Supporting Information

for

Design Synthesis and Properties of 2'4'-BNA ${ }^{\text {NC }}$: A Bridged Nucleic Acid Analogue

S. M. Abdur Rahman, Sayori Seki, Satoshi Obika, Haruhisa Yoshikawa, Kazuyuki Miyashita andTakeshi Imanishi*Graduate School of Pharmaceutical Sciences, Osaka University,1-6 Yamadaoka, Suita, Osaka 565-0871, Japan andPRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
Contents

1. Synthesis of the starting material 1 S-3
Scheme SI-1: synthesis of starting material 1 S-3
2. Experimental procedures for the synthesis of $\mathbf{1}$ S-3
3. Experimental procedures for the synthesis and characterization data for compounds 2-22 S-5
Special notes S-5
4. Optimization of reaction conditions for the synthesis of key intermediate $\mathbf{1 2}$ S-15
Table SI-1: Optimization of Reaction Condition for the Synthesis of Key Intermediate 5 S-16
5. Reference S-16
6. Complete reference of reference 32 (in text) S-17
Table SI-2: Yields and MALDI-TOF mass data for oligonucleotides 24a-d to 36a-d. S-18
Figure SI-1: CD Spectra of $2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}[\mathrm{N}-\mathrm{Bn}]$-modified oligonucleotides S-19

Figure SI-2: UV melting curves for the duplexes formed by $2^{\prime}, 4^{\prime}$-BNA ${ }^{\text {NC }}$ - and $2^{\prime}, 4^{\prime}$-BNA (LNA)-modified
oligonucleotides 24a-d to 27a-d against ssRNA target. S20

Figure SI-3: UV melting curves for the duplexes formed by $2^{\prime}, 4^{\prime}$ - $\mathrm{BNA}^{\mathrm{NC}}$ - and $2^{\prime}, 4^{\prime}$-BNA (LNA)-modified oligonucleotides 24a-d to 27a-d oligonucleotides against ssDNA target. .S21

Figure SI-4: UV melting curves for the mismatch discrimination studies against ssRNA targets. .S22

Figure SI-5: UV melting curves for the triplexes formed by $2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}$ - and $2^{\prime}, 4^{\prime}$-BNA (LNA)-modified

TFOs 29a-d to 31a-d S23

Figure SI-6: UV melting curves for the triplexes formed by $2^{\prime}, 4^{\prime}$-BNA ${ }^{\text {NC }}$ - and $2^{\prime}, 4^{\prime}$-BNA (LNA)-modified

TFOs 32a,b,d to 35a,b,d. S24

Figure SI-7: UV melting curves for the triplexes formed by $2^{\prime}, 4^{\prime}$-BNA ${ }^{\text {NC }}$ - and $2^{\prime}, 4^{\prime}$-BNA (LNA)-modified

TFOs 29a-d to 31a-d in the presence of $\mathbf{M g}^{2+}$ S25

Figure SI-8: UV melting curves for the mismatch discrimination studies against dsDNA targets. S26

Figure SI-9 to Figure SI-16: ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of compounds 3-7................................ S27-S34

Figure SI-17 and Figure SI-18: ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of the benzyl derivative of $\mathbf{1 2}$. S35 \& S36

Figure SI-19 to Figure SI-22: ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of compounds 14 and 17 . S37-S40

Figure SI-23 to Figure SI-27: ${ }^{31} \mathrm{P}$-NMR spectra of compounds 18-22. S41-S45

Figure SI-28 and Figure SI-29: pH Titration curve: dependence of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ chemical shifts of $2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}[\mathrm{NH}]$ monomer upon changes of pH . .S46-S47

1. Synthesis of the starting material 1 :

Compound 1 (Scheme SI-1 and Scheme-1 in text also) was synthesized from compound SI-1 by modification of the procedures described in the literatures. ${ }^{1,2}$ Regioselective benzylation of diol SI-1 was accomplished as described in the literature ${ }^{1}$ to afford the dibenzyl derivative SI-2. Tosylation of SI-2 using triethylamine and DMAP instead of pyridine ${ }^{2}$ improved the yield to 97%. Acetolysis in the presence of sulphuric acid gave SI-4 in 77\% yield as an anomeric mixture. Incorporation of thymine by the usual method followed by decaetylation by aqueous methylamine (instead of ammonia) ${ }^{2}$ provided compound $\mathbf{1}$ in improved and excellent yields. Full synthetic procedures are described below (experimental procedures):

Scheme SI-1: Synthesis of the Starting Material 1.

