Three-Dimensional Through-Space/Through-Bond Delocalization in Cyclophane Systems: A Molecule-In-Molecule approach

Hsin-Chieh Lin and Bih-Yaw Jin*

Supporting Information

Monomer Wave Functions, Matrix elements (Table)

Monomer Wave Functions

The molecular orbitals of the a fragment are written as the linear combination of atomic orbitals (LCAO)

$$\phi_n = \sum_p c_{n,p} \chi_p , \qquad (2)$$

where the basis function χ_p is taken to be the p_z atomic orbital on the atom p. The LCAO coefficients $c_{n,p}$ are obtained by solving the restricted Hartree-Fock equation, given by

$$\mathbf{F}c_n = E_n c_n, \tag{3}$$

where **F** is the Fock matrix and E_n is the energy of the *n*-th molecular orbital. The matrix element of the Fock matrix for the Pariser-Parr-Pople Hamiltonian is given by

$$\mathbf{F}_{p,p} = \alpha_{p,p} + (1/2)\gamma_{p,p}P_{p,p} - \sum_{q \neq p} (\gamma_{p,q}q_q - P_{q,q}\gamma_{p,q}), \qquad (4a)$$

$$\mathbf{F}_{p,q} = \beta_{p,q} - (1/2)\gamma_{p,q} P_{p,q},$$
(4b)

where the core integral $\alpha_{p,p}$ is the negative value of the valence state ionization potential of the atom p and the $\beta_{p,q}$ the resonance integral between the p_z orbitals on atoms p and q. The $P_{p,q}=2\sum_n c_{n,p}c_{n,q}$ gives the mobile bond order between atom p and qand $\gamma_{p,q}$ is the electron-electron repulsion integral. The non-nearest-neighbor interactions are taken into account in the PPP model. The $\alpha_{p,p}$, $\beta_{p,q}$ and $\gamma_{p,q}$ integrals can be estimated by semiempirical parameterization shown below. The core integral $\alpha_{p,p}$ can be evaluated by the Slater nuclear charge (z_p) and core charges (ρ_p) according to the semiempirical expression¹

$$\alpha_{p,p} = -\exp(0.342z_p + 0.555\rho_p + 0.758) \tag{5}$$

The resonance integral, $\beta_{p,q}$, can be evaluated by dividing it into σ and π components, defined as:

$$\beta_{p,q} = \beta_{\sigma} \theta_{z',p} \theta_{z',q} + \beta_{\pi} (\theta_{x',p} \theta_{x',q} + \theta_{y',p} \theta_{y',q})$$
(6a)

Here $(\theta_{x'p}, \theta_{y'p}, \theta_{z'p})$ and $(\theta_{x'q}, \theta_{y'q}, \theta_{z'q})$ are direction cosine of the p_z orbitals on atoms p and q, with respect to rectangular coordinate system (x', y', z'). The z' axis was defined the axis along the line between atoms p and q. The semiempirical integrals β_{π} can be evaluated by the Wolfsberg-Helmholtz equation²

$$\beta_{\pi} = KS_{p,q}(\alpha_{p,p} + \alpha_{q,q}) \tag{6b}$$

where *K* is taken to be 0.460 and $S_{p,q}$ denotes the overlap integral between atoms *p* and *q*, the value of $S_{p,q}$ is expressed by an exponential function of the distance $(r_{p,q})$ and the effective nuclear charge $(z_r)^1$

$$S_{p,q} = \exp[(-0.1112r_{p,q} + 0.1339)z_p z_q + (0.0449r_{p,q} - 0.3759)(z_p + z_q) - 0.8627r_{p,q} + 2.0631]$$
(6c)

and β_{σ} is evaluated by semiempirical equation

$$\beta_{\sigma} = \exp(-\varepsilon_{\sigma}/2)(-3.546 \times 10^{2} \varepsilon_{\sigma}^{4} - 1.418 \times 10^{3} \varepsilon_{\sigma}^{3} + 4.255 \times 10^{3} \varepsilon_{\sigma}^{2} + 4.255 \times 10^{4} \varepsilon_{\sigma} + 8.512 \times 10^{4}) \ cm^{-1}$$
(6d)

with $\varepsilon_{\sigma} = 5.385 r_{p,q}/\text{Å}$. The β_{σ} is the resonance integral for two end-on p_z orbitals (*z=z*') which was obtained by fitting observation properties of excimers.³

