2,4-Dinitrobenzoic acid (170 mg, 0.81 mmol) was added in one portion to a stirred solution of alcohol **12** (68 mg, 0.54 mmol), DMAP (6 mg, 0.05 mmol) and DCC (133 mg, 0.65 mmol) in CH_2Cl_2 (5 mL) under Ar at 0 °C. The resulting solution was stirred at rt for 72 h. Then, the solids were removed by filtration and washed with CH_2Cl_2 (2 x 5 mL). The combined filtrate was evaporated to give the crude product as a

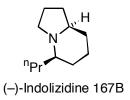
yellow solid. Purification by flash column chromatography on silica with petrol-Et₂O (3:2) as eluent the gave ester (167 mg, 97%, 50:50 er by chiral HPLC) as a yellow oil, $R_{\rm F}(1:1 \text{ petrol-Et}_2\text{O}) 0.8$; ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, J = 2.0 Hz, 1H, ArCH), 8.53 (dd, J = 8.5, 2.0 Hz, 1H, ArCH), 7.96 (d, J = 8.5 Hz, 1H, ArCH), 5.37 (dd, J = 12.5, 6.5 Hz, 1H, CHO), 2.28-2.67 (m, 1H, CH), 2.59-2.46 (m, 1H, CH), 1.98-1.19 (m, 10H, CH₂); Chiral HPLC: Daicel Chiralpak AD-H, 3:7 v/v MeOH-hexane + 0.2% *i*PrOH, 5 mL min⁻¹, 254 nm, 0.92 min and 1.63 min (*ent*). Spectroscopic data consistent with that reported in the literature.⁷

tert-Butyldimethylphosphine borane 13

MeMgBr (46.5 mL of a 3 M solution in Et₂O, 139.6 mmol) was added dropwise over 1 h to a stirred solution of *t*-butyldichlorophosphine (10.0 g, 62.9 mmol) in THF (120 mL) at -10 °C under Ar. The resulting cloudy solution was stirred at rt for 5 h and then cooled to -10 °C. Then, BH₃•DMS (38.0 mL of a 2 M solution in THF, 76.0 mmol) was added dropwise over 20 min. The solution was stirred at rt for 1 h and poured onto a mixture of ice (150 g) and concentrated HCl_(aq) (15 mL). The mixture was extracted with EtOAc (4 x 50 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product as a white solid. Purification by recrystallisation from hexane (40 mL) gave phosphine borane **13** (6.12 g, 74%) as a white solid, mp 163-164 °C (lit., ⁸ 160-163 °C); $R_{\rm F}$ (4:1 petrol-Et₂O) 0.4; ¹H NMR (400 MHz, CDCl₃) δ 1.21 (d, J = 10.0 Hz, 6H, PMe), 1.13 (d, J = 14.0 Hz, 9H, CMe₃), 0.41 (qd, J = 95.0, 13.0 Hz, 3H, BH₃). Spectroscopic data consistent with that reported in the literature.⁸


s-BuLi (1.00 mL of a 1.12 M solution in cyclohexanes, 1.49 mmol) was added dropwise to a stirred solution of diamine (S,S)-4 (464 mg, 1.49 mmol) in Et₂O (2 mL) at -78 °C under Ar. The resulting solution was stirred at -78 °C for 30 min and then a solution of phosphine borane 13 (138 mg, 1.05 mmol) in Et₂O (2 mL) was added dropwise over 2 min. The resulting solution was stirred at -78 °C for 3 h. Then, a solution of benzophenone (229 mg, 1.29 mmol) in Et₂O (1 mL) was added dropwise. The resulting mixture was allowed to warm to rt and stirred at rt for 16 h. 1 M HCl_(aq) (2 mL) was added and the two layers were separated. The aqueous layer was extracted with Et₂O (5 x 5 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product as a white solid. Purification by flash column chromatography on silica with petrol-EtOAc (95:5) as eluent gave alcohol (R)-14 (309 mg, 99%, 60:40 er by chiral HPLC) as a white solid, mp 110-112 °C (lit., 116.5-117.5 °C); $R_{\rm F}(95:5 \text{ petrol-EtOAc}) 0.2$; $[\alpha]_{\rm D} -2.5 (c \ 1.0 \text{ in CHCl}_3) (\text{lit.}, {}^9 \ [\alpha]_{\rm D} -14.9 (c \ 0.47 \text{ in CHCl}_3) \text{ for } (R)-14$ of 96:4 er); ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.44 (m, 4H, Ph), 7.38-7.28 (m, 4H, Ph), 7.28-7.20 (m, 2H, Ph), 4.58 (s, 1H, OH), 2.89 (t, J = 14.5 Hz, 1H C(OH)CH_AH_B), 2.68 (dd, J = 14.5, 7.0 Hz, 1H $C(OH)CH_{A}H_{B}$, 1.80 (d, J = 13.5 Hz, 9H, CMe₃), 1.07-0.07 (m, 3H, BH₃), 0.75 (d, J = 10.0 Hz, 3H, PMe); Chiral HPLC: Daicel Chiralcel OD, 1:19 v/v *i*-PrOH-hexane, 0.5 mL min⁻¹, 254 nm, 10.5 min [(R)-14] 12.5 min [(S)-14]. Spectroscopic data consistent with that reported in the literature.¹⁰

