A combined ligand field and density functional theory analysis of the magnetic anisotropy in oligonuclear complexes based on $\mathrm{Fe}^{\text {III }}-\mathrm{CN}-\mathrm{M}^{\text {II }}$ exchange-coupled pairs

Mihail Atanasov, Peter Comba and Claude A. Daul

Supplementary Material

Figure S. 1 The magnetic orbitals in the ${ }^{2} \mathrm{~B}_{1}\left(\mathrm{e}^{4} \mathrm{~b}_{2}{ }^{1}\right)$ and ${ }^{2} \mathrm{E}\left(\mathrm{e}^{3} \mathrm{~b}_{2}{ }^{2}\right)$ states of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ (top), and of the ${ }^{2} \mathrm{~A}_{1}\left(\mathrm{~d}_{\mathrm{z} 2}\right)$ ground state of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{NC}\right]^{1+}$ (bottom) from broken symmetry DFT calculations using a B1LYP functional.

Full Derivation of the Hamiltonian of the $\mathrm{Fe}^{\text {III }}-\mathrm{CN}-\mathrm{Cu}^{I I}$ Pair
The matrix of exchange Hamiltonian $-J_{i j} \hat{\mathbf{j}}_{i} \hat{\mathbf{S}}_{j}$, with i and j denoting the magnetic orbitals on center 1 and 2 , within the spin only basis $\alpha_{i} \alpha_{j}, \beta_{i} \alpha_{j}, \alpha_{i} \beta_{j}$ and $\beta_{i} \beta_{j}$ is given by:

$$
\mathbf{H}_{\mathrm{exc}}(i, j)=\left[\begin{array}{cccc}
\alpha_{\mathrm{i}} \alpha_{\mathrm{j}} & \beta_{\mathrm{i}} \alpha_{\mathrm{j}} & \alpha_{\mathrm{i}} \beta_{\mathrm{j}} & \beta_{\mathrm{i}} \beta_{\mathrm{j}} \\
{\left[\begin{array}{cccc}
-\frac{1}{4} J_{i j} & 0 & 0 & 0 \\
0 & \frac{1}{4} J_{i j} & -\frac{1}{2} J_{i j} & 0 \\
0 & -\frac{1}{2} J_{i j} & \frac{1}{4} J_{i j} & 0 \\
0 & 0 & 0 & -\frac{1}{4} J_{i j}
\end{array}\right]} \tag{S.1}
\end{array}\right.
$$

The operator $\hat{H}_{S O}=\varsigma_{1} \hat{\mathbf{l}}_{1} \hat{\mathbf{s}}_{1}$ of the spin-orbit coupling interaction of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is represented within the $\mathrm{t}_{2 \mathrm{~g}}(\xi, \eta, \zeta) \alpha$ and $(\xi, \eta, \zeta) \beta$ spin-orbital basis as follows (the spin-orbit coupling constant ζ is defined as positive for $\mathrm{Fe}^{\text {IIII }}$):

$$
\begin{gather*}
\xi \alpha_{1} \\
\eta \alpha_{1} \tag{S.2}\\
\zeta \alpha_{1} \\
\mathbf{H}_{\text {so }}=\left[\begin{array}{cccccc}
0 & -\frac{i}{2} \zeta & 0 & 0 & 0 & \frac{1}{2} \zeta \\
\frac{i}{2} \zeta & 0 & 0 & 0 & 0 & -\frac{i}{2} \zeta \\
0 & 0 & 0 & -\frac{1}{2} \zeta & \frac{i}{2} \zeta & 0 \\
0 & 0 & -\frac{1}{2} \zeta & 0 & \frac{i}{2} \zeta & 0 \\
0 & 0 & -\frac{i}{2} \zeta & -\frac{i}{2} \zeta & 0 & 0 \\
\frac{1}{2} \zeta & \frac{i}{2} \zeta & 0 & 0 & 0 & 0
\end{array}\right]
\end{gather*}
$$

Combining eqs S1, S2 with the Jahn-Teller Hamiltonian (eq.3), we arrive at the total Hamiltonian (S.3), represented by the product of the spin-orbit basis of $\mathrm{Fe}^{\text {III }}$ and the spin-only basis of $\mathrm{Cu}^{\text {II }}$ $\alpha^{\prime}, \beta^{\prime}:$
$\left[(\xi, \eta, \zeta) \alpha_{1} ;(\xi, \eta, \zeta) \beta_{1}\right] \alpha^{\prime}$ and $\left[(\xi, \eta, \zeta) \alpha_{1} ;(\xi, \eta, \zeta) \beta_{1}\right] \beta^{\prime}:$

$$
\begin{aligned}
& \left(\xi, \alpha_{1}\right) \alpha^{\prime} \quad\left(\eta \alpha_{1}\right) \alpha^{\prime} \quad\left(\zeta \alpha_{1}\right) \alpha^{\prime} \quad\left(\xi, \beta_{1}\right) \alpha^{\prime} \quad\left(\eta \beta_{1}\right) \alpha^{\prime} \quad\left(\zeta \beta_{1}\right) \alpha^{\prime} \quad\left(\xi, \alpha_{1}\right) \beta^{\prime} \quad\left(\eta \alpha_{1}\right) \beta^{\prime} \quad\left(\zeta \alpha_{1}\right) \beta^{\prime} \quad\left(\xi, \beta_{1}\right) \beta^{\prime} \quad\left(\eta \beta_{1}\right) \beta^{\prime} \quad\left(\zeta \beta_{1}\right) \beta^{\prime}
\end{aligned}
$$

