Morpholine-Based Immonium and Halogenoamidinium Salts as Coupling Reagents in Peptide Synthesis

Ayman El-Faham, a,b,* Fernando Albericio, a,c,d*

^aInstitute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 1, 08028-Barcelona, Spain

^bDepartment of Chemistry, Faculty of Science, Alexandria University, Ibrahimia 21321, Alexandria, Egypt

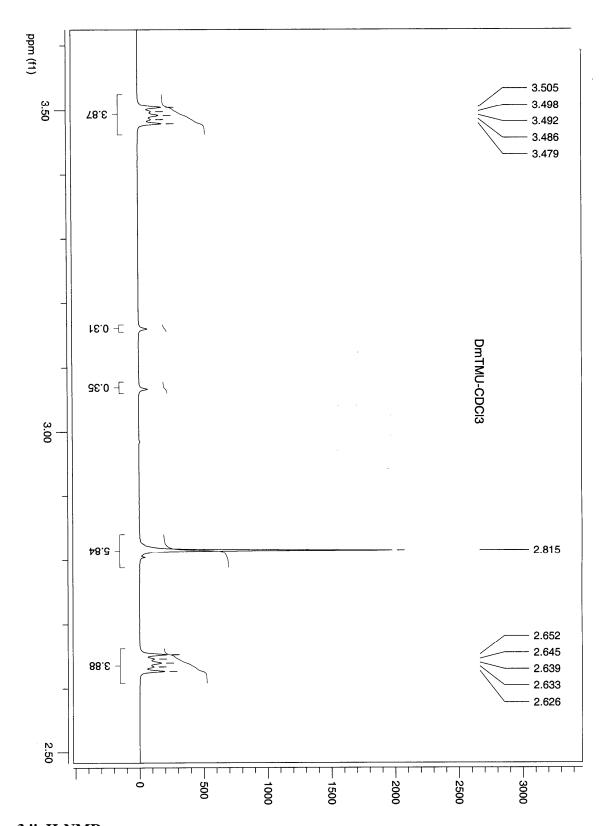
^cDepartment of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028-Barcelona, Spain

^dCIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Josep Samitier 1-5, E-08028 Barcelona, Spain

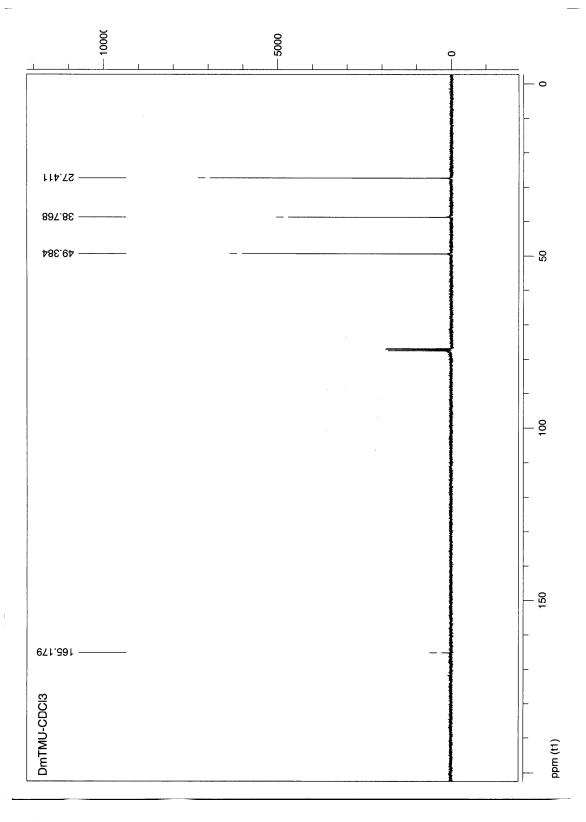
Supporting Information

Content:

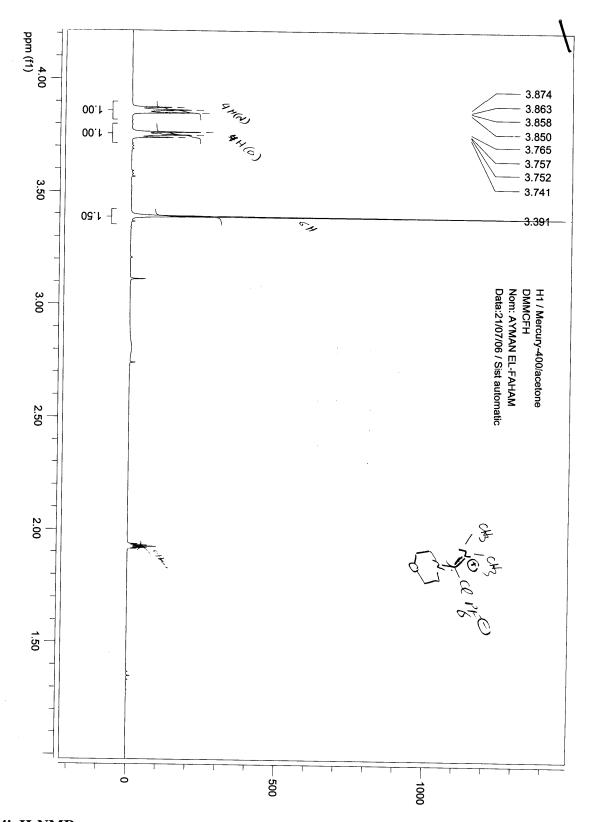
General ProceduresPag 2

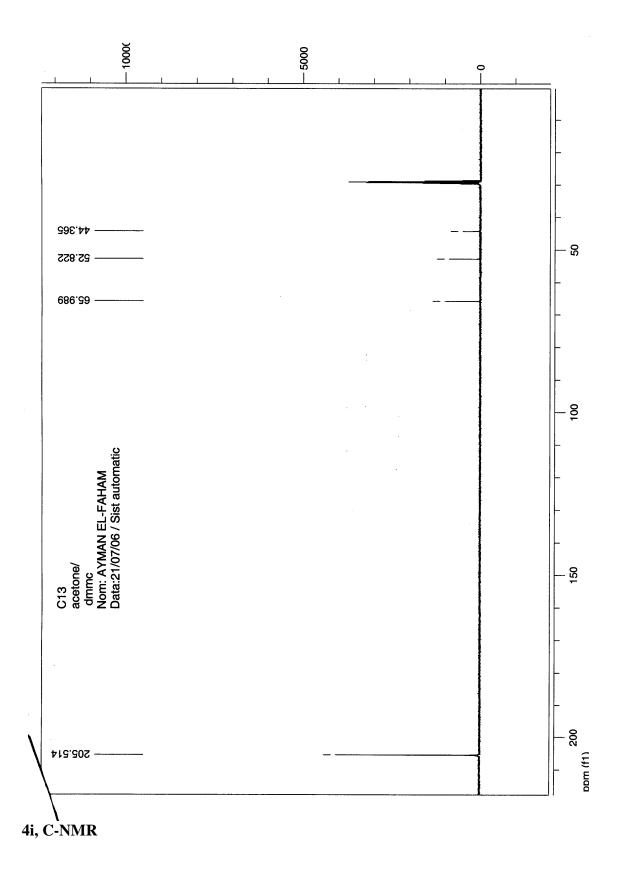

Copies of ¹H- and ¹³C-NMR Spectra of Compounds 3ii, 4i, 5c, 5d, 5e, 5f, 5g, 6a, 6b, and 7.....Pag 3-22