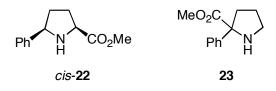

s-BuLi (0.98 mL of a 1.20 M solution in cyclohexane, 1.18 mmol) was added dropwise over 1 min to a stirred solution of the N-Boc pyrrolidine 7 (160 µL, 0.91 mmol) and diamime (S,S)-4 (366 µL, 1.18 mmol) in Et₂O (3.5 mL) at -78 °C under Ar. The resulting solution was stirred at -78 °C for 3 h. Then, CuCN•2LiCl (758 µL of a 0.6 M solution in THF, 0.46 mmol) was added dropwise and the resulting solution was stirred at -78 °C for 1 h. Then, allyl bromide (142 μ L, 1.64 mmol) was added dropwise and the reaction mixture was allowed to warm to rt and stirred at rt for 16 h. NH₄OH_(a0) (0.5 mL), saturated NH₄Cl_(a0) (4.5 mL) and Et₂O (5 mL) were added and the mixture stirred at rt for 20 min. The solids were removed by filtration through a pad of Celite[®] and the filter cake was washed with Et₂O (5 mL). The two layers of the filtrate were separated and the blue aqueous layer was extracted with Et₂O (3 x 20 mL). The combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product. Purification by flash column chromatography on silica with petrol-EtOAc (85:15) as eluent gave allyl pyrrolidine **15** (150 mg, 78%, 85:15 er by chiral HPLC) as a colourless oil, $R_{\rm E}$ (9:1 petrol-EtOAc) 0.2; $[\alpha]_{D}^{24}$ -35.1 (c 0.95 in CHCl₃) (lit., ¹¹ $[\alpha]_{D}^{24}$ -32.4 (c 1.56 in CHCl₃) for (S)-15 of \geq 99:1 er); ¹H NMR (400 MHz, CDCl₃) δ 5.74 (ddt, J = 17.5, 10.0, 7.0 Hz, 1H, CH=CH₃), 5.05 (d, J = 17.5 Hz, 1H, trans- $CH=CH_{A}H_{B}$), 5.03 (d, J = 10.0 Hz, 1H, *cis*-CH=CH_AH_B), 3.88-3.73 (br m, 1H, CHN), 3.41-3.36 (m, 2H, CH₂N), 2.55-2.42 (m, 1H, CH₄H₈CH=CH₂), 2.16-2.05 (m, 1H, CH₄H₈CH=CH₂), 1.94-1.66 (m, 4H, 2 x CH₂), 1.46 (s, 9H, CMe₃); Chiral HPLC: Chiralcel OD, 99:1 hexane:*i*-PrOH, 0.1 mLmin⁻¹, 44.07 min [(R)-**15**], 47.38 min [(S)-**15**]. Spectroscopic data consistent with that reported in the literature.¹²


TFA (1 mL, 13.46 mmol) was added dropwise to a stirred solution of pyrrolidine (S)-15 (145 mg, 0.69 mmol) in CH₂Cl₂ (5 mL) at rt under Ar. The resulting solution was stirred at rt for 3 h and the solvent was evaporated under reduced pressure to give the crude product as a yellow oil. To a stirred solution of the crude product in CH₂Cl₂ (2 mL) at 0 °C under Ar, Et₃N (288 µL, 2.07 mmol) and benzyl chloroformate (128 µL, 0.90 mmol) were added dropwise. The resulting mixture was allowed to warm to rt and stirred at rt for 8 h. CH₂Cl₂ (5 mL) and water (5 mL) were added and the two layers were separated. The aqueous layer was extracted with CH_2Cl_2 (4 x 10 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by flash column chromatography on silica with petrol-EtOAc (9:1) as eluent gave allyl pyrrolidine (S)-16 (168 mg, 99% over 2 steps) as a colourless oil, $[\alpha]_{D}^{24} - 30.2$ (c 1.15 in CHCl₃) (lit., ¹³ $[\alpha]_{D}^{24} - 38.7$ (c 1.13 in CHCl₃) for (S)-16 of \ge 99:1 er); $R_{\rm E}$ (9:1 petrol-EtOAc) 0.3; ¹H NMR (400 MHz, CDCl₃) rotamers present δ 7.41-7.28 (m, 5H, Ph), 5.84-5.64 (m, 1H, CH=CH₂), 5.23-4.97 (m, 4H, CH=CH₂ and CH₂Ph), 3.98-3.85 (m, 1H, NCH), 3.53-3.36 (m, 2H, NCH₂), 2.65-2.39 (m, 1H, CH_AH_BCH=CH₂), 2.23-2.08 (m, 1H, $CH_{A}H_{B}CH=CH_{2}$), 1.99-1.70 (m, 4H, 2 x CH₂); ¹³C NMR (100.6 MHz, CDCl₃) approx 1:1 mixture of rotamers, δ 154.9 and 154.7 (C=O), 137.1 and 136.9 (*ipso*-Ph), 135.0 and 134.8 (CH=CH₂), 128.4 and 127.8 and 127.7 (Ph), 117.3 and 117.2 (CH=CH₂), 66.6 and 66.4 (CH₂Ph), 57.2 and 56.7 (NCH), 46.8 and 46.5 (NCH₂), 38.9 and 38.0 (CH₂CH=CH₂), 30.0 and 29.1 (CH₂), 23.6 and 22.8 (CH₂). Spectroscopic data consistent with that reported in the literature.¹³

Grubbs' 2nd generation catalyst (28 mg, 0.033 mmol) was added in one portion to a stirred solution of the allyl-pyrrolidine 16 (160 mg, 0.65 mmol) and 1-hexen-3-ol 17 (157 μ L, 1.31 mmol) in CH₂Cl₂ (4.5 mL) at rt under Ar. The resulting mixture was stirred at rt for 6 h before a second portion of Grubb's 2nd generation catalyst (10 mg, 0.012 mmol) was added. The resulting mixture was stirred at rt for a further 10 h. Then, the solvent was removed under reduced pressure to give the crude product as a brown oil. Purification by flash column chromatography on silica with petrol-EtOAc (7:3 to 1:1) as eluent gave alcohol 18 (161 mg, 78%) as a yellow oil, $R_{\rm F}(1:1 \text{ petrol-EtOAc}) 0.53$; IR (neat) 3435 (OH), 1695 (C=O), 1425 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) mixture of diastereoisomers/rotamers δ 7.43-7.25 (m, 5H, Ph), 5.68-5.36 (m, 2H, CH=CH), 5.23-5.04 (m, 2H, CH₂Ph), 4.10-3.97 (m, 1H, CHOH), 3.97-3.81 (m, 1H, NCH), 3.53-3.31 (m, 2H, NCH₂), 2.57-2.32 (m, 1H, CH₄H_BCH=CH), 2.23-2.05 (m, 1H, $CH_{A}H_{P}CH=CH$, 1.98-1.67 (m, 4H, 2 x CH_{2}), 1.58-1.21 (m, 4H, 2 x CH_{2}), 0.92 (t, J = 7.5 Hz, 3H, Me); ¹³C NMR (400 MHz, CDCl₂) mixture diastereoisomers/rotamers δ 154.9 (C=O), 137.0 (*ipso-Ph*), 136.1 and 136.0 (=CH), 128.4 (Ph), 127.9 (Ph), 127.8 (Ph), 127.3 (=CH), 72.6 and 72.5 (COH), 66.7 and 66.4 (CH₂Ph), 57.3 and 56.8 (NCH), 46.8 and 46.4 (NCH₂), 39.3 (CH₂CH=CH), 37.2 and 36.5 (CH₂), 30.0 and 29.4 (CH₂), 23.6 and 22.8 (CH₂), 18.6 (CH₂), 14.0 (Me). Spectroscopic data consistent with that reported in the literature.¹⁴