We now focus on the particular case of a $\mathrm{Fe}^{\mathrm{III}}-\mathrm{CN}-\mathrm{Cu}^{\mathrm{II}}$ pair of $\mathrm{C}_{4 \mathrm{v}}$ symmetry with no Jahn-Teller distortions on $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$. We make use of the eigenfunctions of $\mathbf{H}_{\text {so }}$ in the form given in reference ${ }^{90}$ of the manuscript. $E^{\prime \prime}\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right)$ and $U^{\prime}(\mu, \nu, \kappa, \lambda)$, defined by the column vectors $\mathbf{c}(\mathrm{i})$ ($\mathrm{i}=\alpha$ ", β ", $\mu, \nu, \kappa, \lambda$), lead to the following matrix, which transforms $\mathbf{H}_{\text {SO }}$ (eq.S.2) into this basis:

$$
\begin{align*}
& {\left[\begin{array}{llll}
\mathbf{c}\left(\alpha^{\prime \prime}\right) & \left.\mathbf{c}\left(\beta^{\prime \prime}\right) \quad \mathbf{c}(\mu) \quad \mathbf{c}(v) \quad \mathbf{c}(\kappa) \quad \mathbf{c}(\lambda)\right]=
\end{array}\right.} \\
& =\mathbf{T}=\left[\begin{array}{cccccc}
0 & \frac{i}{\sqrt{3}} & -\frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{6}} & 0 \\
0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{6}} & 0 \\
\frac{i}{\sqrt{3}} & 0 & 0 & -i \sqrt{\frac{2}{3}} & 0 & 0 \\
\frac{i}{\sqrt{3}} & 0 & 0 & \frac{i}{\sqrt{6}} & 0 & \frac{i}{\sqrt{2}} \\
-\frac{1}{\sqrt{3}} & 0 & 0 & -\frac{1}{\sqrt{6}} & 0 & \frac{1}{\sqrt{2}} \\
0 & -\frac{i}{\sqrt{3}} & 0 & 0 & -i \sqrt{\frac{2}{3}} & 0
\end{array}\right] \tag{S.4}
\end{align*}
$$

The transformed matrix $\mathbf{T}^{\prime} \mathbf{H}_{\mathbf{s o}} \mathbf{T}$ is diagonal with eigenvalues $-\zeta\left[\mathrm{E}^{\prime \prime}\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right)\right]$ and $\zeta / 2\left[U^{\prime}(\mu, v, \kappa, \lambda)\right]$ and with a Zeeman Hamiltonian in the z direction [i.e. $\hat{H}_{Z 2}=\mu_{B}\left(\mathbf{s}_{z 1}+k \mathbf{l}_{1 z}\right) B_{z}$], given by (S.5) and with an effective $M_{s}{ }^{\prime}$ value of each of the components of $E "\left(\alpha^{\prime \prime}, \beta\right.$ " $)$ and $U^{\prime}(\mu, \nu, \kappa, \lambda)$ as indicated.

$$
\begin{array}{r}
M_{\mathrm{s}}^{\prime}= \\
\mathbf{H}_{\mathrm{Z} 1}^{z}=\mu_{B} B_{z}\left[\begin{array}{cccccc}
\alpha " & \beta^{\prime} & \mu & \nu & \kappa & \lambda \\
1 / 2 & -1 / 2 & 3 / 2 & 1 / 2 & -1 / 2 & -3 / 2 \\
0 & \frac{1}{3}+\frac{2}{3} k & 0 & 0 & 0 & 0 \\
-\frac{1}{3}-\frac{2}{3} k & 0 & 0 & -\frac{\sqrt{2}}{3}(2+k) & 0 & 0 \\
0 & 0 & 1-k & 0 & 0 & 0 \\
-\frac{\sqrt{2}}{3}(2+k) & 0 & 0 & \frac{1}{3}-\frac{1}{3} k & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{3}+\frac{1}{3} k & 0 \\
0 & 0 & 0 & 0 & 0 & -1+k
\end{array}\right] \tag{S.5}
\end{array}
$$

The $\mathrm{Fe}^{\text {III }}\left[\mathrm{E}^{\prime \prime}\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right), \mathrm{M}_{\mathrm{s}}{ }^{\prime}= \pm 1 / 2, \mathrm{U}^{\prime}(\mu, \nu, \kappa, \lambda) ; \mathrm{M}_{\mathrm{s}}{ }^{\prime}= \pm 3 / 2, \pm 1 / 2,\right]-\mathrm{Cu}^{\mathrm{II}}\left[\alpha^{\prime}, \beta^{\prime}\left(\mathrm{m}_{\mathrm{s}}= \pm 1 / 2\right)\right]$ pair states, can then easily be classified according to the total $\mathrm{M}_{\mathrm{s}}=\mathrm{M}_{\mathrm{s}}{ }^{\prime} \pm \mathrm{m}_{\mathrm{s}}$ value. Using eq.S.4, \mathbf{H} can be reduced to a block diagonal form, and utilizing the $\mathrm{C}_{4 \mathrm{v}}$ symmetry, we arrive at the symmetryadapted functions of the $\mathrm{Fe}-\mathrm{Cu}$ pair states and the corresponding energy expressions:

$$
\mathrm{M}_{\mathrm{s}}= \pm 2: \mathrm{E}
$$

$$
\mathrm{U}^{\prime}
$$

$$
\begin{array}{lllll}
M_{s}= \pm 1: & E: & E^{\prime \prime} & U, & U \prime \\
& +1 & \alpha " \alpha & v \alpha & \mu \beta \\
& -1 & \beta " \beta^{\prime} & \kappa \beta & \lambda \alpha^{\prime}
\end{array}
$$

$$
\mathbf{H}(E)=\left[\begin{array}{ccc}
-\zeta+\frac{1}{6} J\left({ }^{2} E\right)-\frac{1}{12} J\left({ }^{2} B_{2}\right) & \pm \frac{1}{6 \sqrt{2}}\left[J\left({ }^{2} E\right)+J\left({ }^{2} B_{2}\right)\right] & \pm \frac{1}{\sqrt{6}} J\left({ }^{2} E\right) \tag{S.7}\\
\pm \frac{1}{6 \sqrt{2}}\left[J\left({ }^{2} E\right)+J\left({ }^{2} B_{2}\right)\right] & \frac{1}{2} \varsigma+\frac{1}{12} J\left({ }^{2} E\right)-\frac{1}{6} J\left({ }^{2} B_{2}\right) & \frac{1}{2 \sqrt{3}} J\left({ }^{2} E\right) \\
\pm \frac{1}{\sqrt{6}} J\left({ }^{2} E\right) & \frac{1}{2 \sqrt{3}} J\left({ }^{2} E\right) & \frac{1}{2} \zeta+\frac{1}{4} J\left({ }^{2} E\right)
\end{array}\right]
$$

