Supporting information to "Simplified speciation and improved phosphodiesterolytic activity of hydroxo complexes of trivalent lanthanides in aqueous DMSO" by Irma Sánchez-Lombardo and Anatoly K. Yatsimirsky

Table 1S. Results of potentiometric titrations of lanthanides in 80% vol DMSO. The mean values of $\log\beta_{pq}$ are given with standard errors calculated by averaging of β values obtained in independent titration experiments. Errors in $\log\beta_{pq}$ values as fitting parameters in each titration experiment were less than ±0.05.

$log\beta_{pq}$ sigma^{*a*} $[La(ClO_4)_3], mM$ 2-1 1-1 1-3 0.5 3.07 -8.59 -28.48-5.48 1.0 3.58 -5.68 -8.74 -28.61 1.5 4.0 -5.80 -8.44 -28.03 -8.59±0.09 -28.4 ± 0.2 -5.65±0.09 mean for an alternative model with binuclear species: sigma^{*a*} $[La(ClO_4)_3], mM$ 2-1 2-2 2-6 5.05 0.5 -5.11 -13.61 -54.02 1.0 -5.38 -14.15 -53.76 7.3 1.5 -5.4 -13.78 -52.36 6.49 -5.30±0.09 -13.8 ± 0.2 -53.4±0.5 mean sigma^{*a*} 2-1 1-3 $[Eu(ClO_4)_3], mM$ 1-1 _ b 0.60 0.5 -8.13 -24.55 1.0 1.39 -5.10 -8.28 -25.83 1.5 4.02 -5.00 -8.2 -24.642.0 2.62 -4.63 -8.22 -25.21 -4.9±0.1 -8.21±0.03 -25.1±0.3 mean for alternative model with binuclear species: 2-2 2-6 $[Eu(ClO_4)_3], mM$ sigma 2-1 5.08 -45.99 0.5 -10.69 1.0 -48.56 2.44 -13.12 1.5 2.82 -12.39-46.15

3.34

2.0

mean

Titrations in the presence of 0.01 M NaClO₄

Titrations in the absence of added NaClO₄

-12.94

 -12.3 ± 0.6

-47.77

-47.1±0.6

[La(ClO ₄) ₃], mM	sigma ^a	2-1	1-1	1-2	1-3
0.5	5.0	-5.70	-8.87	-19.20	-29.66
1.0	6.65	-5.4	-8.97	-19.02	-29.42
1.5	14.9	-6.04	-9.39	-19.33	-29.58

-6.31

mean		-5.7±0.2	-9.1±0.1	-19.18±0.09	-29.55±0.07
[Nd(ClO ₄) ₃], mM	sigma ^{<i>a</i>}	2-1	1-1	1-2	1-3
0.5	10.15	_ b	-8.05	-17.31	-26.19
0.8	6.45	-5.20	-8.80	-18.90	-27.80
1.0	8.11	-5.82	-8.22	_ ^b	-27.55
1.0	3.47	-5.55	-8.34	-17.69	-27.65
1.5	12	-5.23	-8.54	-17.80	-27.56
mean		-5.5±0.1	-8.5±0.1	-17.9±0.3	-27.64±0.06 °
[Eu(ClO ₄) ₃], mM	sigma ^{<i>a</i>}	1-1	1-2	1-3	
1.0	3.32	-7.60	-16.13	-24.60	
1.0	12.38	-7.70	-15.69	-24.46	
1.2	9.00	-7.90	-16.2	-24.22	
2.0	3.39	-7.36	-15.12	-23.62	
mean		-7.6±0.1	-15.8±0.2	-24.2 ± 0.2	

^{*a*} Goodness of fit is measured in Hyperquad by *sigma*, the value of the scaled sum of squares, which is given in the table together with $\log\beta_{Pq}$ values for each titration. When *sigma* is close to 1 it can be said that the data has been fitted within experimental error. However, even with large *sigma* values the fitting quality may be still acceptable. Thus with *sigma* equal e.g. 20 the program typically calculates the fitting parameters with errors less then 0.05 in the logarithmic scale (the relative error ±10%). In addition the *sigma* value depends on weighting scheme, which in Hyperquad is automatic and ignores any systematic errors. It seems therefore difficult to assign a definite meaning to the absolute value of *sigma*, but this parameter is certainly appropriate for comparison of fitting qualities to different models.

^{*b*} Hyperquad assigned "excessive" or "negative" value to respective β , which was ignored in the calculation of the mean value.

^{*c*} The value -26.19 excluded.