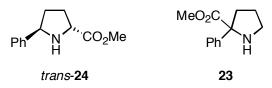
Dess-Martin periodinane (422 mg, 1.00 mmol) was added in one portion to a stirred solution of alcohol 18 (142 mg, 0.45 mmol) in CH₂Cl₂ (4 mL) at rt under Ar. The resulting mixture was stirred at rt for 1 h. Then, CH₂Cl₂ (7 mL) and a solution of Na₂S₂O₃ (1.0 g) in 5% NaHCO_{3(aq)} (10 mL) were added. The resulting mixture was stirred at rt for 15 min. The two layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic extracts were dried (Na₂SO₄) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by flash column chromatography on silica with petrol-EtOAc (85:15) as eluent gave ketone 19 (111 mg, 72%) as a colourless oil, $[\alpha]_{D}^{24}$ –74.6 (c 0.33 in CHCl₃); $R_{E}(5:1 \text{ petrol-EtOAc})$ 0.36; IR (neat) 2962 (CH), 1697 (C=O), 1627 (C=O), 1411 (C=C) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) approx 2:3 mixture of rotamers δ 7.46-7.23 (m, 5H, Ph), 6.86-6.84 (m, 1H, CH=CH(CO)), 6.12 (d, J = 16.0 Hz, 0.6H, CH=CH(CO)), 6.05 $(d, J = 16.0 \text{ Hz}, 0.4 \text{H} \text{ CH}=CH(CO)), 5.15 \text{ (br s, } 0.8 \text{H}, CH_2\text{Ph}), 5.13 \text{ (br s, } 1.2 \text{H}, CH_2\text{Ph}), 4.08-3.94 \text{ (m, } 1.2 \text{H}, CH_2\text{Ph}), 4.08-3.94 \text{ (m, } 1.2 \text{H}, CH_2\text{Ph}), 5.13 \text{ (br s, } 1.2 \text{H}, CH_2\text{Ph}), 5.13$ 1H, NCH), 3.55-3.34 (m, 2H, NCH₂), 2.79-2.67 (m, 0.6H, CH_AH_BCH=CH), 2.61-2.52 (m, 0.4H, $CH_{A}H_{B}CH=CH$, 2.50 (t, J = 7.5 Hz, 1.2H, C(O)CH₂), 2.45 (t, J = 7.0 Hz, 0.8H, C(O)CH₂), 2.41-2.26 (m, 1H, $CH_AH_BCH=CH$) 2.04-1.77 (m, 3H, CH_2 and CH), 1.75 (m, 3H, CH and CH_2), 0.93 (t, J = 7.5 Hz, 3H, Me); ¹³C NMR (100.6 MHz, CDCl₃) approx 2:3 mixture of rotamers δ 200.3 (C=O), 154.8 (C=O), 143.0 and 142.5 (CH=CH(CO)), 136.9 (ipso-Ph), 132.4 (CH=CH(CO)), 128.5 (Ph), 128.0 (Ph), 127.9 (Ph), 127.8 (Ph), 66.9 and 66.6 (CH₂Ph), 56.7 and 56.1 (NCH), 46.8 and 46.5 (NCH₂), 42.2 and 41.9 (C(O)CH₂), 37.6 and 36.8 (CH₂CH=CH), 30.4 and 29.6 (NCHCH₂), 23.6 and 22.9 (NCH₂CH₂), 17.6 and 17.5 (CH₂Me), 13.7 (Me); MS (ESI) m/z 338 [(M + Na)⁺, 100], 316 [(M + H)⁺, 33]; HRMS (ESI) m/z $[M + Na]^+$ calcd for $C_{19}H_{25}NO_3$, 338.1732; found 338.1727.

A suspension of 10% (w/w) Pd/C (40 mg, 0.038 mmol) in MeOH (2 mL) was added to stirred solution of ketone **19** (60 mg, 0.19 mmol) in MeOH (1 mL) at rt under N₂. The flask was evacuated and back-filled with N₂ three times. Then, the flask was evacuated and back-filled with H₂. The resulting mixture was stirred at rt under H₂ for 16 h. Then, CH₂Cl₂ (20 mL) was added and the solids were removed by filtration through a pad of Celite[®] and washed with CH₂Cl₂ (2 x 5 mL). The filtrate was evaporated under reduced pressure to give the crude product as a yellow/browm oil. Purification by flash column chromatography on a pad of Et₃N-deactivated silica with petrol-EtOAc (1:1 \rightarrow 0:1) as eluent gave (–)-indolizidine 167B (26 mg, 81%) as a yellow oil, $[\alpha]^{24}{}_{\rm D}$ –89.5 (*c* 0.2 in CH₂Cl₂) (lit.,¹⁵ $[\alpha]^{24}{}_{\rm D}$ –115 (*c* 1.17 in CH₂Cl₂) for (–)indolizidine 167B of \geq 99:1 er); $R_{\rm F}$ (1:1 petrol-EtOAc) on Et₃N deactivated silica 0.2; ¹H NMR (400 MHz, CDCl₃) δ 3.28 (td *J* = 9.0, 2.0 Hz, 1H, NCH), 2.06-1.54 (m, 10H, 4 x CH₂, NCH and CH), 1.54-1.67 (m, 7H, CH and 3 x CH₂), 0.90 (t, *J* = 7.0 Hz, 3H, Me); ¹³C NMR (100.6 MHz, CDCl₃) δ 65.2 (NCH), 63.7 (NCH), 51.3 (NCH₂), 36.5 (CH₂), 30.5 (CH₂), 30.4 (CH₂), 30.3 (CH₂), 20.3 (CH₂), 19.1 (CH₂), 14.4 (Me). Spectroscopic data is consistent with that reported in the literature.¹⁵