$M_{s}=0$:

$$
\begin{array}{r}
B_{1}\left(\mathrm{E}^{\prime \prime}\right)=\frac{1}{\sqrt{2}}\left(-\beta^{\prime \prime} \alpha^{\prime}+\alpha^{\prime \prime} \beta^{\prime}\right) \\
\mathbf{H}\left(B_{1}\right)=\left[\begin{array}{cc}
-\zeta-\frac{1}{8} J\left(\mathrm{U}^{2} E\right)-\frac{1}{12} J\left({ }^{2} B_{2}\right)=\frac{1}{\sqrt{2}}\left(\kappa \alpha^{\prime}+\nu \beta^{\prime}\right) \\
\frac{1}{6 \sqrt{2}}\left[-J\left({ }^{2} E\right)+J\left({ }^{2} B_{2}\right)\right] & \frac{1}{2} \zeta-\frac{1}{12} J\left({ }^{2} E\right)-\frac{1}{6} J\left({ }^{2} B^{2}\right)
\end{array}\right] \\
\mathbf{H}\left(B_{2}\right)=\left[\begin{array}{cc}
\left.-\zeta-\frac{1}{8} J\left({ }^{2} E\right)+\frac{1}{4} J\left({ }^{2} B_{2}\right)\right] & \frac{1}{2 \sqrt{2}}\left[J\left({ }^{2} E\right)+J\left({ }^{2} B_{2}\right)\right] \\
\frac{1}{2 \sqrt{2}}\left[J\left({ }^{2} E\right)+J\left({ }^{2} B_{2}\right)\right] & \frac{1}{2} \zeta-\frac{1}{12} J\left({ }^{2} E\right)+\frac{1}{2} J\left({ }^{2} B_{2}\right)
\end{array}\right]
\end{array}
$$

As follows from (S.8) and (S.9), there is configuration mixing between the pair of states of lowest energy $B_{1}\left(E^{\prime \prime}\right), B_{2}\left(E^{\prime \prime}\right)$ and $B_{1}\left(U^{\prime}\right), B_{2}\left(U^{\prime}\right)$. Using perturbation theory we obtain

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{s}}=+2 \quad \mu, \alpha^{\prime} \\
& \mathrm{M}_{\mathrm{s}}=-2 \quad \lambda, \beta^{\prime} \\
& \mathbf{H}(E)=\frac{1}{2} \zeta-\frac{1}{4} J\left({ }^{2} E\right)
\end{aligned}
$$

eq.S.10-S. 11 for the second order energy change, where exchange terms in the denominator have been neglected. With the values of $J\left({ }^{2} E\right)=19, J\left({ }^{2} B_{2}\right)=1.6$
$\Delta E\left[B_{1}\left(\Gamma_{7}\right)\right]=-\frac{1}{108} \frac{\left[J\left({ }^{2} B_{2}\right)-J\left({ }^{2} E\right)\right]^{2}}{\zeta}$
$\Delta E\left[B_{2}\left(\Gamma_{7}\right)\right]=-\frac{1}{12} \frac{\left[J\left({ }^{2} B_{2}\right)+J\left({ }^{2} E\right)\right]^{2}}{\zeta}$
and $\zeta=345\left(\right.$ all in cm^{-1}) we obtain $\Delta E\left[\mathrm{~B}_{1}\left(\mathrm{E}^{\prime \prime}\right)\right]=-0.008 \mathrm{~cm}^{-1}$ and $\Delta E\left[\mathrm{~B}_{2}\left(\mathrm{E}^{\prime \prime}\right)\right]=-0.106 \mathrm{~cm}^{-1}$, that is negligible influence on the ground state spin levels from the $\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{U}^{\prime}\right)-\mathrm{Cu}^{\mathrm{II}}$ excited spin states.

The energies of the lowest four spin states, which arise from $\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{E}^{\prime \prime}\right)-\mathrm{Cu}^{\text {II }}$ exchange coupling, are given by (as derived in reference ${ }^{19}$ in the manuscript and the Supporting Information ${ }^{1}$):

$$
\mathbf{H}_{\mathrm{Fe}\left(\Gamma_{7}\right) C_{u}}=\left[\begin{array}{cccc}
\alpha^{\prime \prime} \alpha^{\prime} & \beta^{\prime \prime} \alpha^{\prime} & \alpha^{\prime \prime} \beta^{\prime} & \beta^{\prime \prime} \beta^{\prime} \\
\frac{1}{6} J\left({ }^{2} E\right)-\frac{1}{12} J\left({ }^{2} B_{2}\right) & 0 & 0 & -\frac{1}{3} \delta J\left({ }^{2} E\right) \tag{S.12}\\
0 & -\frac{1}{6} J\left({ }^{2} E\right)+\frac{1}{12} J\left({ }^{2} B_{2}\right) & \frac{1}{6} J\left({ }^{2} B_{2}\right) & 0 \\
0 & \frac{1}{6} J\left({ }^{2} B_{2}\right) & -\frac{1}{6} J\left({ }^{2} E\right)+\frac{1}{12} J\left({ }^{2} B_{2}\right) & 0 \\
-\frac{1}{3} \delta J\left({ }^{2} E\right) & 0 & 0 & \frac{1}{6} J\left({ }^{2} E\right)-\frac{1}{12} J\left({ }^{2} B_{2}\right)
\end{array}\right]
$$

with $\delta J\left({ }^{2} E\right)$ to account for the possible decrease of symmetry $\mathrm{C}_{4 \mathrm{v}} \rightarrow \mathrm{C}_{2 \mathrm{v}}$:
$\delta J\left({ }^{2} E\right)=\frac{J_{\xi \xi}-J_{\eta \eta}}{2}$
$J\left({ }^{2} E\right)=\frac{J_{\xi \xi}+J_{\eta \eta}}{2}$
The parameters J, D and E in the spin Hamiltonian $\hat{H}_{\text {sph }}$ (S.15, i.e. a simplified form of eq.4) are derived by comparing S .12 with the representation of $\hat{H}_{\text {sph }}$ using the basis α " α, $\beta^{\prime \prime} \alpha^{\prime}, \alpha^{\prime \prime} \beta^{\prime}, \beta^{\prime \prime} \beta^{\prime} ;$
$\hat{H}_{\text {sph }}=-J \mathbf{s}_{1}^{\prime} \mathbf{s}_{2}+\frac{2 D}{3}\left(2 \mathbf{s}_{1 \mathbf{z}}^{\prime} \mathbf{s}_{2 \mathrm{z}}-\mathbf{s}_{1 \mathbf{x}}^{\prime} \mathbf{s}_{2 \mathrm{x}}-\mathbf{s}_{1 \mathbf{y}}^{\prime} \mathbf{s}_{2 \mathrm{y}}\right)+2 E\left(\mathbf{s}_{1 \mathbf{x}}^{\prime} \mathbf{s}_{2 \mathrm{x}}-\mathbf{s}_{1 \mathbf{y}}^{\prime} \mathbf{s}_{2 \mathrm{y}}\right)$

$$
\begin{gather*}
\mathbf{H}_{\text {sph }}=\left[\begin{array}{cccc}
\alpha " \alpha^{\prime} & \beta^{\prime \prime} \alpha^{\prime} & \alpha^{\prime \prime} \beta^{\prime} & \beta^{\prime \prime} \beta^{\prime} \\
-\frac{1}{4} J+\frac{1}{3} D & 0 & 0 & E \\
0 & \frac{1}{4} J-\frac{1}{3} D & -\frac{1}{2} J-\frac{1}{3} D & 0 \\
0 & -\frac{1}{2} J-\frac{1}{3} D & \frac{1}{4} J-\frac{1}{3} D & 0 \\
E & 0 & 0 & -\frac{1}{4} J+\frac{1}{3} D
\end{array}\right]
\end{gather*}
$$