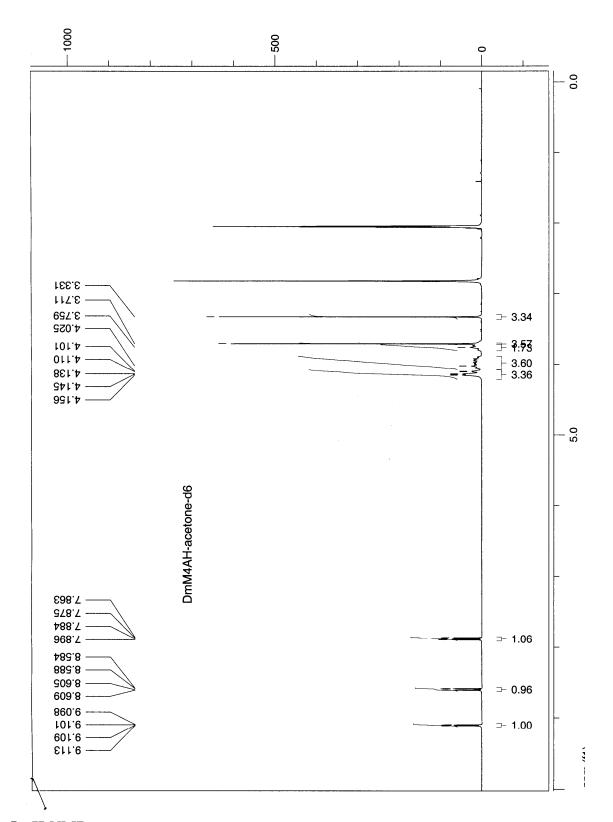
X-ray TablesPag 23-36


General Procedures

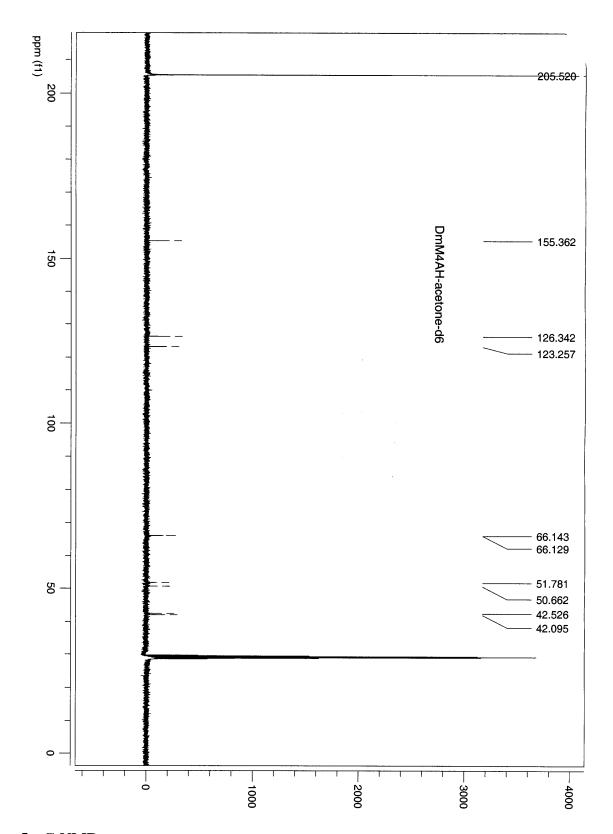
TLC was performed on silica plates (8×4 cm) using suitable solvent systems and visualization by a Spectroline UV Lamp Model CM-10 (254 nm). Melting points were obtained in open capillary tubes and were uncorrected. Infrared spectra (IR) were recorded on a FT-IR instrument as KBr pellets. The absorption bands (ν_{max}) were given in wave numbers (cm⁻¹). NMR spectra were recorded on a 400 MHz spectrometer at room temperature. Tetramethylsilane (TMS) was used as reference for all NMR spectra with chemical shifts reported as ppm relative to TMS. HPLC analyses were carried out using Column C18, 5μ , 4.6x150mm with dual λ absorbance detector.


HPLC-MS analyses were carried out using Column C18, 5μ , 4.6x150mm with dual λ absorbance detector. All solvents used for recrystallization, extraction, column chromatography and TLC were of commercial grade, distilled before use and stored under dry conditions.