(R)-tert-Butyl 2-phenylpyrrolidine-1-carboxylate 20

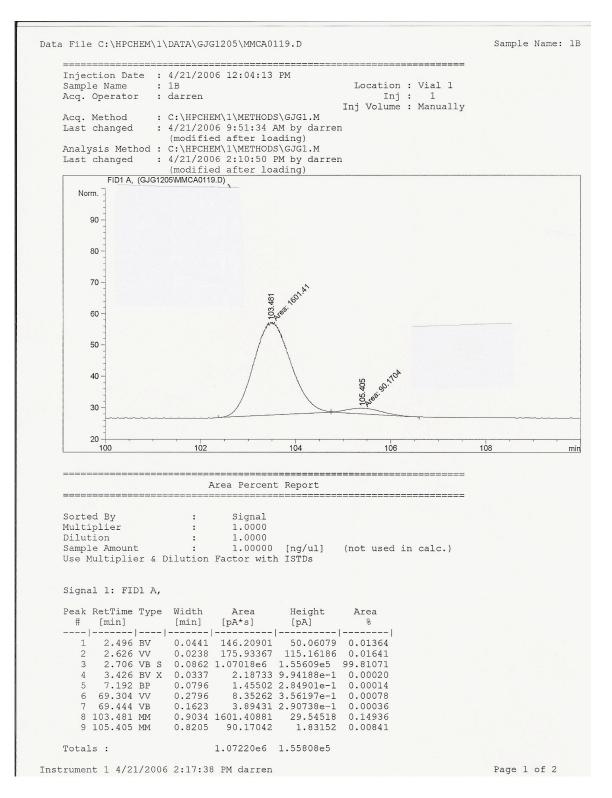
s-BuLi (1.32 mL of a 1.30 M solution in cyclohexane, 1.75 mmol) was added dropwise to a stirred solution of *N*-Boc pyrrolidine **7** (307 μ L, 1.75 mmol) and (–)-sparteine (402 μ L, 1.75 mmol) in Et₂O (3.5 mL) at –78 °C under Ar. The resulting solution was stirred at –78 °C for 3 h. Then, ZnCl₂ (1.04 mL of a 1.0 M solution in Et₂O, 1.04 mmol) was added dropwise and the resulting solution was stirred at –78 °C

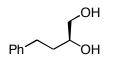
for 30 min. Then, the solution was allowed to warm to rt over 15 min, followed by stirring at rt for 20 min. Then, bromobenzene (153 μ L, 1.46 mmol) and a mixture of 'Bu₃PHBF₄ (25 mg, 0.09 mmol) and Pd(OAc)₂ (16 mg, 0.07 mmol) were added. The resulting mixture was stirred at rt for 16 h. NH₄OH_(aq) (150 μ L) was added and the mixture stirred at rt for 1 h. The solids were removed by filtration through a pad of Celite[®] and washed with Et₂O (20 mL). The filtrate was washed with 1 M HCl_(aq) (15 mL) and water (2 x 15 mL), dried (MgSO₄) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by flash column chromatography on silica with CH₂Cl₂ as eluent gave pyrrolidine (*R*)-**20** (307 mg, 81%, 95:5 er by chiral HPLC) as a colourless oil that solidifies of standing, mp 58-60 °C (lit, ¹⁶ 61.9-62.7 °C); [α]²⁴_D +83.2 (*c* 0.7 in acetone) (lit, ¹⁶ [α]²⁴_D +85.3 (*c* 0.019 in acetone)); *R*_F(CH₂Cl₂) 0.25; ¹H NMR (400 MHz, CDCl₃) rotamers present δ 7.33-7.26 (m, 2H, Ph), 7.25-7.13 (m, 3H, Ph), 5.03-4.90 (br m, 0.33H, NCHPh), 4.83-4.70 (m, 0.66H, NCHPh), 3.72-3.45 (m, 2H, NCH₂), 2.42-2.20 (br m, 1H, CH_AH_B), 1.99-1.77 (m, 3H, CH_AH_B and CH₂), 1.46 (s, 3H, CMe₃), 1.18 (s, 6H, CMe₃); ¹³C NMR (100.6 MHz, CDCl₃) rotamers present δ 154.5 (C=O), 145.1 (*ipso*-Ph), 128.1 (2 x Ph), 125.5 (Ph), 79.1 (*CMe₃*), 61.3 and 60.6 (*CHPh*), 47.0 (NCH₂), 36.0 (CH₂), 28.5 and 28.1 (*CMe₃*), 23.4 (CH₂), 23.39 (CH₂); Chiral HPLC: Chiralpak AD, 99:1 hexane/*i*-PrOH, 0.5 mLmin⁻¹, 9.40 min [(*R*)-**20**] and 11.84 min [(*S*)-**20**].¹⁶

