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Figure S.1 The magnetic orbitals in the ?B; (e*b,") and °E (e%b,?) states of [Fe(CN)s]* (top),
and of the A; (d2) ground state of [Cu(NH3)sNC]** (bottom) from broken symmetry DFT

calculations using a BILYP functional.

Full Derivation of the Hamiltonian of the Fe''-CN-Cu" Pair

The matrix of exchange Hamiltonian — Jijéiéj , with i and j denoting the magnetic orbitals on

center 1 and 2, within the spin only basis aio, Bioy, ciffj and Bif; is given by:

aio  Pioy aifi BB
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0 =23 4% 0
0 0 0 —%Jij

The operator I—]SO = glilél of the spin-orbit coupling interaction of [Fe(CN)s]* is represented
within the tyg (&,m,8)a and (&,m,8)P spin-orbital basis as follows (the spin-orbit coupling constant

¢ is defined as positive for Fe'""):
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Combining egs S1, S2 with the Jahn-Teller Hamiltonian (eq.3), we arrive at the total Hamiltonian
(S.3), represented by the product of the spin-orbit basis of Fe'"
o’ B’

[Em.Qau; (Em.O)B] o’ and [(Em.C)aa ;s (En.C)Ba] B

and the spin-only basis of Cu"
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We now focus on the particular case of a Fe'"'-CN-Cu" pair of C,, symmetry with no Jahn-Teller
distortions on [Fe(CN)g]*. We make use of the eigenfunctions of Hso in the form given in
reference % of the manuscript. E”(a”,$) and U’(u,v,k,1), defined by the column vectors c(i)

(i=a”, B, v, K, A), lead to the following matrix, which transforms Hso (€q.S.2) into this basis:

[e(a”) c(B”) o) cov) c(x) c(M)]=

i i i
0 5 5 0 g 0
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_T-| VB V3 . (S.4)
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The transformed matrix T’HsoT is diagonal with eigenvalues -C[E”(a”,”)] and C/2[U’ (u,v,x,A)]
and with a Zeeman Hamiltonian in the z direction [i.e. I—AIZz = g (s, +kl,)B,], given by (S.5) and

with an effective My’ value of each of the components of E”(a”,$”) and U’(u,v,x,A) as

indicated.
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The Fe"' [E”(a”,B7), Ms'=£1/2, U’ (1, v,k,1); Ms'=%3/2, £1/2, ] - Cu" [o’,f”(Ms=%1/2)] pair states,
can then easily be classified according to the total Ms=M’+m; value. Using eq.S.4, H can be
reduced to a block diagonal form, and utilizing the C4, Symmetry, we arrive at the symmetry-
adapted functions of the Fe-Cu pair states and the corresponding energy expressions:
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As follows from (S.8) and (S.9), there is configuration mixing between the pair of states of

lowest energy B,(E"), B,(E") and B,(U'), B,(U'"). Using perturbation theory we obtain



eq.S.10-S.11 for the second order energy change, where exchange terms in the denominator have

been neglected. With the values of J(°E) =19, J(°B,)=1.6
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and ¢ =345 (all in cm™) we obtain AE[B,(E")]=-0.008 cm™ and AE[B,(E")]=-0.106 cm™, that

is negligible influence on the ground state spin levels from the Fe"'(U”) - Cu" excited spin states.

The energies of the lowest four spin states, which arise from Fe"'(E”)- Cu" exchange coupling,

are given by (as derived in reference *° in the manuscript and the Supporting Information *):
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with &J (°E) to account for the possible decrease of symmetry Cq—>Coy:
J..—J
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The parameters J, D and E in the spin Hamiltonian ﬁsph (S.15, i.e. a simplified form of eq.4) are

derived by comparing S.12 with the representation of ﬁsph using the basis o’a’
praa'p L pp

H (S.15)
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These can be derived, using the direct products si®s; (i,j=X,y,z) of the spinmatrices for s=1/2
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From (S.21) and (S.22) result the expressions of J and D (eq.14).

Is it always possible to derive the parameters of the spin Hamiltonian from first principle
calculations? There is a configuration mixing between the spin multiplets due to the E”-Cu" and
the multiplets due to the U’-Cu" interaction via exchange coupling terms. In the discussed
example, {>> J (ZE), J(°B,) and the parameters J,D and E (S.21-S.23) can be uniquely
determined. However, starting from Fe'""'-CN-Cu'" with a C,, geometry and octahedral
[Fe(CN)g]*, and introducing a Dsg Jahn-Teller distortion U’ splits and starts to mix with E”. In
Figure S.2, we plot the electronic energy levels of [Fe(CN)s]* in dependence of the ratio V.Q./¢
[obtained by diagonalization of the Hamiltonian S.3 with J(E)=J(°B2)=0]. It follows, that the
electronic ground state is well separated from the excited states both in O and in the distorted
D34 geometries. One can understand this result if one transforms the spin-orbit coupling matrix

into the trigonal basis of eq.S.24.
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Figure S.2. Electronic levels of [Fe(CN)s]* in dependence of the vibronic coupling energy in

units of C.