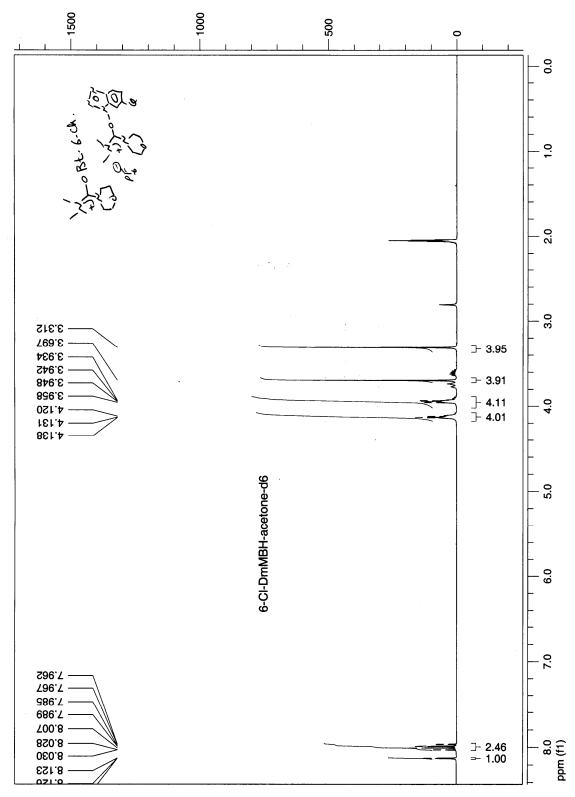

3 ii, H-NMR

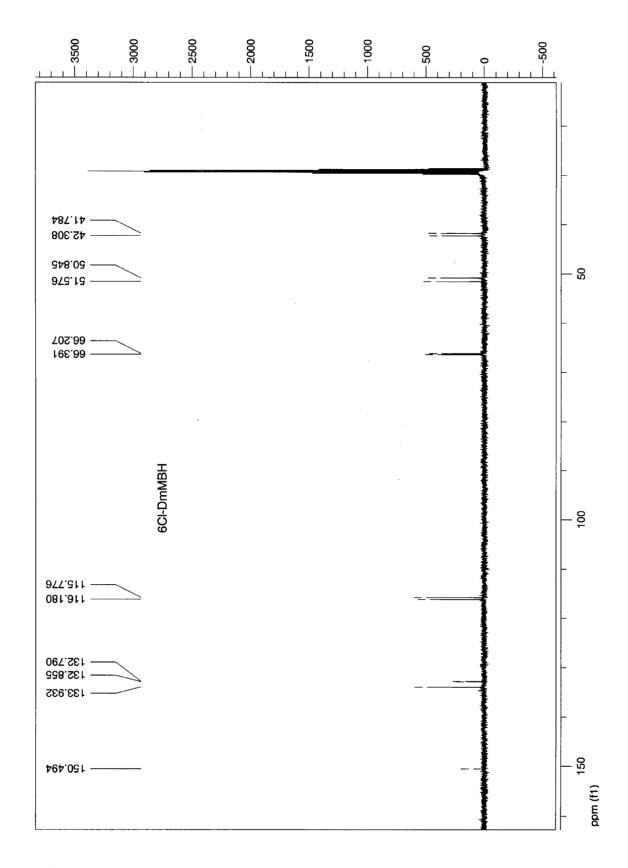


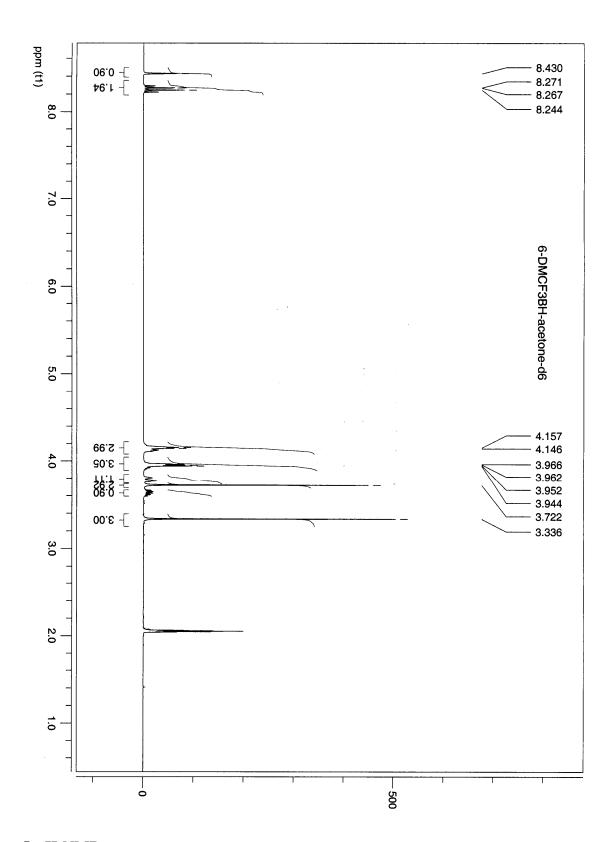
3ii, C-NMR

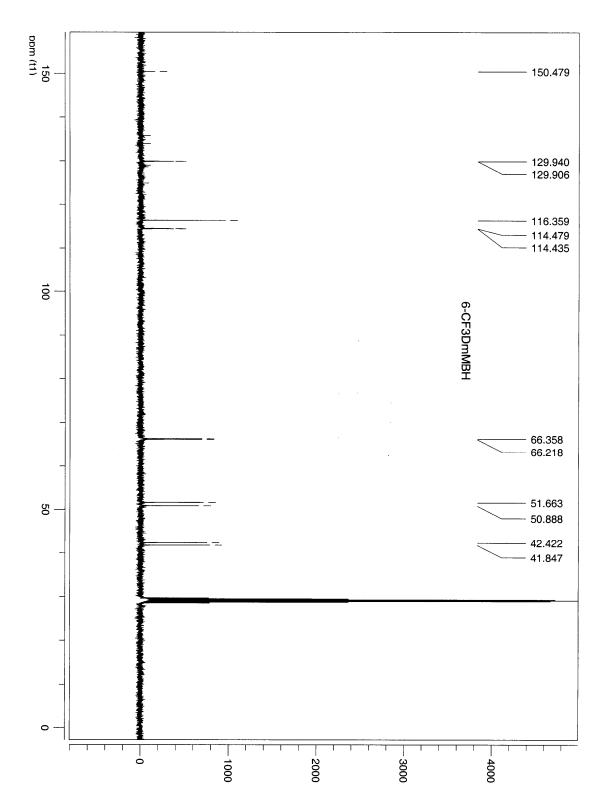


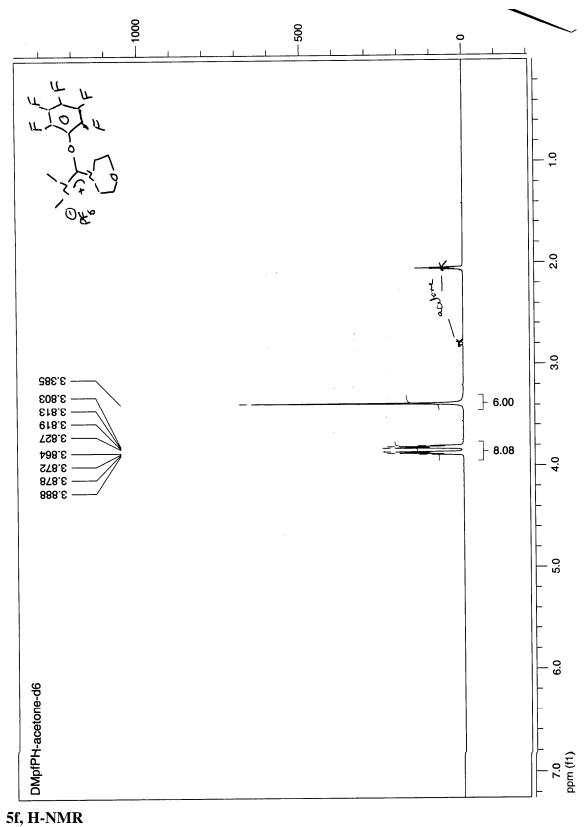
4i, H-NMR

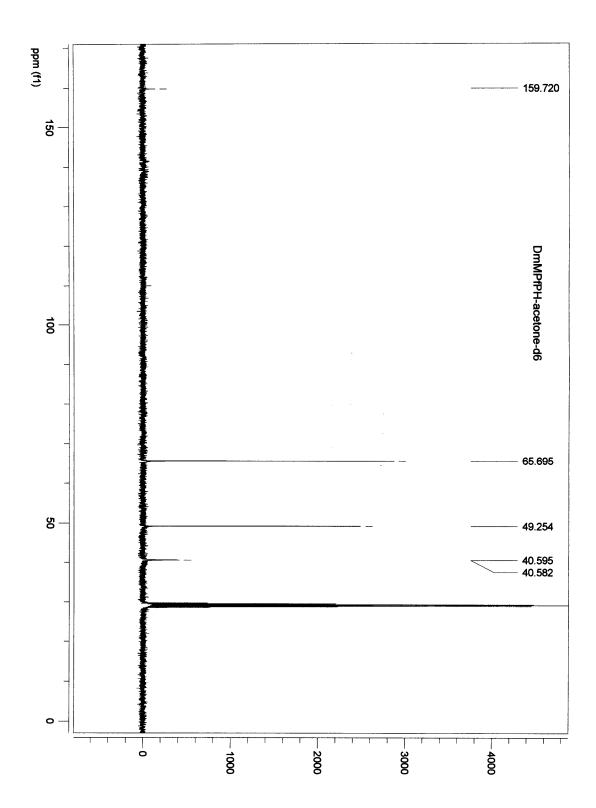



5c, H-NMR

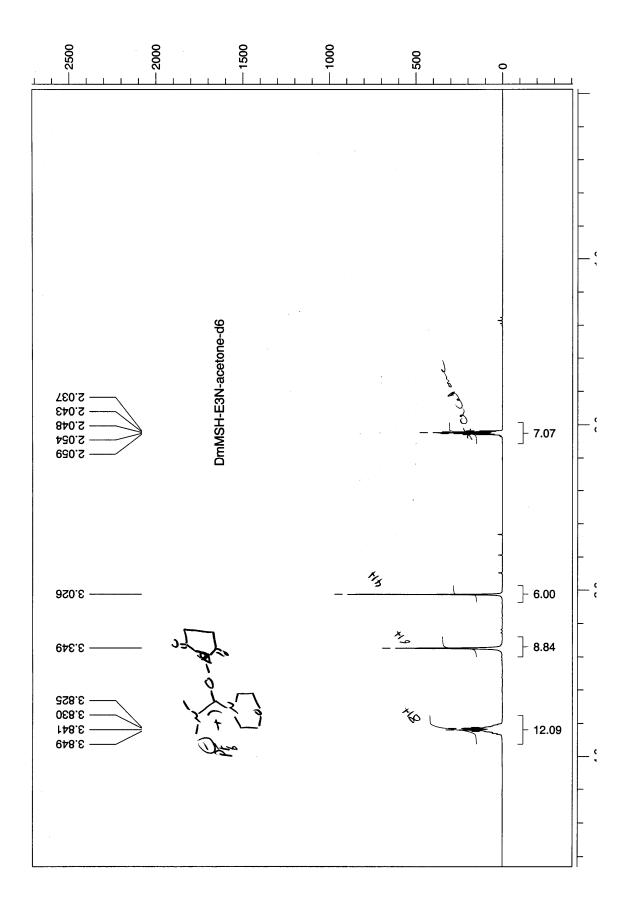

5c, C-NMR


5d. H-NMR

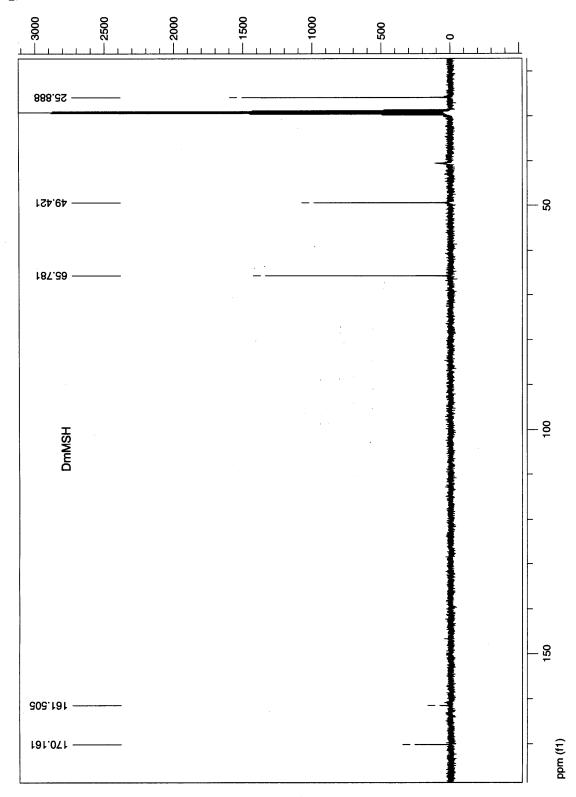

5d, C-NMR

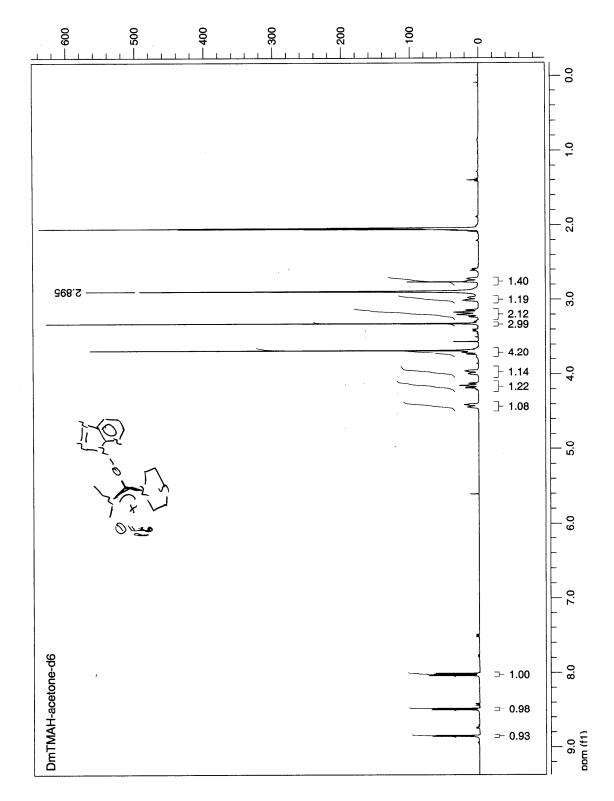


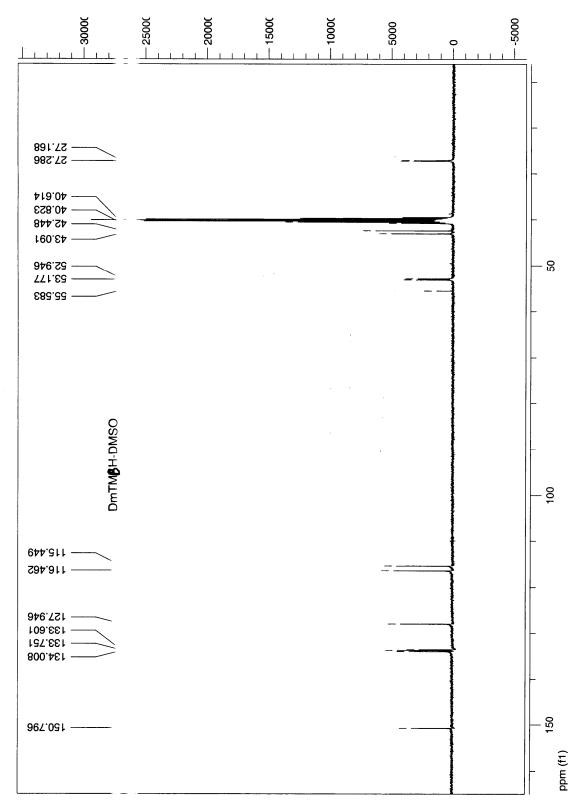
5e, H-NMR

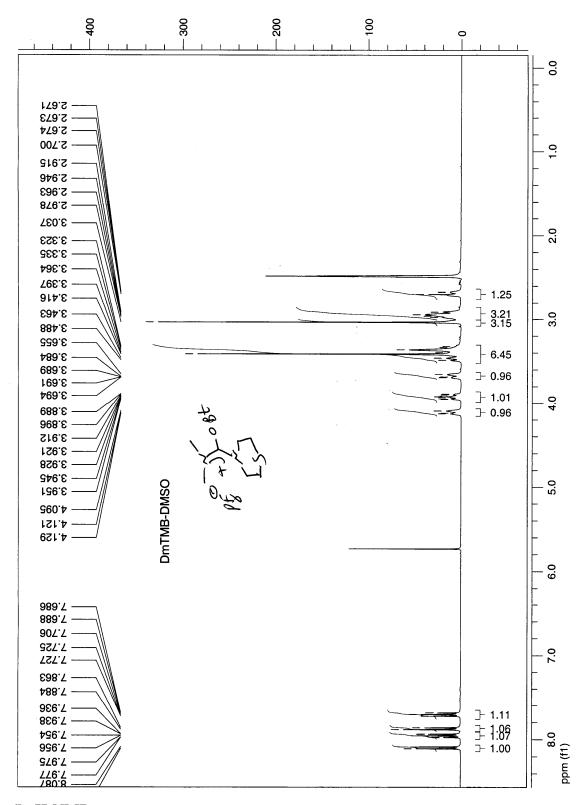


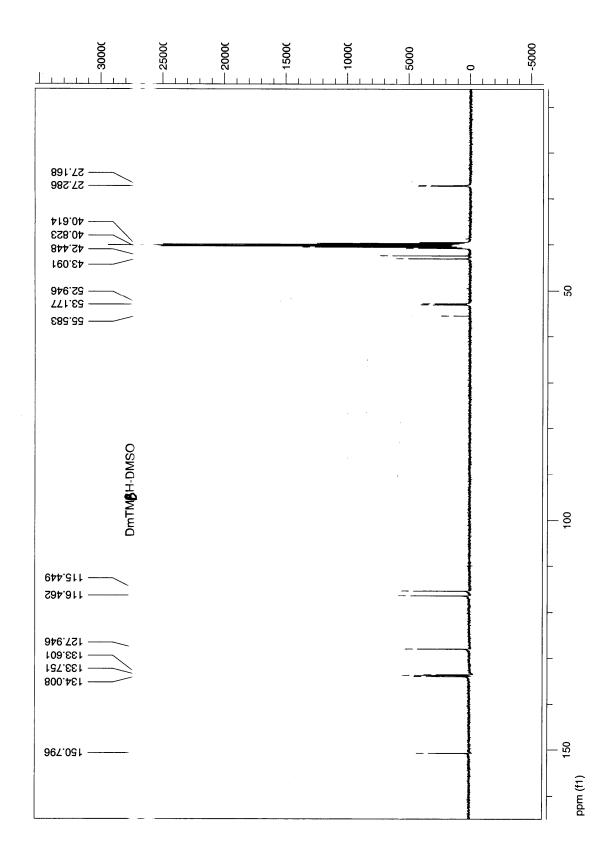
5e, C-NMR

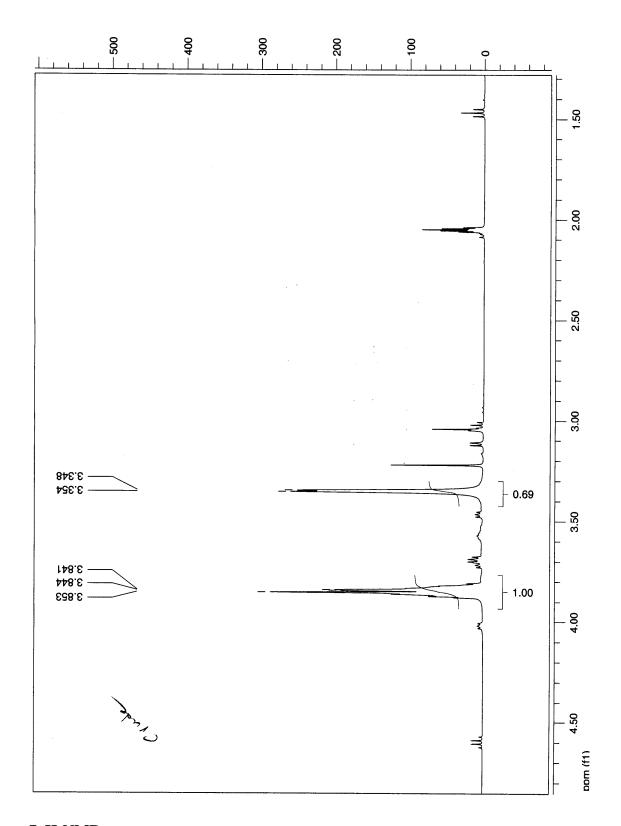


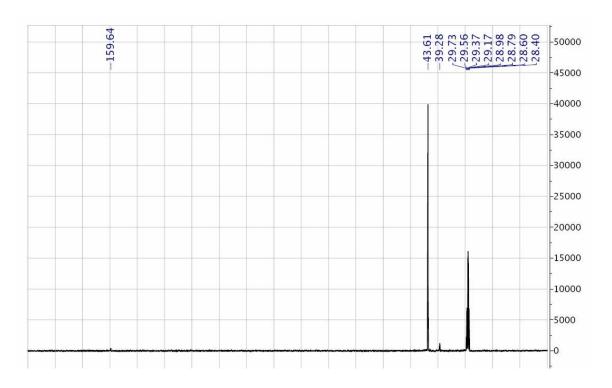

5f, C-NMR




5g, C-NMR


6a, H-NMR


6a, C-NMr


6b, H-NMR

6b, C-NMR

7, H-NMR

7, C-NMR

5a, X-ray table

PREVIEW	1
	24 Aug 2006
Louis J. Farrugia	
$. \ E\text{-}mail: louis@chem.gla.ac.uk$	
Experimental	
Crystal data	
$C_{12}H_{18}N_6O_2.F_6P$	$\lambda = 0.71073 \text{ Å}$