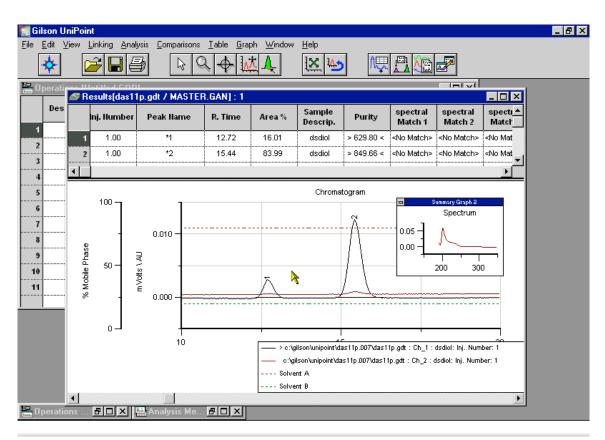

(2*S*,5*R*)-Methyl 5-phenylpyrrolidine-2-carboxylate *cis*-22 and methyl 2-phenylpyrrolidine-2carboxylate 23

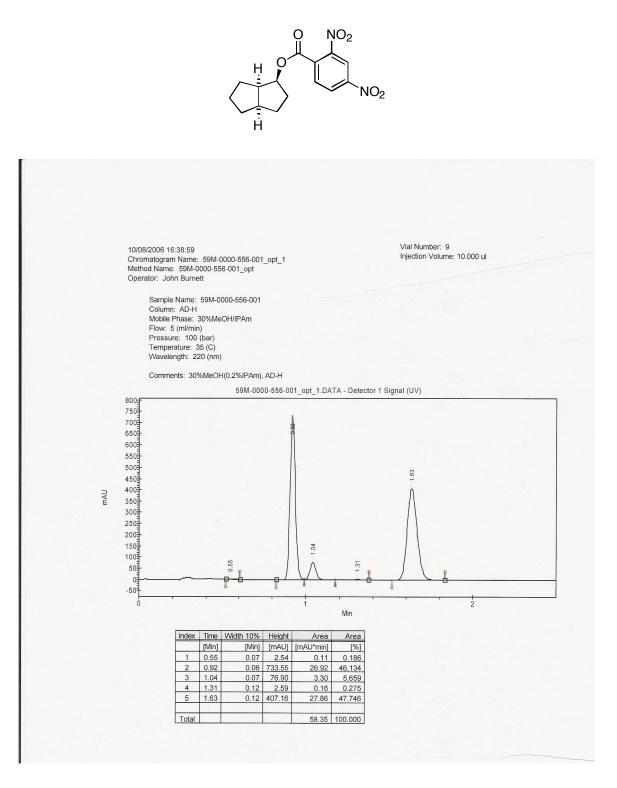
s-BuLi (1.28 mL of a 1.20 M solution in cyclohexane, 1.53 mmol) was added dropwise to a stirred solution of pyrrolidine (*R*)-**20** (250 mg, 0.96 mmol) and diamine (*S*,*S*)-**4** (475 mg, 1.53 mmol) in Et₂O (2.5 mL) at -78 °C under Ar. The resulting solution was stirred at -78 °C for 6 h. Then, a stream of CO₂ was bubbled into the solution for 1 h and the solution was allowed to warm to rt and stirred at rt for 16 h. 1 M HCl_(aq) (10 mL) and EtOAc (10 mL) were added and the two layers were separated. The aqueous layer was extracted with EtOAc (5 x 10 mL) and the combined organic extracts were dried (Na₂SO₄) and evaporated

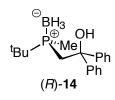
under pressure to give the crude acids as a pale yellow oil. To a stirred solution of the crude acid in 1:1 MeOH-toluene (14 mL) at 0 °C under Ar trimethylsilyldiazomethane (534 µL of a 2 M solution in hexanes, 1.07 mmol) was added dropwise. The resulting solution was stirred at rt for 1 h. Acetic acid (11 μ L, 0.2 mmol) was added dropwise and the solvent was evaporated under reduced pressure to give the crude methyl esters. To a stirred solution of the crude methyl esters in CH₂Cl₂ (2.5 mL) at 0 °C under Ar TFA (250 μ L, 3.25 mmol) was added dropwise. The resulting solution was stirred at rt for 3 h. CH₂Cl₂ (2.5 mL) and 1 M NaOH_(a0) (5 mL) were added and the resulting layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by flash column chromatography on silica with petrol-EtOAc (7:3) as eluent gave cis-pyrrolidine cis-22 (51 mg, 33% over 3 steps, $\ge 99:1$ er by chiral HPLC) as a pale yellow oil, $[\alpha]_{D}^{24} + 14.7$ (c 0.45 in CH₂Cl₂) (lit., $[\alpha]_{D}^{24} + 15.3$ $(c \ 1.22 \text{ in CH}_2\text{Cl}_2)$ for (2S,5R)-22); $R_{\text{E}}(7:3 \text{ petrol-EtOAc}) \ 0.15$; ¹H NMR (400 MHz, CDCl₃) $\delta \ 7.45$ (d, J = 7.5 Hz, 2H, o-Ph), 7.36 (t, J = 7.5 Hz, 2H, m-Ph), 7.30 (d, J = 7.5 Hz, 1H p-Ph), 4.31 (dd, J = 10.0, 6.0Hz, 1H, NCH), 4.06 (dd, J = 9.0, 4.5 Hz, 1H, NCH), 3.80 (s, 3H, Me), 2.39-2.35 (m, 3H, CH₂ and CH_AH_B), 1.84-1.73 (m, 1H, CH_AH_B); ¹³C NMR (100.6 MHz, CDCl₃) δ 175.5 (C=O), 143.1 (*ipso-Ph*), 128.5 (Ph), 127.3 (Ph), 126.7 (Ph), 63.5 (NCH), 60.0 (NCH), 52.2 (Me), 34.1 (CH₂), 30.5 (CH₂). Chiral HPLC: Chiralpak AD 95:5 Hexane/*i*-PrOH, 0.5 mLmin⁻¹, 22.71 min [(2*R*,5*S*)-22], 26.48 min [(2*S*,5*R*)-22] and amine 23 (18 mg, 22% over 3 steps) as a pale yellow oil, $[\alpha]^{24}_{D}$ -7.1 (c 0.9 in CHCl₃); $R_{\rm F}$ (7:3 petrol-EtOAc) 0.16; IR (neat) 2953 (CH), 2926 (CH), 2855 (CH), 1730 (C=O) cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$) δ 7.45-7.50 (m, 2H, o-Ph), 7.33 (t, J = 7.5 Hz, 2H, m-Ph), 7.24 (t, J = 7.5 Hz, 1H, p-Ph), 3.69 (s, 3H, OMe), 3.16-3.06 (m, 2H, NCH₂), 2.76 (ddd, J = 12.5, 8.0, 5.0 Hz, 1H, NC(Ph)CH₄H₂), 2.59-1.97 (br m, 1H, NH), 2.09 (dt, J = 12.5, 8.5 Hz, 1H, NC(Ph)CH₄H_B), 1.95-1.76 (m, 2H, CH₂); ¹³C NMR (100.6) MHz, CDCl₃) & 176.0 (C=O), 142.6 (ipso-Ph), 128.2 (Ph), 127.2 (Ph), 126.0 (Ph), 72.2 (NCPh), 52.7 (OMe), 45.7 (NCH₂), 36.6 (CH₂), 24.5 (CH₂); MS (ESI) m/z 228 [(M + Na)⁺, 5], 206 [(M + H)⁺, 20], 146 $[(M - CO_2Me)^+ 100];$ HRMS (ESI) m/z $[M + H]^+$ calcd for $C_{12}H_{15}NO_2$, 206.1181; found 205.1176. Spectroscopic data of *cis*-22 consistent with that reported in the literature.¹⁷