In going from (S.15) to (S.16) we make use of the following substitutions:
$-\mathbf{s}_{1} \mathbf{s}_{2} \Rightarrow\left[\begin{array}{cccc}-\frac{1}{4} & 0 & 0 & 0 \\ 0 & \frac{1}{4} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & 0 & -\frac{1}{4}\end{array}\right] ;$
$2 \mathbf{s}_{1 z}^{\prime} \mathbf{s}_{2 z}-\mathbf{s}_{1 x}^{\prime} \mathbf{s}_{2 x}-\mathbf{s}_{1 y}^{\prime} \mathbf{s}_{2 y} \Rightarrow\left[\begin{array}{cccc}\frac{1}{2} & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2}\end{array}\right]$
$\mathbf{s}_{1 x}^{\prime} \mathbf{s}_{2 x}-\mathbf{s}_{1 y}^{\prime} \mathbf{s}_{2 y}=\left[\begin{array}{cccc}0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0\end{array}\right]$
These can be derived, using the direct products $\mathbf{s}_{\mathbf{i}} \otimes \mathbf{s}_{\mathbf{j}}(\mathrm{i}, \mathrm{j}=\mathrm{x}, \mathrm{y}, \mathrm{z})$ of the spinmatrices for $\mathrm{s}=1 / 2$

$$
\begin{align*}
& \alpha \\
& \beta
\end{align*} \begin{array}{cc}
\alpha & \beta
\end{array} c \begin{array}{cc}
\alpha & \beta \tag{S.20}\\
\mathbf{s}_{\mathbf{x}}=\frac{1}{2}\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right] ; \mathbf{s}_{y}=\frac{i}{2}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] ; \mathbf{s}_{\mathbf{z}}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] ; \tag{S.21}\\
-\frac{1}{4} J+\frac{1}{3} D=\frac{1}{6} J\left({ }^{2} E\right)-\frac{1}{12} J\left({ }^{2} B_{2}\right) \tag{S.22}\\
-\frac{1}{2} J-\frac{1}{3} D=\frac{1}{6} J\left({ }^{2} B_{2}\right) \tag{S.23}\\
E=-\frac{1}{3} \delta J\left({ }^{2} E\right)
\end{array}
$$

From (S.21) and (S.22) result the expressions of J and D (eq.14).
Is it always possible to derive the parameters of the spin Hamiltonian from first principle calculations? There is a configuration mixing between the spin multiplets due to the $\mathrm{E}^{\text {" }}-\mathrm{Cu}^{\mathrm{II}}$ and the multiplets due to the $\mathrm{U}^{\prime}-\mathrm{Cu}^{\mathrm{II}}$ interaction via exchange coupling terms. In the discussed example, $\zeta \gg J\left({ }^{2} E\right), J\left({ }^{2} B_{2}\right)$ and the parameters J,D and E (S.21-S.23) can be uniquely determined. However, starting from $\mathrm{Fe}^{\text {III }}-\mathrm{CN}-\mathrm{Cu}^{\text {II }}$ with a $\mathrm{C}_{4 \mathrm{v}}$ geometry and octahedral $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$, and introducing a $\mathrm{D}_{3 \mathrm{~d}}$ Jahn-Teller distortion U' splits and starts to mix with E". In Figure S.2, we plot the electronic energy levels of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ in dependence of the ratio $\mathrm{V}_{\tau} \mathrm{Q}_{\tau} / \zeta$ [obtained by diagonalization of the Hamiltonian S.3 with $J\left({ }^{2} E\right)=J\left({ }^{2} B_{2}\right)=0$]. It follows, that the electronic ground state is well separated from the excited states both in O_{h} and in the distorted $\mathrm{D}_{3 \mathrm{~d}}$ geometries. One can understand this result if one transforms the spin-orbit coupling matrix into the trigonal basis of eq.S.24.

Figure S.2. Electronic levels of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ in dependence of the vibronic coupling energy in units of ζ.

In this basis, $\mathbf{H}_{\mathbf{J T}}$ is diagonal with the energies of ${ }^{2} A_{1}$ and ${ }^{2} \mathrm{E}$, given by $-2 \mathrm{~V}_{\tau} \mathrm{Q}_{\tau}$ and $\mathrm{V}_{\tau} \mathrm{Q}_{\tau}$, respectively.

$$
\begin{align*}
& \varphi\left(A_{1}\right)=\frac{1}{\sqrt{3}}(\xi+\eta+\zeta) \\
& \varphi(E y)=\frac{1}{\sqrt{2}}(\xi-\eta) \tag{S.24}\\
& \varphi(E x)=\frac{1}{\sqrt{6}}(-\xi-\eta+2 \zeta)
\end{align*}
$$

While ${ }^{2} \mathrm{~A}_{1}$ is the ground state for trigonally compressed geometries, it is of ${ }^{2} \mathrm{E}$ symmetry in elongated geometries. However the ${ }^{2}$ E term spits to first order by spin-orbit coupling with an energy difference between the ground state $E^{\prime}(1)$ and the $E^{\prime \prime}$ lowest excited state given by ζ. It is again much larger than $\mathrm{J}\left({ }^{2} \mathrm{E}\right)$ and $\mathrm{J}\left({ }^{2} \mathrm{~B}_{2}\right)$. Therefore, one can safely apply the spin-Hamitonian (eq.4) and deduce its parameters by comparison with the eigenvalues of eq.(1) in the whole range of Jahn-Teller-distorted geometries between $\mathrm{Q}_{\tau}=-0.256$ and $-0.256 \AA$. In the given example (Table 5, $\mathrm{Q}_{\tau}=0.128 \AA$ for $\mathrm{Fe}-\mathrm{Cu}$) one first diagonalizes $\mathbf{H}_{\mathbf{S O}}{ }^{+} \mathbf{H}_{\mathbf{J T}}$, including the Zeeman matrix with a small magnetic field ($B_{z}=0.0001 \mathrm{~T}$), providing the proper components α " and β " of the
ground state Kramers doublet E’(1) (Figure S.2). With the resulting eigenvectors, one transforms the Hamiltonian (eq.S.3), yielding the following traceless matrix (with energies in cm^{-1}) of the ground state spin levels:

$$
\begin{gather*}
\alpha^{\prime \prime} \alpha^{\prime} \\
\mathbf{H}_{\text {sph }}=\left[\begin{array}{cccc}
& \beta^{\prime \prime} \alpha^{\prime} & \alpha^{\prime \prime} \beta^{\prime} & \beta^{\prime \prime} \beta^{\prime} \\
3.038 & 0.615 & 0.200(-1+i) & -2.933(1-i) \\
0.615 & -3.038 & 0.020(-1+i) & 0.200(1-i) \\
0.200(-1-i) & 0.020(-1-i) & -3.038 & -0.615 \\
-2.933(1+i) & 0.200(1+i) & -0.615 & 3.038
\end{array}\right] \tag{S.25}
\end{gather*}
$$

One can show, using simple manipulations (as described e.g. by eq.S.15-S.20), that within the $\alpha " \alpha^{\prime}, \beta^{\prime \prime} \alpha^{\prime}, \alpha^{\prime \prime} \beta^{\prime}$ and $\beta^{\prime \prime} \beta^{\prime}$ basis, the spin-Hamiltonian of eq. 4 leads to the matrix representation given by eq. S.26. From the comparison of S. 25 and S. 26 the spin-Hamiltonian parameters of $\mathrm{Fe}-\mathrm{Cu}$ from Table 5 has been obtained (entry for $\mathrm{Q}_{\tau}=0.128 \AA$).
Finally, within the spin-only basis and without distortions on $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$, the Zeeman operator $\hat{H}_{Z 1}$ is represented by the matrices given in eq.S.27-S.29, showing directly the coupling of the local g-tensors of $\mathrm{Fe}^{\mathrm{III}}$ and $\mathrm{Cu}^{\mathrm{II}}$.

$$
\begin{align*}
& \alpha " \alpha, \quad \beta^{\prime \prime} \alpha^{\prime} \quad \alpha^{\prime \prime} \beta^{\prime} \quad \beta^{\prime} \beta^{\prime} \\
& \mathbf{H}_{\text {sph }}=\left[\begin{array}{cccc}
\frac{1}{3} D-\frac{1}{4} J & \frac{1}{4}\left(D_{x z}-i D_{y z}-i A_{x}-A_{y}\right) & \frac{1}{4}\left(D_{x z}-i D_{y z}+i A_{x}+A_{y}\right) & E-\frac{1}{2} i D_{x y} \\
\frac{1}{4}\left(D_{x z}+i D_{y z}+i A_{x}-A_{y}\right) & -\frac{1}{3} D+\frac{1}{4} J & -\frac{1}{3} D-\frac{1}{2} J-\frac{i}{2} A_{z} & \frac{1}{4}\left(-D_{x z}+i D_{y z}-i A_{x}-A_{y}\right) \\
\frac{1}{4}\left(D_{x z}+i D_{y z}-i A_{x}+A_{y}\right) & -\frac{1}{3} D-\frac{1}{2} J+\frac{i}{2} A_{z} & -\frac{1}{3} D+\frac{1}{4} J & \frac{1}{4}\left(-D_{x z}+i D_{y z}+i A_{x}+A_{y}\right) \\
E+\frac{1}{2} i D_{x y} & \frac{1}{4}\left(-D_{x z}-i D_{y z}+i A_{x}-A_{y}\right) & \frac{1}{4}\left(-D_{x z}-i D_{y z}-i A_{x}+A_{y}\right) & \frac{1}{3} D-\frac{1}{4} J
\end{array}\right] \tag{S.26}\\
& \alpha " \alpha^{\prime} \quad \beta^{\prime \prime} \alpha^{\prime} \quad \alpha^{\prime \prime} \beta^{\prime} \quad \beta^{\prime \prime} \beta^{\prime} \\
& \mathbf{H}_{\mathbf{Z} 1}^{\mathrm{x}}=\mu_{B} B_{x}\left[\begin{array}{cccc}
0 & -\frac{1}{3}-\frac{2}{3} k & \frac{1}{2} g_{2 x} & 0 \\
-\frac{1}{3}-\frac{2}{3} k & 0 & 0 & \frac{1}{2} g_{2 x} \\
\frac{1}{2} g_{2 x} & 0 & 0 & -\frac{1}{3}-\frac{2}{3} k \\
0 & \frac{1}{2} g_{2 x} & -\frac{1}{3}-\frac{2}{3} k & 0
\end{array}\right] \tag{S.27}
\end{align*}
$$

$$
\begin{gather*}
\alpha^{\prime \prime} \alpha^{\prime} \\
\beta^{\prime \prime} \alpha^{\prime} \tag{S.28}\\
\mathbf{H}_{\mathbf{z} 1}^{\mathrm{y}}=\mu_{B} B_{y}\left[\begin{array}{ccc}
\beta^{\prime} \beta^{\prime} & \beta^{\prime \prime} \beta^{\prime} \\
-\frac{i}{3}-\frac{2 i}{3} k & 0 & 0 \\
\frac{i}{3}+\frac{2 i}{3} k & -\frac{i}{2} g_{2 y} & 0 \\
\frac{i}{2} g_{2 y} & 0 & 0 \\
0 & \frac{i}{2} g_{2 y} & -\frac{i}{2} g_{2 y} \\
0 & \frac{i}{3}+\frac{2 i}{3} k & 0
\end{array}\right] \\
\mathbf{H}_{\mathbf{z} 1}^{z}=\mu_{B} B_{z}\left[\begin{array}{cccc}
\alpha^{\prime \prime} \alpha^{\prime} & \beta^{\prime \prime} \alpha^{\prime} & \alpha^{\prime \prime} \beta^{\prime} & \beta^{\prime \prime} \beta^{\prime} \\
0 & 0 & 0 & 0 \\
0 & \frac{1}{3}+\frac{2}{3} k+\frac{1}{2} g_{2 z} & 0 & 0 \\
-\frac{1}{3}-\frac{2}{3} k+\frac{1}{2} g_{2 z} & -\frac{1}{3}-\frac{2}{3} k-\frac{1}{2} g_{2 z} & 0 \\
0 & 0 & 0 & \frac{1}{3}+\frac{2}{3} k-\frac{1}{2} g_{2 z}
\end{array}\right] \tag{S.29}
\end{gather*}
$$