For the electron-electron repulsion integral, $\gamma_{p,p}$, we used the semiempirical expression¹ and $\gamma_{p,q}$ can be evaluated by Mataga-Nishimoto equation⁴

$$\gamma_{p,p} = \exp(0.154z_p + 0.250\rho_p + 1.662) \tag{7a}$$

$$\gamma_{p,q} = e^2 / (r_{p,q} + \eta_{p,q}) \tag{7b}$$

where $r_{p,q}$ is the distance between atom p and q and

$$\eta_{p,p} = e^2 / \gamma_{p,p} \tag{7c}$$

$$\eta_{p,q} = 2\eta_{p,p}\eta_{q,q} / (\eta_{p,p} + \eta_{q,q})$$
(7d)

The excited-state wave functions of the fragments are expressed as the linear

combination of the singlet configuration functions corresponding to an excitation from SCF orbital n_1 to $n_2 ({}^1\psi_N = {}^1\psi_{n1-n2})$,

$$\Psi_i = \sum_N \xi_{i,N}^{-1} \psi_N .$$
(8)

The configuration interaction coefficients, $\xi_{i,N}$, and the excitation energy, ΔE_i , are obtained by solving the following equation

$$\mathbf{A}\boldsymbol{\xi}_i = \Delta \boldsymbol{E}_i \boldsymbol{\xi}_i \,, \tag{9a}$$

where the matrix elements of A are given by

$$\mathbf{A}_{N,N} = \left\langle \psi_{N} \left| \mathbf{H} \right| \psi_{N} \right\rangle - \left\langle \psi_{o} \left| \mathbf{H} \right| \psi_{o} \right\rangle = E_{nr} - E_{na} - \left\langle n_{a} n_{r} \left| n_{a} n_{r} \right\rangle + 2 \left\langle n_{a} n_{r} \left| n_{r} n_{a} \right\rangle$$
(9b)

$$\mathbf{A}_{N,M} = \left\langle \boldsymbol{\psi}_{N} \left| \mathbf{H} \right| \boldsymbol{\psi}_{M} \right\rangle = 2 \left\langle m_{a} n_{r} \left| m_{r} n_{a} \right\rangle - \left\langle m_{a} n_{r} \left| n_{a} m_{r} \right\rangle \right\rangle$$
(9c)

$$\left\langle \mu\nu \left| \lambda\sigma \right\rangle = \iint \phi_{\mu}(1)\phi_{\nu}(2)(1/r_{12})\phi_{\lambda}(1)\phi_{\sigma}(2)d\tau_{1}d\tau_{2} \approx \sum_{p,q} C_{\mu,q}C_{\nu,p}C_{\lambda,q}C_{\sigma,p}\gamma_{q,p} \right\rangle$$
(9d)

- (1) Hida, M. Dyes and Pigments. 1995, 28, 217.
- (2) Wolfsberg-Helmholtz equation
- (3) (a) Warshel, A.; Huler, A. Chem. Phys. 1974, 6, 463. (b) Warshel, A.; Shakked, Z.
 J. Am. Chem. Soc. 1975, 97, 5679.
- (4) Mataga, N.; Nishimoto, K. Z. Phys. Chem. 1957, 13, 140.

Complete Ref. 31: Cornil, J.; Vanderdonckt, S.; Lazzaroni, R.; dos Santos, D. A.;

Thys, G.; Geise, H. J.; Yu, L.-M.; Szablewski, M.; Bloor, D.; Lögdlund, M.; Salaneck,

- W. R.; Gruhn, N. E.; Lichtenberger, D. L.; Lee, P. A.; Armstrong, N. R.; Brédas, J. L.
- Chem. Mater. 1999, 11, 2436-2443.

entry	F	С	V	U	t _e	t _h	CT%
6	3.41	4.47	0.16	-0.03	-0.15	0.06	2.51
<u>6</u>	3.53	4.75	0.11	-0.01	-0.03	0.08	0.74
7	3.43	4.45	0.15	-0.02	-0.18	0.10	4.87
<u>7</u>	3.56	4.79	0.11	-0.01	-0.03	0.07	0.46
8	3.09	4.56	0.19	-0.19	-0.18	0.17	3.12
<u>8</u>	3.24	4.85	0.11	-0.08	-0.04	0.11	0.65
9	3.12	4.58	0.20	-0.19	-0.20	0.22	4.52
<u>9</u>	3.29	4.92	0.10	-0.05	-0.03	0.08	0.36

Table S1 Matrix Elements (in unit eV) of the Molecule 4 with or without (underline)Double-Bonded Tethers