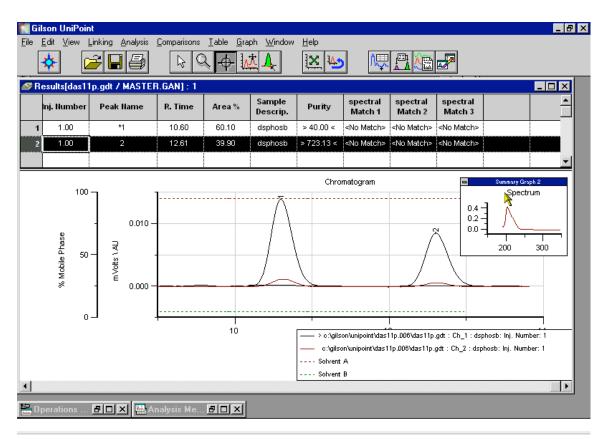

(2*R*,5*R*)-Methyl 5-phenylpyrrolidine-2-carboxylate *trans*-24 and methyl 2-phenylpyrrolidine-2-carboxylate 23

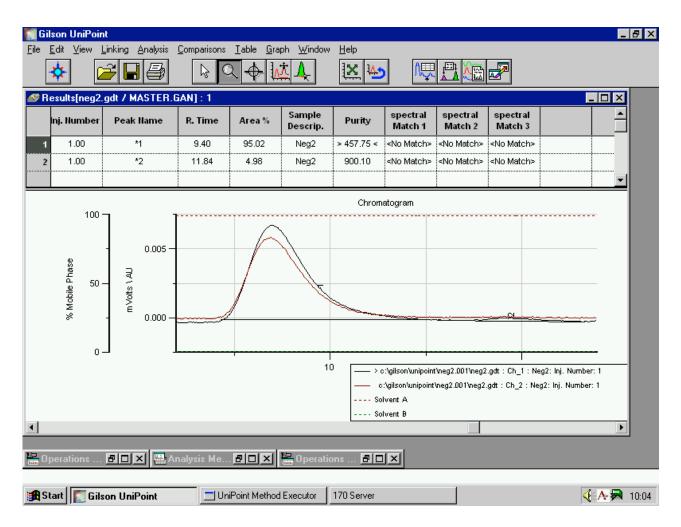


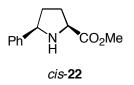

s-BuLi (1.50 mL of a 1.20 M solution in cyclohexane, 1.80 mmol) was added dropwise to a stirred solution of pyrrolidine (R)-20 (294 mg, 1.13 mmol) and (-)-sparteine (413 µL, 1.80 mmol) in Et₂O (2.5 mL) at -78 °C under Ar. The resulting solution was stirred at -78 °C for 6 h. Then, a stream of CO₂ was bubbled into the solution for 1 h and the solution was allowed to warm to rt and stirred at rt for 16 h. 1 M HCl_(aq) (10 mL) and EtOAc (10 mL) were added and the two layers were separated. The aqueous layer was extracted with EtOAc (5 x 10 mL) and the combined organic extracts were dried (Na₂SO₄) and evaporated under pressure to give the crude acids as a pale vellow oil. To a stirred solution of the crude acids 1:1 MeOH-toluene (7 mL) at 0 °C under Ar, trimethylsilyldiazomethane (713 μ L of a 2 M solution in hexanes, 1.42 mmol) was added dropwise. The resulting solution was stirred at rt for 1 h. Acetic acid (13 μ L, 0.23 mmol) was added dropwise and the solvent was evaporated under reduced pressure to give the crude methyl esters. To a stirred solution of the crude methyl esters in CH₂Cl₂ (3 mL) at 0 °C under Ar, TFA (300 µL, 3.89 mmol) was added dropwise. The resulting solution was stirred at rt for 2 h. CH₂Cl₂ (5 mL) and 1 M NaOH_(aq) (5 mL) were added and the two layers were separated. The aqueous layer was extracted with CH₂Cl₂ (4 x 5 mL) and the combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure to give the crude product as a yellow oil. Purification by flash column chromatography on silica with petrol-EtOAc (7:3) as eluent gave trans-pyrrolidine trans-24 (67 mg, 27% over 3 steps) as a pale yellow oil, $[\alpha]_{p}^{24}$ +84.8 (c 0.7 in CH₂Cl₂) (lit., ¹⁸ $[\alpha]_{p}^{24}$ +82.0 (c 1.00 in CH₂Cl₂) for (2R,5R)-24); $R_{\rm F}$ (7:3 petrol-EtOAc) 0.2; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.36 (m, 2H, *o*-Ph), 7.33 (t, *J* = 7.5 Hz, 2H, *m*-Ph), 7.24 (t, J = 7.5 Hz, 1H *p*-Ph), 4.37 (dd, J = 8.5, 6.0 Hz, 1H, NCH), 4.06 (dd, J = 8.5, 6.0 Hz, 1H, NCH), 3.77 (s, 3H, Me), 2.36 (dtd, J = 13.0, 8.5, 4.0 Hz, 1H, CH), 2.21 (ddddd, J = 12.0, 8.0, 6.5, 4.0, 0.5 Hz, 1H, CH), 2.00 (dddd, J = 13.0, 8.5, 8.0, 6.0 Hz, 1H, CH), 1.75 (dq, J = 12.0, 8.5 Hz, 1H, CH); ¹³C NMR (100.6 MHz, CDCl₃) & 176.3 (C=O), 144.3 (ipso-Ph), 128.3 (Ph), 126.8 (Ph), 126.4 (Ph), 61.7 (NCH), 59.4 (NCH), 52.1 (OMe), 34.5 (CH₂), 29.7 (CH₂) and 23 (44 mg, 27% over 3 steps) as a pale