Reagents and conditions: a) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 4 \mathrm{~h}$; b) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{TsCl}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, 1 h ; c) $\mathrm{AcOH}, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{rt}, 1.5 \mathrm{~h}$; d) thymine, BSA , TMSOTf, $\mathrm{CH}_{3} \mathrm{CN}$, reflux, 13 h ; e) 40% aq. MeNH_{2}, THF, rt, 3 h .

2. Experimenatal procedures for the synthesis of 1:

3,5-Di-O-benzyl-4-C-hydroxymethyl-1,2,-O-isopropylidene- α-D-ribofuranose (SI-2). To a stirred solution of

SI-1 ${ }^{1}(20 \mathrm{~g}, 64 \mathrm{mmol})$ in DMF at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(3.3 \mathrm{~g}, 83 \mathrm{mmol})$, and benzyl bromide $(8.3 \mathrm{ml}, 70 \mathrm{mmol})$.

The reaction mixture was then stirred at room temperature for 4 h , then cooled to $0^{\circ} \mathrm{C}$, quenched by the addition
of MeOH and water, and extracted with AcOEt. The organic phase was washed with water and brine, dried
$\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resultant residue was purified by column chromatography (hexane $/ \mathrm{AcOEt}=2 / 1$)
to afford SI-2 ($17.25 \mathrm{~g}, 67 \%$) as a colorless oil. All analytical data were identical to those previously reported. ${ }^{1}$

3,5-Di-O-benzyl-4-C-(p-toluenesulphonyloxymethyl)-1,2,-O-isopropylidene- α-D-ribofuranose (SI-3). To а

stirred solution of SI-2 $(18.27 \mathrm{~g}, 45.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(91 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added triethylamine $(40 \mathrm{ml}, 287$
mmol) and DMAP ($0.83 \mathrm{~g}, 6.8 \mathrm{mmol}$). p-Toluenesulphonyl chloride ($13.9 \mathrm{~g}, 73 \mathrm{mmol}$) was then added at $0{ }^{\circ} \mathrm{C}$
and the reaction mixture was stirred at room temperature for 1 h . Saturated NaHCO_{3} (aq.) solution was added
and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The concentrate was purified by column chromatography to give the compound SI-3 ($24.5 \mathrm{~g}, 97 \%$) as yellow oil. ${ }^{2}$

1,2-Di-O-acetyl-3,5-di-O-benzyl-4-C-(p-toluenesulphonyloxymethyl)- α-D-ribofuranose (SI-4). To a stirred solution of SI-3 ($24.5 \mathrm{~g}, 44.2 \mathrm{mmol}$) in acetic acid $(49 \mathrm{ml})$ was added acetic anhydride $(25 \mathrm{ml}, 265 \mathrm{mmol})$ and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.46 \mathrm{ml}, 8.8 \mathrm{mmol})$ and the reaction mixture was stirred at room temperature for 1.5 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by saturated NaHCO_{3} (aq.) solution. The resultant mixture was extracted with AcOEt, the organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (hexane/ $\mathrm{AcOEt}=3 / 1$) to give an anomeric mixture of the compound SI-4 ($20.4 \mathrm{~g}, 77 \%$) as colorless oil which showed spectral data identical to that reported earlier. ${ }^{2}$

1(2-O-acetyl-3,5-di-O-benzyl-4-C-(p-toluenesulphonyloxymethyl)- α-D-ribofuranosyl)thymine (SI-5). To a stirred solution of SI-4 ($15.9 \mathrm{~g}, 27 \mathrm{mmol}$) and thymine $(5.17 \mathrm{~g}, 41 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{ml})$ was added N, O-bis(trimethylsilyl)acetamide (BSA) $(16.81 \mathrm{ml}, 68 \mathrm{mmol})$ and the mixture was refluxed for 3 h . After cooling
the reaction mixture to $0^{\circ} \mathrm{C}$, trimethylsilyltriflate ($5 \mathrm{ml}, 28 \mathrm{mmol}$) was added and the reaction mixture was
refluxed overnight. Saturated NaHCO_{3} (aq.) solution was added and the mixture was extracted with AcOEt, the organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography (hexane/ACOEt = 1/1) to afford the compound SI-5 (16.9 g, 94\%) as colorless solid.