In this basis, Hyr is diagonal with the energies of ?A; and °E, given by -2V.Q. and V.Q;,

respectively.
1
(p(Al)—ﬁ(ém%)
1
p(Ey) = ﬁ(é —17) (S.24)
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While ?A; is the ground state for trigonally compressed geometries, it is of °E symmetry in
elongated geometries. However the *E term spits to first order by spin-orbit coupling with an
energy difference between the ground state E’(1) and the E” lowest excited state given by C. It is
again much larger than J(°E) and J(°B,). Therefore, one can safely apply the spin-Hamitonian
(eq.4) and deduce its parameters by comparison with the eigenvalues of eq.(1) in the whole range
of Jahn-Teller-distorted geometries between Q.= -0.256 and -0.256A. In the given example
(Table 5, Q.= 0.128 A for Fe-Cu) one first diagonalizes Hso+Hr, including the Zeeman matrix
with a small magnetic field (B,=0.0001 T), providing the proper components o.” and 3 of the



11

ground state Kramers doublet E’(1) (Figure S.2). With the resulting eigenvectors, one transforms
the Hamiltonian (eq.S.3), yielding the following traceless matrix (with energies in cm™) of the

ground state spin levels:

o’a’ ﬂ"a' a"p B"B’
3.038 0.615 0.200(-1+i) —2.933(1-1i)
0.615 ~3.038  0.020(-1+i) 0.200(1-1i)
Hsph = . . (825)
0.200(-1—i) 0.020(-1—i)  —3.038 ~0.615
—2.933(1+i) 0.200(1+1i) —0.615 3.038

One can show, using simple manipulations (as described e.g. by eq.S.15-S.20), that within the
a’a’, f'a', " B and BB’ basis, the spin-Hamiltonian of eq.4 leads to the matrix
representation given by eq. S.26. From the comparison of S.25 and S.26 the spin-Hamiltonian
parameters of Fe-Cu from Table 5 has been obtained (entry for Q.= 0.128 A).

Finally, within the spin-only basis and without distortions on [Fe(CN)e]*, the Zeeman operator

A

H,, is represented by the matrices given in eq.S.27-S.29, showing directly the coupling of the

local g-tensors of Fe'"' and Cu'".
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The Hamiltonian and the z component of the Zeeman matrix for the Fe''-CN-Ni" Pair

Applying consistently the same procedure as for the Fe'"'-Cu" pair, we have derived the matrix of
the Hamiltonian (eq.1) which results from the spin coupling between [Fe(CN)s]* and the S=1
(Ms=%1,0) ground state of Ni" for a binuclear unit with C4, symmetry. Restricting to the
manifold of the six spin states pertaining to the coupling of the [Fe(CN)s]* in its ground state E”
and the S=1 state of Ni" , we list the energy matrix in eq. S.30 and the z component of the
Zeeman matrix in eq.31. Exchange coupling parameters have already been specified for the Fe'"'-
Cu" pair, Dy is the zero-field splitting parameter of Ni''. We notice, that in the ground (excited)
E”(1) [E”(2)] spin states Dy; is added (subtracted) from the diagonal energy term, thus leading to
an increase (decrease) of the spin energy gap for negative (positive) values of Dy;. Taking the
difference between the diagonal matrix elements, i.e. E(a.”,0; B”,0)-E(a.”,-1; B”,1) €q.18 is
derived.

As in the case of the Fe""'-Cu'" pair, spin Hamiltonian theory is applicable for the Fe'"-Ni" spin-
cluster of a general Cs symmetry, and the parameters of eq.4 can be derived from a comparison
between the (traceless) 6x6 energy matrix (eq.S.32, Q.= 0.128 A ) and the spin Hamiltonian,

written in the parametric form of eq.S.33. Numerical values are listed in Table 5.
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Finally g-tensor values of the Fe'"'-Cu'" and Fe""'-Ni" with bistable ground states listed in Table 9

have been calculated using a well documented procedure (reference ® of the manuscript).
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Dynamic Jahn-Teller Coupling
Since the Fe'"-CN bond is stronger than the Cu"-NC and Ni"-NC bonds, we can restrict vibronic

coupling to the [Fe(CN)]* unit and consider only the 124 mode for its vibronic levels. One can

readily extend eq.1 with the nuclear kinetic and potential energy operators (eq.S.34); hw, is the

energy of the three-dimensional harmonic oscillator

~

1 ny A, oA . : :
Hvib = Eha)r(P(fz + P772 + Pé’z +Q§2 +Q772 +Q4’2) (834)

(93 cm for [Fe(CN)s]* 2); P. and Q; are dimensionless operators related to the observables for

momentum and position and given by eq.S.35. The vibronic eigenfunctions ¥ of the total

Isi:\//;l—a)ﬁi;Qi':\/%Qi;izg’n!é/ (S.35)

Hamiltonian H + H , are expressed as a linear combination of products of the spin-orbital basis
functions o; of H and the eigenstates of the states of I—]wb (the three-dimensional harmonic

oscillator functions y,(Q;) . (Q,) x(Q;)) up to the level ny:

L EDHHIPANFACHPACHIACH (5.36)

The total basis size N, without exploitation of the vibronic symmetries is given by eq.S.37,

(nZ +6n, +11)

Nv:nMG[nv 6

+1] (S.37)
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where ny is the spin-degeneracy of Cu" (nw=2) or Ni" (nw=3). For the moderate vibronic
coupling strength obtained in [Fe(CN)s]* good accuracy (equal or better than 2%) for the
calculated lowest 4 or 6 spin states for Fe''-Cu' and Fe""-Ni", respectively, and for the g-tensor
has been achieved with n,=6, leading to a total dimension of the vibronic matrix of 1008x1008

and 1512x1512, respectively.

AL D

Ty 7~ N~ y
(a) (b)

Fig.S.3. (a) The Fe"'-M" (M"=Cu" Ni": white, Fe"": black) pair with a linear Fe"'-CN-M" (C,,) bridge and a
regular [Fe(CN)s]> center; the arrows indicate the directions for optimal n-overlap between the singly occupied ty
(dxzy2) Orbitals of Fe" (t,5°) and the fully occupied d,,,d,, orbitals of Cu" (Ni"). (b) The Fe"'-M" (M"=Cu" Ni") pair
with a trigonally distorted [Fe(CN)s]* center and a ZAlg (d2, D3g) ground state with d,, lobes pointing towards the
body diagonals of a cube with four different (but equivalent) geometries (minima of the ground state potential
energy surface, misalignment of the singly occupied d,, orbital of [Fe(CN)s]* and the = (dx.,dy) orbitals of cu"

(Ni").
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Effect of the DFT functional on the exchange parameters J(Bz)[Fe"'(eg'b2y')-Cu"] and J(E) [Fe"(egbzy*
Cu'"] and further on the spin-levels and the magnetic anisotropy on Fe''-CN-Cu" exchange pairs without
(Cay) and with (Cs) Jahn-Teller distortions of 74 type.

Table S.1. The exchange coupling energy (J, in cm™, He=-JS:S,) for the exchange pair Fe"'-CN-Cu'(d,,) from DFT

broken spin DFT calculations with (SP) and without (SUP) spin-projection, in dependence of the adopted functional
and the electronic configuration of Fe'"', in comparison with the value deduced from magnetic data.

electronic J VWN PW91 PBE OPBE B3LYP | BI1LYP | B3LYP* Exp.
configuration 20%HF | 25%HF | 15%HF
of [Fe(CN)e]*
b,le* Jo | -452 | -67.7 |-69.2 [-1129| 64 | 1.6 -16.2 17.0°
Jsup® | -22.6 | -33.9 |-347 | 565 | -3.2 | 08 8.1 |13.8:3.9¢
b,%e* Jo* | 1146 | 95.2 | 952 1032 | 274 | 194 355 |209°¢
Jsup® | 57.3 | 476 | 476 | 516 | 137 | 9.7 17.7 50

2 Calculated with the spin-projected formula: Jsp=(Egs-Ens)/(25:S,); Essand Eys are the energies of the (T\) broken-
spin and the (T1) high-spin Slater determinants.

® Calculated with the spin-unprojected formula: Jsyp=(Egs-Ens)/(2S5:S,+S,), S»<S;y;

¢ Reported from a fit to magnetic susceptibility data of the CusFe, SMM with a dy..,» ground state of Cu % to
compare with the calculated numbers (d,, ground state of Cu'"), the experimental energy has to be multiplied by 2/v/3
(3d,2=2/N3Jd,z.y0).

¢ Reported for the two distinct Fe""'-CN-Cu" exchange coupled pairs in the Fe'",Cu''; complex

[{Cu(rac-CTH)}:{Fe(CN)¢}.].2H,0, rac-CTH=rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-
tetraazacyclotetradecane from simulations using a Heisenberg Hamiltonian.™

¢ Reported from Monte Carlo simulations of the magnetic properties of heterobimetallic chain
{[Fe"'(bpym)(CN)4], M" (H,0),}.6H,0, bpym=2,2’-bipyrimidine using an isotropic Heisenberg model.°
"reported from a fit of the isotropic J to magnetic susceptibility data on the bimetallic complex

[{Fe" (phen)(CN),}.Cu"(H,0),].4H,0 .
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Fig.S.4. Effect of the functional on the E; and —Ep parameters.

Footnote

! Matrix S.12 differs in sign compared to the one given in manuscript reference ?* (and derived in
detail the Supporting information there). This is because real spins rather than effective spins of
Fe'"" have been employed in the cited work (implying g tensors of Fe""' and Cu" which are of the
same sign). This has lead to the conventional negative D and a positive J values. Here we should
stress, this is only possible if J(°B)=0, in which case B; and B; (Figure 3) become accidentally
degenerate. In a consistent description however, one should keep to the definitions and sign
conventions of manuscript reference reference * which allows also to provide a correct symmetry

description.