The Hamiltonian and the z component of the Zeeman matrix for the $F e^{I I I}-C N-N I^{I I}$ Pair Applying consistently the same procedure as for the $\mathrm{Fe}^{\mathrm{III}}-\mathrm{Cu}^{\mathrm{II}}$ pair, we have derived the matrix of the Hamiltonian (eq.1) which results from the spin coupling between $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and the $\mathrm{S}=1$ $\left(\mathrm{M}_{\mathrm{s}}= \pm 1,0\right)$ ground state of $\mathrm{Ni}^{\text {II }}$ for a binuclear unit with $\mathrm{C}_{4 \mathrm{v}}$ symmetry. Restricting to the manifold of the six spin states pertaining to the coupling of the $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ in its ground state E " and the $\mathrm{S}=1$ state of $\mathrm{Ni}^{\mathrm{II}}$, we list the energy matrix in eq. S .30 and the z component of the Zeeman matrix in eq.31. Exchange coupling parameters have already been specified for the $\mathrm{Fe}^{\text {IIII }}$ $\mathrm{Cu}^{\mathrm{II}}$ pair, D_{Ni} is the zero-field splitting parameter of $\mathrm{Ni}^{\mathrm{II}}$. We notice, that in the ground (excited) $E "(1)[E "(2)]$ spin states $D_{N i}$ is added (subtracted) from the diagonal energy term, thus leading to an increase (decrease) of the spin energy gap for negative (positive) values of D_{Ni}. Taking the difference between the diagonal matrix elements, i.e. $E(\alpha$ ", $0 ; \beta$ ", 0$)-E(\alpha$ ", $-1 ; \beta$ ", 1) eq. 18 is derived.
As in the case of the $\mathrm{Fe}^{\mathrm{III}}-\mathrm{Cu}^{\mathrm{II}}$ pair, spin Hamiltonian theory is applicable for the $\mathrm{Fe}^{\mathrm{III}}-\mathrm{Ni}^{\mathrm{II}}$ spincluster of a general C_{s} symmetry, and the parameters of eq. 4 can be derived from a comparison between the (traceless) $6 x 6$ energy matrix (eq.S.32, $\mathrm{Q}_{\tau}=0.128 \AA$) and the spin Hamiltonian, written in the parametric form of eq.S.33. Numerical values are listed in Table 5.

Finally g-tensor values of the $\mathrm{Fe}^{\mathrm{III}}-\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{III}}-\mathrm{Ni}^{\mathrm{II}}$ with bistable ground states listed in Table 9 have been calculated using a well documented procedure (reference ${ }^{87}$ of the manuscript).

$$
\begin{align*}
& \begin{array}{cccc}
\alpha^{\prime}, 1 & \beta^{\prime}, 1 & \alpha ", 0 & \beta^{\prime}, 0
\end{array} \beta^{\prime \prime},-1 \quad-1 \\
& \mathbf{H}=\left[\begin{array}{cccccc}
\frac{1}{3} J\left({ }^{2} E\right)-\frac{1}{6} J\left({ }^{2} B_{2}\right)+\frac{1}{3} D_{N i} & 0 & 0 & -\frac{\sqrt{2}}{3} \delta J\left({ }^{2} E\right) & 0 & 0 \\
0 & -\frac{1}{3} J\left({ }^{2} E\right)+\frac{1}{6} J\left({ }^{2} B_{2}\right)+\frac{1}{3} D_{N i} & \frac{1}{3 \sqrt{2}} J\left({ }^{2} B_{2}\right) & 0 & 0 & 0 \\
0 & \frac{1}{3 \sqrt{2}} J\left({ }^{2} B_{2}\right) & -\frac{2}{3} D_{N i} & 0 & 0 & -\frac{\sqrt{2}}{3} \delta J\left({ }^{2} E\right) \\
-\frac{\sqrt{2}}{3} \delta J\left({ }^{2} E\right) & 0 & 0 & -\frac{2}{3} D_{N i} & \frac{1}{3 \sqrt{2}} J\left({ }^{2} B_{2}\right) & 0 \\
0 & 0 & 0 & \frac{1}{3 \sqrt{2}} J\left({ }^{2} B_{2}\right) & -\frac{1}{3} J\left({ }^{2} E\right)+\frac{1}{6} J\left(^{2} B_{2}\right)+\frac{1}{3} D_{N i} & 0 \\
0 & 0 & -\frac{\sqrt{2}}{3} \delta J\left({ }^{2} E\right) & 0 & 0 & \frac{1}{3} J\left({ }^{2} E\right)-\frac{1}{6} J\left({ }^{2} B_{2}\right)+\frac{1}{3} D_{N i}
\end{array}\right] \\
& \begin{array}{ccccc}
\alpha^{\prime}, 1 & \beta^{\prime \prime}, 1 & \alpha^{\prime}, 0 & \beta^{\prime \prime}, 0 & \alpha^{\prime},-1
\end{array} \beta^{\prime \prime},-1 \\
& \mathbf{H}_{\mathbf{z} 1}^{z}=\left[\begin{array}{cccccc}
-\frac{1}{3}-\frac{2}{3} k+g_{z 2} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{3}+\frac{2}{3} k+g_{z 2} & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{3}-\frac{2}{3} k & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{3}+\frac{2}{3} k & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{3}-\frac{2}{3} k-g_{z 2} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{3}+\frac{2}{3} k-g_{z 2}
\end{array}\right] \tag{S.31}
\end{align*}
$$

$$
\begin{align*}
& \left.\begin{array}{c}
\alpha^{\prime \prime}, 1 \\
\mathbf{H}_{\text {sph }}
\end{array} \begin{array}{cccccc}
\beta^{\prime \prime}, 1 & \alpha^{\prime \prime}, 0 & \beta^{\prime \prime}, 0 & \alpha^{\prime \prime},-1 & \beta^{\prime \prime},-1 \\
4.039 & 0.995 & 0.0995(-1+i) & -2.669(1-i) & 0 & 0 \\
0.995 & -4.039 & -0.107(1-i) & 0.0995(1-i) & 0 & 0 \\
0.0995(-1-i) & -0.107(1+i) & 0 & 0 & -0.0995(1-i) & -2.669(1-i) \\
-2.669(1+i) & 0.0995(1+i) & 0 & 0 & -0.107(1-i) & 0.0995(1-i) \\
0 & 0 & -0.0995(1+i) & -0.107(1+i) & -4.039 & -0.995 \\
0 & 0 & -2.669(1+i) & 0.0995(1+i) & -0.995 & 4.039
\end{array}\right] \tag{S.32}
\end{align*}
$$

