Three-Dimensional Through-Space/Through-Bond Delocalization in Cyclophane Systems: A Molecule-In-Molecule approach

Hsin-Chieh Lin and Bih-Yaw Jin*

Supporting Information

> Monomer Wave Functions, Matrix elements (Table)

Monomer Wave Functions

The molecular orbitals of the a fragment are written as the linear combination of atomic orbitals (LCAO)

$$
\begin{equation*}
\phi_{n}=\sum_{p} c_{n, p} \chi_{p}, \tag{2}
\end{equation*}
$$

where the basis function χ_{p} is taken to be the p_{z} atomic orbital on the atom p. The LCAO coefficients $c_{n, p}$ are obtained by solving the restricted Hartree-Fock equation, given by

$$
\begin{equation*}
\mathbf{F} c_{n}=E_{n} c_{n}, \tag{3}
\end{equation*}
$$

where \mathbf{F} is the Fock matrix and E_{n} is the energy of the n-th molecular orbital. The matrix element of the Fock matrix for the Pariser-Parr-Pople Hamiltonian is given by

$$
\begin{gather*}
\mathbf{F}_{p, p}=\alpha_{p, p}+(1 / 2) \gamma_{p, p} P_{p, p}-\sum_{q \neq p}\left(\gamma_{p, q} q_{q}-P_{q, q} \gamma_{p, q}\right), \tag{4a}\\
\mathbf{F}_{p, q}=\beta_{p, q}-(1 / 2) \gamma_{p, q} P_{p, q}, \tag{4b}
\end{gather*}
$$

where the core integral $\alpha_{p, p}$ is the negative value of the valence state ionization potential of the atom p and the $\beta_{p, q}$ the resonance integral between the p_{z} orbitals on atoms p and q. The $P_{p, q}=2 \Sigma_{n} c_{n, p} c_{n, q}$ gives the mobile bond order between atom p and q and $\gamma_{p, q}$ is the electron-electron repulsion integral. The non-nearest-neighbor interactions are taken into account in the PPP model. The $\alpha_{p, p}, \beta_{p, q}$ and $\gamma_{p, q}$ integrals can be estimated by semiempirical parameterization shown below. The core integral $\alpha_{p, p}$ can be evaluated by the Slater nuclear charge $\left(z_{p}\right)$ and core charges $\left(\rho_{p}\right)$ according to the semiempirical expression ${ }^{1}$

$$
\begin{equation*}
\alpha_{p, p}=-\exp \left(0.342 z_{p}+0.555 \rho_{p}+0.758\right) \tag{5}
\end{equation*}
$$

The resonance integral, $\beta_{p, q}$, can be evaluated by dividing it into σ and π components, defined as:

$$
\begin{equation*}
\beta_{p, q}=\beta_{\sigma} \theta_{z^{\prime}, p} \theta_{z^{\prime}, q}+\beta_{\pi}\left(\theta_{x^{\prime}, p} \theta_{x^{\prime}, q}+\theta_{y^{\prime}, p} \theta_{y^{\prime}, q}\right) \tag{6a}
\end{equation*}
$$

Here $\left(\theta_{x^{\prime} p}, \theta_{y^{\prime} p}, \theta_{z^{\prime} p}\right)$ and ($\left.\theta_{x^{\prime} q}, \theta_{y^{\prime} q}, \theta_{z^{\prime} q}\right)$ are direction cosine of the p_{z} orbitals on atoms p and q, with respect to rectangular coordinate system $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. The z^{\prime} axis was defined the axis along the line between atoms p and q. The semiempirical integrals β_{π} can be evaluated by the Wolfsberg-Helmholtz equation ${ }^{2}$

$$
\begin{equation*}
\beta_{\pi}=K S_{p, q}\left(\alpha_{p, p}+\alpha_{q, q}\right) \tag{6b}
\end{equation*}
$$

where K is taken to be 0.460 and $S_{p, q}$ denotes the overlap integral between atoms p and q, the value of $S_{p, q}$ is expressed by an exponential function of the distance $\left(r_{p, q}\right)$ and the effective nuclear charge $\left(z_{r}\right)^{1}$

$$
\begin{align*}
S_{p, q}= & \exp \left[\left(-0.1112 r_{p, q}+0.1339\right) z_{p} z_{q}+\left(0.0449 r_{p, q}-0.3759\right)\left(z_{p}+z_{q}\right)\right. \tag{6c}\\
& \left.-0.8627 r_{p, q}+2.0631\right]
\end{align*}
$$

and β_{σ} is evaluated by semiempirical equation

$$
\begin{align*}
& \beta_{\sigma}=\exp \left(-\varepsilon_{\sigma} / 2\right)\left(-3.546 \times 10^{2} \varepsilon_{\sigma}^{4}-1.418 \times 10^{3} \varepsilon_{\sigma}^{3}+4.255 \times 10^{3} \varepsilon_{\sigma}^{2}+\right. \\
&\left.4.255 \times 10^{4} \varepsilon_{\sigma}+8.512 \times 10^{4}\right) \mathrm{cm}^{-1} \tag{6d}
\end{align*}
$$

with $\varepsilon_{\sigma}=5.385 r_{p, q} / \AA$. The β_{σ} is the resonance integral for two end-on p_{z} orbitals $\left(z=z^{\prime}\right)$ which was obtained by fitting observation properties of excimers. ${ }^{3}$