$M_r = 423.29$	Mo $K\alpha$ radiation
Monoclinic	$\lambda = 0.7107 \text{ Å}$
$P2_1/c$	Cell parameters from 4304 reflections
a = 6.1372 (10) Å	$\theta = 3.39 - 22.95^{\circ}$
b = 22.607 (4) Å	$\mu = 0.256 \text{ mm}^{-1}$
c = 12.0984 (19) Å	T = 100 (2) K
$\beta = 102.067 \ (9)^{\circ}$	Prism
$V = 1641.4 (5) \text{ Å}^3$	Colourless
Z=4	$0.46\times0.08\times0.06\;\mathrm{mm}$
$D_x = 1.713 \text{ Mg m}^{-3}$	Crystal source: synthesis as described
D_m not measured	
Data collection BRUKER APPEX-II CCD diffractometer	1699 reflections with
Four-circle diffractometer	$>2 \operatorname{sigma}(I)$
ω and phi scans	$R_{\text{int}} = 0.1171$
Absorption correction:	$\theta_{\text{max}} = 23.25^{\circ}$
multi-scan BRUKER SADABS	$h = -6 \rightarrow 6$
Please give reference	k=0 o 25
$T_{\min} = 0.8913, T_{\max} = 0.9848$	l=0 ightarrow 13
23665 measured reflections	? standard reflections
2350 independent reflections	every? reflections
	intensity decay: ?%