Dynamic Jahn-Teller Coupling

Since the $\mathrm{Fe}^{\mathrm{III}}-\mathrm{CN}$ bond is stronger than the $\mathrm{Cu}^{\mathrm{II}}-\mathrm{NC}$ and $\mathrm{Ni}^{\mathrm{II}}-\mathrm{NC}$ bonds, we can restrict vibronic coupling to the $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ unit and consider only the $\tau_{2 \mathrm{~g}}$ mode for its vibronic levels. One can readily extend eq. 1 with the nuclear kinetic and potential energy operators (eq.S.34); $\hbar \omega_{\tau}$ is the energy of the three-dimensional harmonic oscillator
$\hat{H}_{v i b}=\frac{1}{2} \hbar \omega_{\tau}\left(\hat{P}_{\xi}^{2}+\hat{P}_{\eta}^{2}+\hat{P}_{\zeta}^{2}+Q_{\zeta}^{2}+Q_{\eta}^{\prime 2}+Q_{\zeta}^{2}\right)$
$\left(93 \mathrm{~cm}^{-1}\right.$ for $\left.\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-21}\right) ; \hat{P}_{i}$ and Q_{i} are dimensionless operators related to the observables for momentum and position and given by eq.S.35. The vibronic eigenfunctions Ψ of the total

$$
\begin{equation*}
\hat{P}_{i}=\frac{1}{\sqrt{\mu \hbar \omega}} \hat{p}_{i} ; Q_{i}^{\prime}=\sqrt{\frac{\mu \omega}{\hbar}} Q_{i} ; i=\xi, \eta, \zeta \tag{S.35}
\end{equation*}
$$

Hamiltonian $\hat{H}+\hat{H}_{\text {vib }}$ are expressed as a linear combination of products of the spin-orbital basis functions φ_{i} of \hat{H} and the eigenstates of the states of $\hat{H}_{\text {vib }}$ (the three-dimensional harmonic oscillator functions $\left.\chi_{j}\left(Q_{\xi}^{\prime}\right) \chi_{k}\left(Q_{\eta}^{\prime}\right) \chi_{l}\left(Q_{\zeta}^{\prime}\right)\right)$ up to the level n_{v} :

$$
\begin{equation*}
\Psi=\sum_{i=1}^{6} \sum_{j} \sum_{k} \sum_{l} \sum_{j+k+l=0}^{n_{v}} c_{i j k l} \varphi_{i} \chi_{j}\left(Q_{\xi}^{\prime}\right) \chi_{k}\left(Q_{\eta}^{\prime}\right) \chi_{l}\left(Q_{\zeta}^{\prime}\right) \tag{S.36}
\end{equation*}
$$

The total basis size N_{v} without exploitation of the vibronic symmetries is given by eq.S.37,

$$
\begin{equation*}
N_{v}=n_{M} 6\left[\frac{n_{v}\left(n_{v}^{2}+6 n_{v}+11\right)}{6}+1\right] \tag{S.37}
\end{equation*}
$$

where n_{M} is the spin-degeneracy of $\mathrm{Cu}^{\text {II }}\left(\mathrm{n}_{\mathrm{M}}=2\right)$ or $\mathrm{Ni}^{\text {II }}\left(\mathrm{n}_{M}=3\right)$. For the moderate vibronic coupling strength obtained in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ good accuracy (equal or better than 2%) for the calculated lowest 4 or 6 spin states for $\mathrm{Fe}^{\mathrm{III}}-\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{II}}-\mathrm{Ni}^{\mathrm{II}}$, respectively, and for the g-tensor has been achieved with $n_{v}=6$, leading to a total dimension of the vibronic matrix of 1008×1008 and 1512×1512, respectively.

Fig.S.3. (a) $\mathrm{The}^{\mathrm{Fe}}{ }^{\text {III }}-\mathrm{M}^{\mathrm{II}}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Cu}^{\mathrm{II}}, \mathrm{Ni}^{\text {II }}\right.$: white, $\mathrm{Fe}^{\text {IIII }}$: black) pair with a linear $\mathrm{Fe}^{\mathrm{III}}-\mathrm{CN}-\mathrm{M}^{\mathrm{II}}\left(\mathrm{C}_{4 \mathrm{v}}\right)$ bridge and a regular $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ center; the arrows indicate the directions for optimal π-overlap between the singly occupied $\mathrm{t}_{2 g}$ $\left(\mathrm{d}_{\mathrm{xz}, \mathrm{yz}}\right)$ orbitals of $\mathrm{Fe}^{\text {III }}\left(\mathrm{t}_{2 \mathrm{~g}}{ }^{5}\right)$ and the fully occupied $\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{yz}}$ orbitals of $\mathrm{Cu}^{\text {II }}\left(\mathrm{Ni}^{\text {II }}\right)$. (b) $\mathrm{The} \mathrm{Fe}^{\text {III }}-\mathrm{M}^{\text {II }}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Cu}^{\text {II }}, \mathrm{Ni}^{\mathrm{II}}\right)$ pair with a trigonally distorted $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ center and a ${ }^{2} \mathrm{~A}_{1 \mathrm{~g}}\left(\mathrm{~d}_{22}, \mathrm{D}_{3 \mathrm{~d}}\right)$ ground state with d_{22} lobes pointing towards the body diagonals of a cube with four different (but equivalent) geometries (minima of the ground state potential energy surface, misalignment of the singly occupied $\mathrm{d}_{\mathrm{z} 2}$ orbital of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and the $\pi\left(\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{yz}}\right)$ orbitals of $\mathrm{Cu}^{\mathrm{II}}$ $\left(\mathrm{Ni}^{\mathrm{II}}\right)$).