yellow oil, $[\alpha]_{D}^{24}$ –44.5 (*c* 0.05 in CHCl₃). Spectroscopic data for *trans*-24 consistent with that reported in the literature.¹⁹

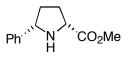







Data File C:\CHEM32\1\DATA\DARREN\STXDALLYLPYTYROLIDINERUN1.D Sample Name: DS8.83.Prun1

Acq. Operator Acq. Instrument Injection Date	
Acq. Method	: C:\CHEM32\1\METHODS\DARREN\ALLYLPYRROLIDINE0.5EQCU.M
	: 8/20/2007 12:42:13 PM by Darren : C:\CHEM32\1\DATA\DARREN\STXDALLYLPYTYROLIDINERUN1.D\DA.M (
Analysis Mechod	ALLYLPYRROLIDINEO.5EQCU.M)
	: 8/20/2007 1:49:12 PM by Darren : allybocpyrrolidine method 2
Sample Info	: OD column 0.1 ml/min flow, 1:99 IPA:Hexane, 2 bar, ds8 /83/prun1
DAD1	C, Sig=210,8 Ref=360,100 (DARREN\STXDALLYLPYTYROLIDINERUN1.D)
1200 -	
-	
- 1000 —	
-	
800 -	
-	
600 -	
-	
400 -	41 066
-	$\overline{4}$
200 -	
-	
0-	
Ó	10 20 30 40 50 60 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution Use Multiplier (: 1.0000 Dilution Factor with ISTDs
Signal 1: DAD1 (C, Sig=210,8 Ref=360,100
Peak RetTime Typ # [min]	[min] [mAU*s] [mAU] %
Totals :	1.43002e5 1481.23076



Data File C:\CHEM32\1\DATA\DARREN\RP66803RUN4.D Sample Name: ds other/p4run1

: Darren							
strument : Instrument 1 Location : Vial 1							
				• M			
			•				
)3RUN4.D\DA	.M (RP6680	3STUFF1.M)		
		(aing)					
: AD colur /other	nn 0.5 ml/mi	in flow, 5:9	95 IPA:Hexa	ne, 11 bar	ds 8		
A. Sia=254.4 Re	f=360.100 (DARRE	N\RP66803RUN4.	D)				
, , ,							
	26.4						
	A						
A			\sim				
10	20	30	40	50	60	70	min
					=		
	area Percent	. keport 			=		
	Signal						
:	1.0000						
:	1.0000						
; Dilution	Factor Witr	i isrbs					
A, Sig=254,	,4 Ref=360,1	100					
be Width	Area	Height	Area				
			8				
1.1078	3913.66919	50.74343	100.0000				
	: Instrume : 7/27/200 : C:\CHEM: : 7/27/200 (modifie : C:\CHEM: : 9/21/200 (modifie : RP 6680 : AD colur /other A, Sig=254,4 Re : : : : : : : : : : : : : : : : : : :	<pre>: Instrument 1 : 7/27/2007 2:44:24 F : C:\CHEM32\1\METHODS : 7/27/2007 2:33:33 F (modified after loa : C:\CHEM32\1\DATA\DATA\DATA\DATA\DATA\DATA\DATA\DA</pre>	<pre>: Instrument 1 : 7/27/2007 2:44:24 PM : C:\CHEM32\1\METHODS\DARREN\RP680 7/27/2007 2:33:33 PM by Darrer (modified after loading) : C:\CHEM32\1\DATA\DARREN\RP6680 : 9/21/2007 4:57:54 PM by Jule (modified after loading) : RP 66803NH : AD column 0.5 ml/min flow, 5:5 /other A, Sig=254,4 Ref=360,100 (DARRENNRP66803RUN4. Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 a Dilution Factor with ISTDs A, Sig=254,4 Ref=360,100 De Width Area Height [min] [mAU*s] [mAU]</pre>	<pre>: Instrument 1 Location : 7/27/2007 2:44:24 PM : C:\CHEM32\1\METHODS\DARREN\RP66803STUFF1</pre>	<pre>: Instrument 1 Location : Vial 1 : 7/27/2007 2:44:24 PM : C:\CHEM22\L\MATHODS\DARREN\RP66803STUFFI.M : 7/27/2007 2:33:33 PM by Darren (modified after loading) : C:\CHEM22\L\DARLONREN\RP66803RUN4.D\DA.M (RP6680 : 9/21/2007 4:57:54 PM by Jule (modified after loading) : RP 66803NH : AD column 0.5 ml/min flow, 5:95 IPA:Hexane, 11 bar /other A,Sig=254,4 Ref=360,100 (DARRENRP66803RUN4.D) Area Percent Report : Signal : 1.0000 : 1.0000 S Dilution Factor with ISTDS A, Sig=254,4 Ref=360,100 De Width Area Height Area [min] [mAU's] [mAU] %</pre>	<pre>: Instrument 1 Location : Vial 1 : 7/27/2007 2:44:24 PM : C:\CHEM32\l\MEHODS\DARREN\RP66803STUFF1.M : 7/27/2007 2:33:33 PM by Darren (modified after loading) : C:\CHEM32\l\DATA\DARREN\RP66803RUN4.D\DA.M (RP66803STUFF1.M) : 9/21/2007 4:57:54 PM by Jule (modified after loading) : RP 66803NH : AD column 0.5 ml/min flow, 5:95 IPA:Hexane, 11 bar ds 8 /other A, Sig=254.4 Ref=360,100 (DARRENRP66803RUN4.D)</pre>	<pre>: Instrument 1 Location : Vial 1 : 7/27/2007 2:34:24 EM C:\CHEM32\1\METHODS\DARREN\RP66803STUFF1.M : 7/27/2007 2:33:33 EM by Darren (modified after loading) c: C:CHEM32\1\DARREN\RP66803RUN4.D\DA.M (RP66803STUFF1.M) : 9/21/2007 4:57:54 PM by Jule (modified after loading) : RP 66803NH : AD column 0.5 ml/min flow, 5:95 IPA:Hexane, 11 bar ds 8 /other A Sug=254.4 Ref=300,100 (DARRENRP66803GRUN4 D)</pre>