Refinement

Refinement on \mathbb{F}^2

R(F) = 0.0686

 $wR(F^2) = 0.1857$

S = 0.988

2350 reflections

304 parameters

H-atom parameters constrained $w{=}1/[\sigma^2(F_o^{\,2})\,+\,(0.1317P)^2\,+\,0.0000P]$

where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0$

 $\Delta \rho_{\rm max} = 0.432~{\rm e~\mathring{A}^{-3}}$

 $\Delta \rho_{\rm min} = -0.449$ e Å $^{-3}$

Extinction correction: SHELXL

Extinction coefficient: 0.019~(5)

Scattering factors from International Tables

for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\mathring{A}^2)

$U_{\rm eq} = (1/3)\Sigma_i \Sigma_j U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j.$						
	Occupancy	x	y	z	U_{eq}	
N1	1	0.2637(7)	0.09246(17)	0.6003(3)	0.0232 (11)	
N2	1	0.4708(7)	0.06605(19)	0.6289(4)	0.0282(11)	
N3	1	0.5511(7)	$0.06601\ (17)$	0.5371(3)	0.0224 (10)	
C4	1	0.4019(8)	0.09336 (19)	0.4461(4)	0.0205(12)	
N5	1	0.4406(7)	0.10146 (17)	0.3431(4)	0.0286 (11)	
C6	1	0.2699(9)	0.1294(2)	0.2757(5)	0.0328(14)	
C7	1	0.0756(9)	0.1481(2)	0.3091(5)	$0.0321\ (14)$	
C8	1	0.0414(9)	0.1387(2)	0.4153(5)	0.0271(13)	
C9	1	0.2200(8)	$0.10994\ (19)$	0.4881(4)	0.0219(12)	
O10	1	0.7403(6)	$0.04504\ (15)$	0.5343(3)	0.0315(10)	
C11	1	0.1456(8)	0.1058(2)	0.6834(4)	0.0244 (13)	
N12	1	0.0663(7)	$0.16010\ (19)$	0.6844(4)	0.0327(12)	
C13	1	-0.1297(10)	0.1751(3)	0.7294(6)	0.0523 (18)	
C14	1	$0.1813\ (11)$	0.2119(2)	0.6475(6)	0.0447 (17)	
N15	1	0.1193(7)	0.06379(18)	0.7556(4)	0.0282(11)	
C16	1	0.1229(9)	-0.0001(2)	0.7291(4)	0.0302(13)	
C17	1	0.2786 (10)	-0.0314(3)	0.8245(5)	0.0411 (16)	
O18	1	0.2159(6)	-0.0212(2)	0.9299(3)	0.0466 (12)	
C19	1	0.2307 (10)	0.0406(3)	0.9557(5)	0.0449 (16)	
C20	1	0.0726(9)	0.0759(2)	0.8688(4)	0.0338(14)	
P31A	0.67	0.5454(5)	0.21756 (18)	0.9486(3)	0.0360(8)	
F32A	0.67	0.8061(9)	0.2055(2)	0.9883(5)	0.0447(14)	
F33A	0.67	0.5377 (16)	0.1552(7)	0.8792(10)	0.029(2)	
F34A	0.67	0.5868(9)	0.2502(2)	0.8375(5)	$0.0470 \ (14)$	
F35A	0.67	0.2816 (14)	0.2297(4)	0.9103(7)	0.047(2)	
F36A	0.67	$0.5003\ (10)$	0.1859(2)	1.0592(6)	0.0475 (15)	
F37A	0.67	0.5736(9)	$0.28012\ (19)$	1.0141(4)	$0.0484\ (14)$	
P31B	0.33	0.5704(8)	0.1862(3)	0.9923~(6)	$0.0242\ (11)$	
F36B	0.33	0.4696 (15)	0.1319(4)	1.0483(7)	0.033(2)	
F32B	0.33	0.8133(14)	0.1587(4)	1.0239(8)	0.035(2)	
F37B	0.33	0.6170 (17)	0.2199(4)	1.1105(8)	0.037(2)	
F34B	0.33	0.665(2)	0.2425(5)	$0.9330\ (11)$	0.050(3)	
F35B	0.33	0.329(2)	0.2135(7)	$0.9550 \ (14)$	0.040(4)	
F33B	0.33	0.479(5)	$0.1547\ (15)$	0.875(2)	0.029(2)	

Table 2. Anisotropic displacement parameters (Ų) $U_{22} \qquad U_{33} \qquad U_{12} \qquad U_{13} \qquad \qquad U_{23}$

 U_{11}

PREVIE	W					4
	0.000 (0)	0.004 (0)	0.040 (0)	0.0000 (4.0)	0.0010 (10)	0.0000 (10)
N1	0.022 (3)	0.034 (2)	0.010 (2)	-0.0003 (18)	-0.0040 (19)	0.0006 (18)
N2	0.025 (3)	0.045 (3)	0.011 (3)	0.001 (2)	-0.004(2)	-0.001(2)
N3	0.019 (3)	0.033 (2)	0.011 (3)	-0.0004(19)	-0.0061 (19)	
C4	0.027(3)	0.021 (2)	0.010(3)	-0.001(2)	-0.006(2)	0.003 (2)
N5	0.037(3)	0.030(2)	0.017(3)	-0.004(2)	0.000(2)	0.0034 (19)
C6	0.044(4)	0.037(3)	0.015(3)	-0.001(3)	-0.002(3)	0.008(2)
C7	0.031(3)	0.036(3)	0.024(3)	0.004(2)	-0.008(3)	0.018(2)
C8	0.026(3)	0.031(3)	0.022(3)	0.003(2)	-0.001(2)	0.009(2)
C9	0.026(3)	0.021(2)	0.015(3)	-0.002(2)	-0.006(2)	0.001(2)
O10	0.026(2)	0.046(2)	0.020(2)	0.0049(17)	-0.0008(17)	$0.0051\ (17)$
C11	0.021(3)	0.038(3)	0.009(3)	-0.008(2)	-0.007(2)	0.000(2)
N12	0.038(3)	0.039(3)	0.021(3)	-0.003(2)	0.005(2)	-0.004(2)
C13	0.053(4)	0.064(4)	0.045(4)	0.018(3)	0.022(3)	0.011(3)
C14	0.065(5)	0.034(3)	0.040(4)	-0.009(3)	0.022(3)	-0.011(3)
N15	0.028(3)	0.042(2)	0.011(2)	-0.006(2)	-0.0046 (19)	0.000(2)
C16	0.034(3)	0.037(3)	0.016(3)	-0.004(2)	-0.006(2)	0.005(2)
C17	0.038(4)	0.061(4)	0.021(4)	0.006(3)	-0.001(3)	0.020(3)
O18	0.037(3)	0.082(3)	0.018(2)	0.009(2)	-0.0003(19)	0.020(2)
C19	0.032(4)	0.080(5)	0.017(3)	-0.002(3)	-0.008(3)	0.006(3)
C20	0.028(3)	0.055(3)	0.016(3)	-0.008(3)	-0.002(2)	0.000(3)
P31A	0.051(2)	0.0350(17)	0.0236(17)	-0.0011(15)	0.0123(14)	-0.0039(14)
F32A	0.045(4)	0.052(3)	0.038(3)	-0.005(3)	0.013(3)	-0.014(3)
F33A	0.017(7)	0.0403(17)	0.028(2)	-0.003(4)	0.001(4)	-0.0025(15)
F34A	0.078(4)	0.040(3)	0.027(3)	0.008(3)	0.023(3)	0.009(2)
F35A	0.045(5)	0.052(4)	0.041(6)	0.018(3)	0.008(4)	-0.006(4)
F36A	0.054(4)	0.063(4)	0.030(4)	0.009(3)	0.018(3)	0.013(3)
F37A	0.070(4)	0.042(3)	0.035(3)	0.002(2)	0.016(3)	-0.013(2)
P31B	0.027(3)	0.025(3)	0.019(3)	-0.007(2)	0.000(2)	-0.005(3)
F36B	0.046 (6)	0.037(5)	0.014(5)	-0.013(4)	0.001 (4)	-0.001(4)
F32B	0.036(6)	0.045 (6)	0.022(6)	0.001 (4)	-0.003(4)	-0.005(4)
F37B	0.041 (6)	0.035 (5)	0.030 (6)	0.000 (5)	-0.007(5)	-0.018(5)
F34B	0.066 (9)	0.039 (6)	0.041 (9)	-0.021(7)	0.002 (7)	0.020 (6)
F35B	0.019 (8)	0.047 (9)	0.044 (11)	0.011 (6)	-0.015 (7)	-0.009(7)
F33B	0.017 (7)	0.0403 (17)	0.028 (2)	-0.003(4)	0.001 (4)	-0.0025(15)
	(-)	(3.)	(-)	(-)	(-)	()