Effect of the DFT functional on the exchange parameters $J\left(B_{2}\right)\left[F e^{I I I}\left(e_{g}{ }^{4} b_{2 g}{ }^{1}\right)-C u^{I I}\right]$ and $J(E)\left[F e^{I I I}\left(e_{g}{ }^{3} b_{2 g}{ }^{2}-\right.\right.$ $\left.\mathrm{Cu}^{I I}\right]$ and further on the spin-levels and the magnetic anisotropy on $\mathrm{Fe}^{I I I}-\mathrm{CN}-\mathrm{Cu}^{I I}$ exchange pairs without $\left(C_{4 v}\right)$ and with $\left(C_{s}\right)$ Jahn-Teller distortions of $\tau_{2 g}$ type.

Table S.1. The exchange coupling energy (J , in $\mathrm{cm}^{-1}, \mathrm{H}_{\mathrm{exc}}=-\mathrm{JS}_{1} \mathbf{S}_{2}$) for the exchange pair $\mathrm{Fe}^{\mathrm{III}}-\mathrm{CN}-\mathrm{Cu}{ }^{\mathrm{II}}\left(\mathrm{d}_{\mathrm{z} 2}\right)$ from DFT broken spin DFT calculations with (SP) and without (SUP) spin-projection, in dependence of the adopted functional and the electronic configuration of $\mathrm{Fe}^{\mathrm{III}}$, in comparison with the value deduced from magnetic data.

electronic configuration of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$	J	VWN	PW91	PBE	OPBE	B3LYP $20 \% \mathrm{HF}$	B1LYP $25 \% \mathrm{HF}$	B3LYP* $15 \% \mathrm{HF}$	Exp.
$\mathrm{b}_{2}{ }^{1} \mathrm{e}^{4}$	$\mathrm{~J}_{\mathrm{SP}}{ }^{\mathrm{a}}$	-45.2	-67.7	-69.2	-112.9	-6.4	1.6	-16.2	17.0^{c}
	$\mathrm{J}_{\mathrm{SUP}} \mathrm{b}$	-22.6	-33.9	-34.7	-56.5	-3.2	0.8	-8.1	$13.8 ; 3.9^{\mathrm{d}}$
$\mathrm{b}_{2}{ }^{2} \mathrm{e}^{3}$	$\mathrm{~J}_{\mathrm{SP}}{ }^{\mathrm{a}}$	114.6	95.2	95.2	103.2	27.4	19.4	35.5	20.9^{e}
	$\mathrm{J}_{\mathrm{SUP}}{ }^{\mathrm{b}}$	57.3	47.6	47.6	51.6	13.7	9.7	17.7	5.0^{f}

${ }^{\text {a }}$ Calculated with the spin-projected formula: $\mathrm{J}_{\mathrm{SP}}=\left(\mathrm{E}_{\mathrm{BS}}-\mathrm{E}_{\mathrm{HS}}\right) /\left(2 \mathrm{~S}_{1} \mathrm{~S}_{2}\right)$; E_{BS} and E_{HS} are the energies of the $(\uparrow \downarrow)$ brokenspin and the $(\uparrow \uparrow)$ high-spin Slater determinants.
${ }^{\mathrm{b}}$ Calculated with the spin-unprojected formula: $\mathrm{J}_{\mathrm{SUP}}=\left(\mathrm{E}_{\mathrm{BS}}-\mathrm{E}_{\mathrm{HS}}\right) /\left(2 \mathrm{~S}_{1} \mathrm{~S}_{2}+\mathrm{S}_{2}\right), \mathrm{S}_{2} \leq \mathrm{S}_{1}$;
${ }^{c}$ Reported from a fit to magnetic susceptibility data of the $\mathrm{Cu}_{3} \mathrm{Fe}_{2}$ SMM with a $\mathrm{d}_{\mathrm{x} 2-\mathrm{y} 2}$ ground state of $\mathrm{Cu}{ }^{9}$; to compare with the calculated numbers ($\mathrm{d}_{\mathrm{z} 2}$ ground state of $\mathrm{Cu}^{\text {II }}$), the experimental energy has to be multiplied by $2 / \sqrt{ } 3$ $\left(\mathrm{Jd}_{\mathrm{z2}}=2 / \sqrt{ } 3 \mathrm{Jd}_{\mathrm{x} 2 \mathrm{y} 2}\right)$.
${ }^{\mathrm{d}}$ Reported for the two distinct $\mathrm{Fe}^{\mathrm{III}}-\mathrm{CN}-\mathrm{Cu}^{\mathrm{II}}$ exchange coupled pairs in the $\mathrm{Fe}^{\mathrm{III}}{ }_{2} \mathrm{Cu}^{\mathrm{II}}{ }_{3}$ complex
$\left[\{\mathrm{Cu}(\mathrm{rac}-\mathrm{CTH})\}_{3}\left\{\mathrm{Fe}(\mathrm{CN})_{6}\right\}_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$, rac-CTH= rac-5,7,7,12,14,14-hexamethyl-1,4,8,11tetraazacyclotetradecane from simulations using a Heisenberg Hamiltonian. ${ }^{19}$
${ }^{e}$ Reported from Monte Carlo simulations of the magnetic properties of heterobimetallic chain $\left\{\left[\mathrm{Fe}^{\text {III }}(\mathrm{bpym})(\mathrm{CN})_{4}\right]_{2} \mathrm{M}^{\text {II }}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right\} .6 \mathrm{H}_{2} \mathrm{O}$, bpym=2,2'-bipyrimidine using an isotropic Heisenberg model. ${ }^{20}$ ${ }^{\mathrm{f}}$ reported from a fit of the isotropic J to magnetic susceptibility data on the bimetallic complex $\left[\left\{\mathrm{Fe}^{\text {III }} \text { (phen) }(\mathrm{CN})_{4}\right\}_{2} \mathrm{Cu}^{\text {II }}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O} .{ }^{21}$

Fig.S.4. Effect of the functional on the E_{J} and $-E_{D}$ parameters.

Footnote

${ }^{1}$ Matrix S. 12 differs in sign compared to the one given in manuscript reference ${ }^{22}$ (and derived in detail the Supporting information there). This is because real spins rather than effective spins of $\mathrm{Fe}^{\mathrm{III}}$ have been employed in the cited work (implying \mathbf{g} tensors of $\mathrm{Fe}^{\mathrm{III}}$ and $\mathrm{Cu}^{\mathrm{II}}$ which are of the same sign). This has lead to the conventional negative D and a positive J values. Here we should stress, this is only possible if $J\left({ }^{2} B_{2}\right)=0$, in which case B_{1} and B_{2} (Figure 3) become accidentally degenerate. In a consistent description however, one should keep to the definitions and sign conventions of manuscript reference reference ${ }^{93}$ which allows also to provide a correct symmetry description.