Instrument 1 9/21/2007 4:58:30 PM Jule

Page 1 of 1

ent-cis-22

independently synthesised

Data File C:\CHEM32\1\DATA\DARREN\RP66803RUN3.D Sample Name: ds 8.71/p4run1

Acq. Operator	: Darren
	t: Instrument 1 Location: Vial 1
	: 7/27/2007 1:27:03 PM
	: C:\CHEM32\1\METHODS\DARREN\RP66803STUFF1.M
Last changed	: 7/27/2007 1:25:13 PM by Darren
	(modified after loading)
-	d : C:\CHEM32\1\DATA\DARREN\RP66803RUN3.D\DA.M (RP66803STUFF1.M)
Last changed	: 9/21/2007 4:59:48 PM by Jule
	(modified after loading)
Method Info	: RP 66803NH
Sample Info	: AD column 0.5 ml/min flow, 5:95 IPA:Hexane, 11 bar ds 8 /71/p4
	01 A, Sig=254,4 Ref=360,100 (DARRENIRP66803RUN3.D)
mAU -	13 13
-	
6-	
1	
_ 1	
5 -	
1	
4-	
-	
3-	
-	
2 -	
1	
1-	
-	
1	
0 -	W I VI X
1	
-1 -	
-'-	
1	
0	10 20 30 40 50 60 m
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
	& Dilution Factor with ISTDs
warething	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	22.713	VB	1.0403	560.62384	7.29767	100.0000

Totals : 560.62384 7.29767

References for supporting information:

(1) Larrow, J. F.; Jacobsen, E. N. Org. Synth. **1997**, 75, 1.

(2) Kizirian, J.-C.; Cabello, N.; Pinchard, L.; Caille, J.-C.; Alexakis, A. *Tetrahedron* **2005**, *61*, 8939.

(3) Cabello, N.; Kizirian, J.-C.; Gille, S.; Alexakis, A.; Bernardinelli, G.; Pinchard, L.; Caille, J.-C. J. Org. Chem. 2005, 70, 4835.

(4) Hoffmann, R. W.; Klute, W.; Dress, R. K.; Wenzel, A. J. Chem. Soc., Perkin Trans. 2 1995, 1721.

(5) Kerrick, S. T.; Beak, P. J. Am. Chem. Soc. 1991, 113, 9708.

(6) McGrath, M. J.; O'Brien, P. Synthesis 2006, 2233.

(7) Hodgson, D. M.; Lee, G. P.; Marritot, R. E.; Thompson, A. J.; Wisedale, R.; Witherington, J. J. Chem. Soc., Perkins Trans 1 1998, 2151.

- (8) Crepy, K. V. L.; Imamoto, T. Org. Synth. 2005, 52, 22.
- (9) Muci, A. R.; Campos, K. R.; Evans, D. A. J. Am. Chem. Soc. 1995, 117, 9075.
- (10) McGrath, M. J.; O'Brien, P. J. Am. Chem. Soc. 2005, 127, 16378.

(11) Park, S. H.; Kang, H. J.; S., K.; Park, S.; Chang, S. *Tetrahedron: Asymmetry* **2001**, *12*, 2621.

(12) Coldham, I.; Fernàndez, J. C.; Snowden, D. J. Tetrahedron Lett. 1999, 40, 1819.

(13) Takahata, H.; Kubota, M.; Momose, T. *Tetrahedron: Asymmetry* **1997**, *8*, 2801.

(14) Peroche, S.; Remuson, R.; Gelas-Mialhe, Y.; Gramain, J.-C.; Tetrahedron Lett. 2001, 4617. *Tetrahedron Lett.* 2001, 42, 4617.

(15) Fleurant, A.; Cèlèrier, J. P.; Lhommet, G. Tetrahedron: Asymmetry 1992, 3, 695.

(16) Campos, K. R.; Klapars, A.; Waldman, J. H.; Dormer, P. G.; Chen, C. Y. J. Am. Chem. Soc. 2006, 128, 3538.

- (17) Haddad, M.; Imoga_, H.; Larchevêque, M. J. Org. Chem. 1998, 63, 5680.
- (18) Davis, F. A.; Fang, T.; Goswami, R. Org. Lett. 2002, 4, 1599.

(19) Severino, E. A.; Costenaro, E. R.; Garcia, A. L. L.; Correia, C. R. D. Org. Lett. 2003, 5, 305.