PREVIEW		5	
	Table 3. Selected geom	etric parameters $(\mathring{A},{}^{\circ})$	
N1—N2	1.381 (6)	N15—C16	1.482(7)
N1—C9	1.385(6)	N15— $C20$	1.483(7)
N1—C11	1.390(6)	C16— $C17$	1.511(7)
N2—N3	1.306(6)	C16— $H16A$	0.99
N3—O10	1.261(5)	C16— $H16B$	0.99
N3—C4	1.418(6)	C17—O18	1.425(7)
C4— $N5$	1.329(6)	C17— $H17A$	0.99
C4—C9	1.372(7)	C17—H17B	0.99
N5—C6	1.344(7)	O18—C19	1.431(7)
C6—C7	1.402(8)	C19-C20	1.502(8)
C6—H6	0.95	C19— $H19A$	0.99
C7—C8	1.361(7)	C19— $H19B$	0.99
C7—H7	0.95	C20— $H20A$	0.99
C8—C9	1.413(7)	C20— $H20B$	0.99
C8—H8	0.95	P31A—F36A	1.593(6)
O10-H10	0.84	P31A—F32A	1.595(6)
C11—N12	1.321(7)	P31A—F34A	1.600(6)
C11—N15	1.324(6)	P31A—F35A	1.612(8)
N12—C13	1.460(7)	P31A—F37A	1.613(5)
N12— $C14$	1.484(7)	P31A—F33A	1.637(12)
C13—H13A	0.98	P31B—F35B	1.581 (13)
C13—H13B	0.98	P31B—F33B	1.59(2)
C13— $H13C$	0.98	P31B—F32B	1.587(10)
C14— $H14A$	0.98	P31B—F36B	1.588(10)
C14—H14B	0.98	P31B—F37B	1.593 (10)
C14—H14C N2—N1—C9	0.98 110.4 (4)	P31B—F34B C7—C6—H6	$\begin{array}{c} 1.628 \ (11) \\ 117.7 \end{array}$
N2—N1—C11	120.3(4)	C8-C7-C6	122.2(5)
C9—N1—C11	128.5(4)	C8-C7-H7	118.9
N3—N2—N1	106.1 (4)	C6— $C7$ — $H7$	118.9
O10—N3—N2	122.4(4)	C7—C8—C9	114.1 (5)
O10—N3—C4	126.3(4)	C7—C8—H8	123
N2N3C4	111.3(4)	C9—C8—H8	123
N5— $C4$ — $C9$	128.9(5)	C4—C9—N1	106.2(4)
N5C4N3	125.1(4)	C4— $C9$ — $C8$	118.7(5)
C9—C4—N3	106.0 (4)	N1—C9—C8	135.1 (5)
C4N5C6	111.4 (4)	N3—O10—H10	109.5
N5—C6—C7	124.7(5)	N12—C11—N15	124.4(5)
N5—C6—H6	117.7	N12—C11—N1	117.2 (4)

N15—C11—N1	118.4(4)	${ m H19AC19H19B}$	108
C11—N12—C13	123.6(5)	N15— $C20$ — $C19$	109.1(5)
C11—N12—C14	122.1(5)	N15— $C20$ — $H20A$	109.9
C13—N12—C14	114.1 (5)	C19-C20-H20A	109.9
N12—C13—H13A	109.5	N15— $C20$ — $H20B$	109.9
N12—C13—H13B	109.5	C19-C20-H20B	109.9
H13A—C13—H13B	109.5	H20A-C20-H20B	108.3
N12—C13—H13C	109.5	F36A—P31A—F32A	90.5(4)
H13A—C13—H13C	109.5	F36A—P31A—F34A	178.9(4)
H13B—C13—H13C	109.5	F32A—P31A—F34A	90.4(4)
N12-C14-H14A	109.5	F36A—P31A—F35A	88.7 (4)
N12-C14-H14B	109.5	F32A—P31A—F35A	179.2(5)
H14A—C14—H14B	109.5	F34A—P31A—F35A	90.3(4)
$\rm N12C14H14C$	109.5	F36A—P31A—F37A	90.1(3)
${ m H}14{ m A}{ m -C}14{ m -H}14{ m C}$	109.5	F32A—P31A—F37A	90.3 (3)
$\rm H14B{}C14{}H14C$	109.5	F34A—P31A—F37A	89.3(4)
C11-N15-C16	123.3(4)	F35A—P31A—F37A	89.4 (4)
C11-N15-C20	123.4(4)	F36A—P31A—F33A	93.0(7)
C16N15C20	113.3 (4)	F32A—P31A—F33A	85.8 (4)
N15—C16—C17	109.1(4)	F34A—P31A—F33A	87.7 (6)
$\rm N15C16H16A$	109.9	F35A—P31A—F33A	94.6(5)
C17— $C16$ — $H16A$	109.9	F37A—P31A—F33A	175.0(5)
N15— $C16$ — $H16B$	109.9	F35B—P31B—F33B	77.7(12)
C17—C16—H16B	109.9	F35B—P31B—F32B	177.4(9)
$\mathrm{H}16\mathrm{A}$ — $\mathrm{C}16$ — $\mathrm{H}16\mathrm{B}$	108.3	F33B—P31B—F32B	100.2 (12)
O18—C17—C16	111.2(5)	F35B—P31B—F36B	89.9 (7)
O18—C17—H17A	109.4	F33B—P31B—F36B	86.6 (13)
C16-C17-H17A	109.4	F32B—P31B—F36B	91.4(6)
O18—C17—H17B	109.4	F35B—P31B—F37B	92.9(8)
C16-C17-H17B	109.4	F33B—P31B—F37B	170.0 (12)
${ m H17AC17H17B}$	108	F32B—P31B—F37B	89.3(5)
C17—O18—C19	109.7(4)	F36B—P31B—F37B	90.0 (7)
O18— $C19$ — $C20$	111.4(5)	F35B—P31B—F34B	88.2 (8)
O18—C19—H19A	109.4	F33B—P31B—F34B	92.6 (14)
C20-C19-H19A	109.4	F32B—P31B—F34B	90.4(6)
O18—C19—H19B	109.4	F36B—P31B—F34B	178.1(7)
C20-C19-H19B	109.4	F37B—P31B—F34B	90.5(6)

C9—N1—N2—N3	-1.2(5)	C7—C8—C9—N1	178.5 (5)
C11—N1—N2—N3	-172.1(4)	N2—N1—C11—N12	129.7 (5)
N1—N2—N3—O10	179.7 (4)	C9—N1—C11—N12	-39.4(7)
N1—N2—N3—C4	1.2(5)	N2—N1—C11—N15	-50.6(6)
O10-N3-C4-N5	-0.5(7)	C9—N1—C11—N15	140.4(5)
N2—N3—C4—N5	177.9(4)	N15— $C11$ — $N12$ — $C13$	-26.5 (8)
O10—N3—C4—C9	-179.1(4)	N1—C11—N12—C13	153.3(5)
N2N3C4C9	-0.7(5)	N15C11N12C14	148.6 (5)
C9C4N5C6	-0.8(7)	N1—C11—N12—C14	-31.6 (7)
N3—C4—N5—C6	-179.1(4)	N12-C11-N15-C16	154.0(5)
C4N5C6C7	0.4(7)	N1—C11—N15—C16	-25.7(7)
N5— $C6$ — $C7$ — $C8$	-0.9(8)	N12-C11-N15-C20	-22.9 (8)
C6—C7—C8—C9	1.4(7)	N1-C11-N15-C20	157.3(4)
N5C4C9N1	-178.6~(5)	C11—N15—C16—C17	130.8(5)
N3—C4—C9—N1	-0.1(5)	C20-N15-C16-C17	-52.0(6)
N5—C4—C9—C8	1.5(7)	N15— $C16$ — $C17$ — $O18$	56.3 (6)
N3—C4—C9—C8	-180.0(4)	C16—C17—O18—C19	-62.1~(6)
N2N1C9C4	0.8(5)	C17-C18-C19-C20	62.4(6)
C11-N1-C9-C4	170.7(4)	C11— $N15$ — $C20$ — $C19$	-130.6~(5)
N2N1C9C8	-179.3~(5)	C16-N15-C20-C19	52.1(6)
C11—N1—C9—C8	-9.4(8)	${\rm O}18{\rm C}19{\rm C}20{\rm N}15$	-56.5~(6)
C7— $C8$ — $C9$ — $C4$	-1.6~(6)		