Species	$\log eta_{pq}$						
	[NaClO ₄]=0			[NaC	[NaClO ₄]=10 mM		
	La(III)	Nd(III)	Eu(III)	La(III)	Eu(III)		
Ln ₂ (OH) ⁵⁺	-5.85±0.11	-5.26±0.12		-5.76±0.12	-4.76±0.08		
Ln(OH) ²⁺	-9.36±0.07	-8.43±0.04	-7.76±0.03	-8.55±0.03	-7.83±0.02		
$Ln(OH)_2^+$	-19.22±0.06	-17.83±0.08	-16.07±0.02				
Ln(OH) ₃	-29.56±0.03	-28.3±0.2	-24.80±0.02	-28.21±0.03	-24.7±0.02		
sigma	20.86	13.8	25.0	11.91	18.4		

Table 2S. Mean values of hydrolysis constants of trivalent lanthanides in 80% vol. DMSO at 25°C obtained by joint fitting of all titration plots for each cation and respective sigma values calculated by Hyperquad.

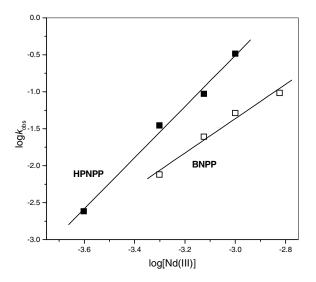


Fig. S1. Observed first-order rate constants for the hydrolysis of BNPP (open squares) and HPNPP (solid squares) by Nd(ClO₄)₃ at variable concentrations of Nd(ClO₄)₃ and Me₄NOH taken at the constant ratio [La(III)]:[OH⁻]=1:2 in 80% vol. DMSO at 25°C.

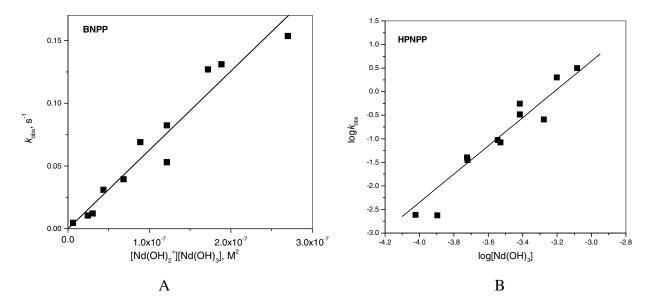


Fig. S2. Observed first-order rate constants for the hydrolysis of BNPP (A) and HPNPP (B) by Nd(ClO₄)₃ in 80% vol. DMSO at 25°C as a function of calculated concentrations of Nd(OH)₂⁺ and Nd(OH)₃ in accordance with kinetic equations (6) and (7) respectively. The slope of the line in (A) equals k_3 and the slope of the line in (B) equals 3.

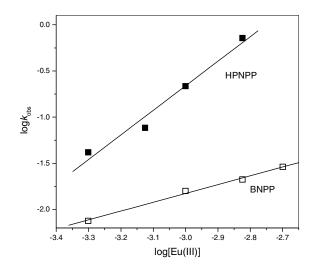


Fig. S3. Observed first-order rate constants for the hydrolysis of BNPP (open squares) and HPNPP (solid squares) by $Eu(ClO_4)_3$ at variable concentrations of $Eu(ClO_4)_3$ and Me_4NOH taken at the constant ratio $[Eu(III)]:[OH^-]=1:2$ in 80% vol. DMSO at 25°C.

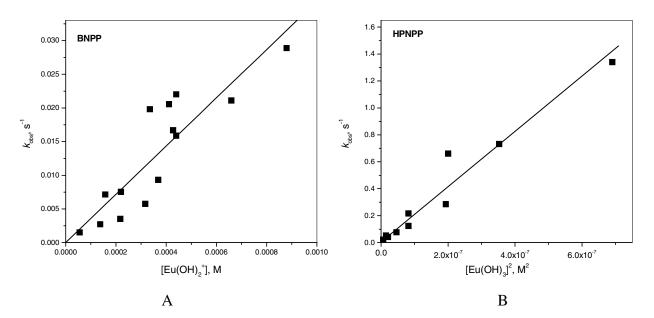


Fig. S4. Observed first-order rate constants for the hydrolysis of BNPP (A) and HPNPP (B) by $Eu(ClO_4)_3$ in 80% vol. DMSO at 25°C as a function of calculated concentrations of $Eu(OH)_2^+$ and $[Eu(OH)_3]^2$ respectively. The slope of the line in (A) approximately equals k_2 (see equation (8)) and the slope of the line in (B) equals k_3 (see equation (9)).