For the electron-electron repulsion integral, $\gamma_{p, p}$, we used the semiempirical expression ${ }^{1}$ and $\gamma_{p, q}$ can be evaluated by Mataga-Nishimoto equation ${ }^{4}$

$$
\begin{align*}
& \quad \gamma_{p, p}=\exp \left(0.154 z_{p}+0.250 \rho_{p}+1.662\right) \tag{7a}\\
& \gamma_{p, q}=e^{2} /\left(r_{p, q}+\eta_{p, q}\right) \tag{7b}
\end{align*}
$$

where $r_{p, q}$ is the distance between atom p and q and

$$
\begin{align*}
& \eta_{p, p}=e^{2} / \gamma_{p, p} \tag{7c}\\
& \eta_{p, q}=2 \eta_{p, p} \eta_{q, q} /\left(\eta_{p, p}+\eta_{q, q}\right) \tag{7d}
\end{align*}
$$

The excited-state wave functions of the fragments are expressed as the linear
combination of the singlet configuration functions corresponding to an excitation from SCF orbital n_{1} to $\mathrm{n}_{2}\left({ }^{1} \psi_{N}={ }^{1} \psi_{n l-n 2}\right)$,

$$
\begin{equation*}
\Psi_{i}=\sum_{N} \xi_{i, N}{ }^{1} \psi_{N} . \tag{8}
\end{equation*}
$$

The configuration interaction coefficients, $\xi_{i, N}$, and the excitation energy, ΔE_{i}, are obtained by solving the following equation

$$
\begin{equation*}
\mathrm{A} \xi_{i}=\Delta E_{i} \xi_{i}, \tag{9a}
\end{equation*}
$$

where the matrix elements of \mathbf{A} are given by

$$
\begin{align*}
& \mathbf{A}_{N, N}=\left\langle\psi_{N}\right| \mathrm{H}\left|\psi_{N}\right\rangle-\left\langle\psi_{o}\right| \mathrm{H}\left|\psi_{o}\right\rangle=E_{n r}-E_{n a}-\left\langle n_{a} n_{r} \mid n_{a} n_{r}\right\rangle+2\left\langle n_{a} n_{r} \mid n_{r} n_{a}\right\rangle \tag{9b}\\
& \mathbf{A}_{N, M}=\left\langle\psi_{N}\right| \mathrm{H}\left|\psi_{M}\right\rangle=2\left\langle m_{a} n_{r} \mid m_{r} n_{a}\right\rangle-\left\langle m_{a} n_{r} \mid n_{a} m_{r}\right\rangle \tag{9c}\\
& \langle\mu v \mid \lambda \sigma\rangle=\iint \phi_{\mu}(1) \phi_{v}(2)\left(1 / r_{12}\right) \phi_{\lambda}(1) \phi_{\sigma}(2) d \tau_{1} d \tau_{2} \approx \sum_{p, q} C_{\mu, q} C_{\nu, p} C_{\lambda, q} C_{\sigma, p} \gamma_{q, p} \tag{9d}
\end{align*}
$$

(1) Hida, M. Dyes and Pigments. 1995, 28, 217.
(2) Wolfsberg-Helmholtz equation
(3) (a) Warshel, A.; Huler, A. Chem. Phys. 1974, 6, 463 . (b) Warshel, A.; Shakked, Z. J. Am. Chem. Soc. 1975, 97, 5679.
(4) Mataga, N.; Nishimoto, K. Z. Phys. Chem. 1957, 13, 140.

Complete Ref. 31: Cornil, J.; Vanderdonckt, S.; Lazzaroni, R.; dos Santos, D. A.; Thys, G.; Geise, H. J.; Yu, L.-M.; Szablewski, M.; Bloor, D.; Lögdlund, M.; Salaneck,
W. R.; Gruhn, N. E.; Lichtenberger, D. L.; Lee, P. A.; Armstrong, N. R.; Brédas, J. L.

Chem. Mater. 1999, 11, 2436-2443.

Table S1 Matrix Elements (in unit eV) of the Molecule 4 with or without (underline)
Double-Bonded Tethers

entry	F	C	V	U	t_{e}	t_{h}	$\mathrm{CT} \%$
6	3.41	4.47	0.16	-0.03	-0.15	0.06	2.51
$\underline{6}$	3.53	4.75	0.11	-0.01	-0.03	0.08	0.74
7	3.43	4.45	0.15	-0.02	-0.18	0.10	4.87
$\underline{7}$	3.56	4.79	0.11	-0.01	-0.03	0.07	0.46
8	3.09	4.56	0.19	-0.19	-0.18	0.17	3.12
$\underline{8}$	3.24	4.85	0.11	-0.08	-0.04	0.11	0.65
9	3.12	4.58	0.20	-0.19	-0.20	0.22	4.52
$\underline{9}$	3.29	4.92	0.10	-0.05	-0.03	0.08	0.36