5b, X-ray Table

PREVIEW 21 Aug 2006 Louis J. Farrugia $.\ E\text{-}mail: louis@chem.gla.ac.uk$ Experimental $Crystal\ data$ $C_{13}H_{18}N_5O_2.F_6P\\$ $\lambda = 0.71073 \text{ Å}$ $M_r = 421.29$ Mo $K\alpha$ radiation $\lambda = 0.7107 \text{ Å}$ Monoclinic $P2_1/c$ Cell parameters from 4248 reflections a = 6.12000 (10) Å $\theta = 3.11\text{--}28.93^{\circ}$ b = 23.9910 (5) Å $\mu = 0.249 \text{ mm}^{-1}$ c = 11.7260 (3) ÅT = 100 (2) K $\beta = 103.4190 (10)^{\circ}$ Prism $V = 1674.67 (6) \text{ Å}^3$ Colourless Z = 4 $0.42\,\times\,0.14\,\times\,0.04~\mathrm{mm}$ $D_x = 1.671 \text{ Mg m}^{-3}$ Crystal source: synthesis as described D_m not measured

 $Data\ collection$

BRUKER APPEX-II CCD diffractometer 3363 reflections with

Four-circle diffractometer >2sigma(I) $R_{\rm int} = 0.0438$ ω and phi scans

 $\theta_{\rm max} = 30.13^{\circ}$ Absorption correction:

multi-scan BRUKER SADABS $h = -8 \rightarrow 8$ Please give reference $k=0 \rightarrow 29$ $T_{\min} = 0.9026, T_{\max} = 0.9901$ $l=0 \rightarrow 16$

4945 measured reflections ? standard reflections every? reflections 4660 independent reflections intensity decay: ?% 1

Refinement

Refinement on ${\cal F}^2$

R(F) = 0.0412

 $wR(F^2) = 0.0978$

S = 1.065

4945 reflections

247 parameters

H-atom parameters constrained w=1/[$\sigma^2(F_o^2)$ + (0.0472P)² + 0.2196P]

where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max}=0.001$

 $\Delta \rho_{\rm max} = 0.349$ e Å $^{-3}$

 $\Delta \rho_{\rm min} = -0.406$ e Å $^{-3}$

Extinction correction: SHELXL

Extinction coefficient: 0.0005 (5)

Scattering factors from International Tables

for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\mathring{A}^2)

$U_{\rm eq} = (1/3) \Sigma_i \Sigma_j U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j.$							
	x	y	z	$U_{ m eq}$			
N1	0.7273(2)	0.09800(6)	0.60240 (11)	0.0121(3)			
N2	0.9301(2)	0.07005(6)	0.62712 (12)	0.0139(3)			
N3	1.0005(2)	0.07268(6)	$0.52963\ (12)$	0.0133(3)			
C4	0.8498(2)	0.10157(7)	0.44029(14)	0.0130(3)			
C5	0.8600(3)	0.11409(7)	0.32590 (14)	0.0163(4)			
C6	0.6809(3)	0.14395(8)	0.26113(14)	0.0171(4)			
C7	0.5003(3)	0.16043(8)	0.30954 (14)	0.0167(4)			
C8	0.4917(2)	0.14787(7)	0.42301 (14)	0.0149(3)			
C9	0.6735(2)	0.11791(7)	0.48843(13)	0.0127(3)			
O10	1.18668 (18)	0.05196(5)	0.52057 (11)	0.0195(3)			
C11	0.6132(2)	0.10739(7)	0.69103 (13)	0.0113(3)			
N12	0.5357(2)	0.15831(6)	0.69835(11)	0.0119(3)			
C13	0.6497(3)	0.20863(7)	0.67022 (15)	0.0168(4)			
C14	0.3376(3)	0.16904(8)	0.74555 (15)	0.0171(4)			
N15	0.5886(2)	0.06529(6)	0.75927(11)	0.0115(3)			
C16	0.5805(3)	0.00642(7)	$0.72264\ (14)$	0.0152(3)			
C17	0.7455(3)	-0.02729(8)	0.81346 (15)	0.0165(3)			
O18	0.70399(19)	-0.02066(5)	0.92685 (10)	0.0176(3)			
C19	0.7322(3)	0.03647(7)	$0.96123\ (14)$	0.0162(4)			
C20	0.5621(3)	0.07326(7)	0.88057 (13)	0.0132(3)			
P30	1.02931(7)	0.19145(2)	0.99909(4)	$0.01580\ (11)$			
F31	$1.06681\ (18)$	0.22767(5)	1.11713(10)	0.0319(3)			
F32	0.98752(17)	0.13784(5)	1.07223(9)	0.0247(2)			
F33	1.29154(15)	0.17737(5)	1.02706(9)	0.0280(3)			
F34	$0.76599\ (16)$	0.20526(5)	$0.97114\ (10)$	0.0270(3)			
F35	1.0722(2)	0.24478(5)	0.92649 (12)	0.0425(3)			
F36	$0.98941\ (15)$	0.15416(5)	0.88218(8)	0.0229(2)			

Table 2. Anisotropic displacement parameters (\mathring{A}^2)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
N1	0.0113(5)	0.0147(8)	0.0106(6)	0.0030(5)	0.0036(5)	0.0032(5)
N2	0.0119(6)	0.0149(8)	0.0150~(6)	0.0028(5)	0.0033(5)	-0.0001(5)
N3	0.0120(6)	0.0132(8)	0.0152~(6)	0.0010(5)	0.0044(5)	-0.0010(5)
C4	0.0122(6)	0.0123(9)	0.0145(7)	-0.0015(6)	0.0032(6)	-0.0010(6)
C5	0.0170(7)	0.0189(11)	0.0150(8)	-0.0036(6)	0.0079(6)	-0.0022(6)
C6	0.0212(8)	0.0190(11)	0.0120(7)	-0.0042(7)	0.0058(6)	0.0002(6)
C7	0.0172(7)	0.0173(10)	0.0143(7)	-0.0013(6)	0.0011(6)	0.0021(6)

PREVI	${f EW}$					4
C8	0.0126 (7)	0.0171 (10)	0.0151 (7)	0.0001 (6)	0.0034 (6)	0.0008 (6)
C9	0.0138 (7)	0.0137 (10)	0.0110 (7)	-0.0021(6)	0.0036 (6)	0.0006 (6)
O10	0.0128(5)	0.0241 (8)	0.0233(6)	0.0056(5)	0.0074(5)	-0.0005(5)
C11	0.0089(6)	0.0151 (10)	0.0098 (7)	-0.0008(6)	0.0020(5)	0.0001(6)
N12	0.0125(6)	0.0114 (8)	0.0127(6)	0.0007(5)	0.0044(5)	0.0010(5)
C13	0.0205(8)	0.0110 (10)	0.0194(8)	-0.0015(6)	0.0057(6)	0.0019(7)
C14	0.0137(7)	0.0178 (10)	0.0215(8)	0.0043(6)	0.0079(6)	0.0024(7)
N15	0.0146(6)	0.0088 (8)	0.0111(6)	-0.0004(5)	0.0032(5)	0.0002(5)
C16	0.0193(8)	0.0105 (10)	0.0158(7)	-0.0017(6)	0.0038(6)	-0.0005(6)
C17	0.0183(7)	0.0123 (10)	0.0197(8)	0.0015(6)	0.0063(6)	0.0013(7)
O18	0.0210(6)	0.0138(7)	0.0190(6)	0.0008(5)	0.0067(5)	0.0042(5)
C19	0.0174(7)	0.0179 (11)	0.0134(7)	0.0016(6)	0.0037(6)	0.0034(6)
C20	0.0170(7)	0.0132(10)	0.0108(7)	0.0004(6)	0.0057(6)	0.0010(6)
P30	0.01194 (18)	0.0182(3)	0.0166(2)	-0.00174(16)	0.00211 (15)-0.00217(18)
F31	0.0260(5)	0.0313(7)	0.0343(6)	0.0011(5)	-0.0010(5)	-0.0207(5)
F32	0.0333(6)	0.0235(7)	0.0194(5)	-0.0021(5)	0.0105(4)	0.0006(4)
F33	0.0121(4)	0.0479(8)	0.0225(5)	0.0015(4)	0.0013(4)	-0.0048(5)
F34	0.0149(4)	0.0332(7)	0.0309(6)	0.0047(4)	0.0013(4)	-0.0093(5)
F35	0.0412(7)	0.0313(8)	0.0510(8)	-0.0121(6)	0.0028(6)	0.0176(6)
F36	0.0175(4)	0.0377(7)	0.0140(5)	-0.0014(4)	0.0047(4)	-0.0057(4)

PREVIEW		5	
	Table 3. Selected geometric	$tric\ parameters\ (\mathring{A},\ ^{\circ})$	
N1—N2	1.3811 (17)	C14—H14A	0.98
N1—C9	1.3850 (19)	C14— $H14B$	0.98
N1—C11	1.3982 (19)	C14—H14C	0.98
N2—N3	1.3137(18)	N15—C16	1.474(2)
N3—O10	1.2697 (16)	N15— $C20$	1.4809 (19)
N3—C4	1.407(2)	C16—C17	1.519(2)
C4—C9	1.385(2)	C16— $H16A$	0.99
C4—C5	1.390(2)	C16— $H16B$	0.99
C5—C6	1.380(2)	C17—O18	1.419(2)
C5—H5	0.95	C17— $H17A$	0.99
C6—C7	1.411(2)	C17— $H17B$	0.99
C6—H6	0.95	O18—C19	1.428(2)
C7—C8	1.377(2)	C19— $C20$	1.517(2)
C7—H7	0.95	C19— $H19A$	0.99
C8—C9	1.395(2)	C19—H19B	0.99
C8—H8	0.95	C20— $H20A$	0.99
C11—N15	1.319(2)	C20— $H20B$	0.99
C11—N12	1.320(2)	P30—F35	1.5919(13)
N12—C14	1.4677 (19)	P30—F33	1.5978(10)
N12—C13	1.469(2)	P30—F32	1.5990 (12)
C13—H13A	0.98	P30—F34	1.6028 (10)
C13—H13B	0.98	P30—F31	1.6049(12)
C13—H13C N2—N1—C9	0.98 $111.76 (12)$	P30—F36 C8—C7—C6	$\begin{array}{c} 1.6075 \ (11) \\ 122.46 \ (15) \end{array}$
N2—N1—C11	$120.11\ (12)$	C8— $C7$ — $H7$	118.8
C9—N1—C11	127.87(13)	C6—C7—H7	118.8
N3—N2—N1	104.74 (12)	C7—C8—C9	116.06 (15)
O10—N3—N2	122.42 (13)	C7—C8—H8	122
O10—N3—C4	125.19(13)	C9—C8—H8	122
N2—N3—C4	112.38 (12)	N1—C9—C4	105.22 (13)
C9—C4—C5	123.06 (15)	N1—C9—C8	133.52 (15)
C9—C4—N3	105.90 (14)	C4—C9—C8	121.26 (15)
C5—C4—N3	131.03 (14)	N15—C11—N12	125.16 (14)
C6—C5—C4	115.81 (15)	N15—C11—N1	118.33 (14)
C6—C5—H5	122.1	N12—C11—N1	$116.51\ (14)$
C4—C5—H5	122.1	C11—N12—C14	121.82 (14)
C5— $C6$ — $C7$	$121.34\ (15)$	C11—N12—C13	$123.31\ (13)$
C5— $C6$ — $H6$	119.3	C14—N12—C13	$114.66 \ (13)$
C7—C6—H6	119.3	N12—C13—H13A	109.5

PREVIEW			6
N12—C13—H13B	109.5	O18-C19-C20	111.22 (13)
H13A—C13—H13B	109.5	O18-C19-H19A	109.4
N12—C13—H13C	109.5	C20-C19-H19A	109.4
H13A—C13—H13C	109.5	O18—C19—H19B	109.4
H13B—C13—H13C	109.5	C20-C19-H19B	109.4
N12—C14—H14A	109.5	H19A—C19—H19B	108
N12—C14—H14B	109.5	N15—C20—C19	108.14 (13)
H14A—C14—H14B	109.5	$\rm N15C20H20A$	110.1
N12— $C14$ — $H14C$	109.5	C19-C20-H20A	110.1
$\rm H14A -\!$	109.5	N15— $C20$ — $H20B$	110.1
${ m H}14{ m B}{ m \leftarrow}{ m C}14{ m \leftarrow}{ m H}14{ m C}$	109.5	C19-C20-H20B	110.1
C11—N15—C16	123.92 (13)	$\rm H20A-\!$	108.4
C11— $N15$ — $C20$	122.50 (14)	F35—P30—F33	89.84 (7)
C16N15C20	113.58 (13)	F35—P30—F32	179.72(7)
N15— $C16$ — $C17$	109.52 (13)	F33—P30—F32	89.88 (6)
$\rm N15C16H16A$	109.8	F35—P30—F34	90.42(7)
C17-C16-H16A	109.8	F33—P30—F34	179.72(7)
N15— $C16$ — $H16B$	109.8	F32—P30—F34	89.86 (6)
C17-C16-H16B	109.8	F35—P30—F31	91.02(7)
H16A—C16—H16B	108.2	F33—P30—F31	90.09 (6)
O18—C17—C16	111.27 (13)	F32—P30—F31	88.94 (6)
O18—C17—H17A	109.4	F34—P30—F31	90.01 (6)
C16C17H17A	109.4	F35—P30—F36	90.14 (7)
O18—C17—H17B	109.4	F33—P30—F36	90.22(6)
C16—C17—H17B	109.4	F32—P30—F36	89.90 (6)
H17A—C17—H17B	108	F34—P30—F36	89.67 (6)
C17—O18—C19	109.62(13)	F31—P30—F36	178.80 (7)

PREVIEW			7
C9—N1—N2—N3	-0.01 (17)	C7—C8—C9—C4	-0.7(2)
C11—N1—N2—N3	-174.54 (14)	N2—N1—C11—N15	-47.6(2)
N1—N2—N3—O10	178.63 (14)	C9—N1—C11—N15	138.86 (16)
N1-N2-N3-C4	-0.12(17)	N2—N1—C11—N12	$133.26\ (15)$
O10—N3—C4—C9	$-178.51\ (15)$	C9—N1—C11—N12	-40.3(2)
$N2-\!\!-\!N3-\!\!-\!C4-\!\!-\!C9$	0.20 (19)	$N15 -\!\!-\!\!C11 -\!\!-\!\!N12 -\!\!-\!\!C14$	-27.0(2)
O10N3C4C5	0.7(3)	N1-C11-N12-C14	152.08(14)
N2N3C4C5	179.42(17)	N15C11N12C13	147.49(15)
$C9-\!\!\!\!\!-C4-\!\!\!\!\!-C5-\!\!\!\!\!-C6$	-0.4(3)	N1—C11—N12—C13	-33.4(2)
$N3-\!\!\!-\!\!C4-\!\!\!-\!\!C5-\!\!\!-\!\!C6$	$-179.52\ (17)$	$N12-\!\!-\!C11-\!\!-\!N15-\!\!-\!C16$	151.47(15)
$\mathrm{C4}\mathrm{C5}\mathrm{C6}\mathrm{C7}$	0.1(3)	N1—C11—N15—C16	-27.6(2)
C5— $C6$ — $C7$ — $C8$	0.0(3)	N12C11N15C20	-27.4(2)
C6— $C7$ — $C8$ — $C9$	0.3(3)	N1— $C11$ — $N15$ — $C20$	153.55 (13)
N2N1C9C4	0.13(18)	C11N15C16C17	$129.33\ (15)$
C11-N1-C9-C4	$174.13\ (15)$	C20N15C16C17	-51.73 (17)
N2N1C9C8	179.85 (18)	N15-C16-C17-O18	55.26 (18)
C11—N1—C9—C8	-6.1(3)	C16-C17-O18-C19	-61.57 (16)
C5—C4—C9—N1	-179.49 (15)	C17— $O18$ — $C19$ — $C20$	$63.31\ (16)$
N3— $C4$ — $C9$ — $N1$	-0.19(18)	${\rm C11}\!\!-\!\!{\rm N15}\!\!-\!\!{\rm C20}\!\!-\!\!{\rm C19}$	$-128.42\ (15)$
$C5-\!\!-\!C4-\!\!-\!C9-\!\!-\!C8$	0.7(3)	C16N15C20C19	$52.62\ (16)$
N3C4C9C8	-179.95 (15)	O18—C19—C20—N15	-57.59 (16)
C7— $C8$ — $C9$ — $N1$	179.65 (18)		