1(3,5-Di-O-benzyl-4-C-(p-toluenesulphonyloxymethyl)- α-D-ribofuranosyl)thymine (SI-5). To a stirred solution of SI-5 ($49 \mathrm{mg}, 0.07 \mathrm{mmol}$) in THF was added 40% aqueous methylamine solution ($0.11 \mathrm{ml}, 1.5 \mathrm{mmol}$), and the whole was stirred at room temperature for 3 h . The reaction mixture was concentrated under vacuum and extracted with AcOEt. The organic phase was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resultant residue was purified by column chromatography (hexane/ $\mathrm{AcOEt}=1 / 1$) to afford $\mathbf{1}(45 \mathrm{mg}, 99 \%)$ as a white powder. The analytical data of this compound was identical to that reported. ${ }^{2}$

3. Experimental procedures for the synthesis and characterization data for compounds 2-22:

Special notes: Full experimental procedures and complete characterization data of compounds 9-11, 13, 15, 16, 18, 19 and 21 were described in Supporting Information of our preliminary reports. ${ }^{3,4}$ If required, readers can get the data free of charge from the respective site via internet. Only new experimental procedures and data for the new compounds are described below:

3',5'-Di-O-benzyl-5-methyl-4'-(p-toluenesulphonyloxymethyl)-arabino-uridine (2). To a stirred solution of $\mathbf{1}$

$(14 \mathrm{~g}, 22.48 \mathrm{mmol})$ in pyridine $(67 \mathrm{ml})$ was added methanesulfonyl chloride $(5.2 \mathrm{ml}$,
67.18 mmol) at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 1 h , the reaction mixture
was diluted with water, and the whole was extracted with AcOEt. The organic phase was washed with saturated
NaHCO_{3} (aq.) solution, water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give the crude mesylate 3 (19.5 g) as a yellow syrup which was used for the next reaction without purification.

The crude mesylate was dissolved in $\mathrm{H}_{2} \mathrm{O} /$ ethanol $(1: 2,450 \mathrm{ml}$) and 1 M NaOH solution ($67.5 \mathrm{ml}, 67.5$ mmol) was added to the above solution and the mixture was stirred at room temperature for 1 h . After being neutralized with $10 \% \mathrm{HCl}$, the reaction mixture was extracted with AcOEt. The organic phase was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The resultant residue was purified by column chromatography (hexane/AcOEt = 1/1) to provide alcohol $2(13.75 \mathrm{~g}, 98 \%$ from $\mathbf{1})$ as a white powder: Mp $88-89^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}=+48.3\left(c=0.91, \mathrm{CHCl}_{3}\right)$; IR (KBr): 3359, 3034, 1701, 1665, 1475, 1451, 1363, 1286, 1178, $1101 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.57(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}$, $1 \mathrm{H}), 4.21(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J$ $=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.32$ $(\mathrm{m}, 13 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 10.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.2,21.6,68.3,68.9,72.0,73.4,73.5,83.8$, 84.5, 86.7, 107.8, 127.4, 127.7, 127.8, 127.8, 127.8, 128.3, 129.6, 132.5, 136.9, 137.3, 138.6, 144.6, 150.3, 165.4; MS (FAB) m/z $623\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}: \mathrm{C}, 61.72$; H, 5.50; N, 4.50. Found: C, 61.51; H, 5.55; N, 4.39.

3',5'-Di-O-benzyl-2'-O-(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)-5-methyl-4'-(p-toluenesulphonyloxymeth
yl)uridine (3). To a stirred solution of $2(2.01 \mathrm{~g}, 3.23 \mathrm{mmol})$ and 4-dimethylaminopyridine ($79 \mathrm{mg}, 0.65 \mathrm{mmol}$)
 in pyridine (25 ml) was added trifluoromethanesulfonic anhydride (1.63 ml .9 .69 mmol) at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room
temperature for 4 h . The mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was
washed with saturated NaHCO_{3} solution and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to afford crude triflate (2.4 g), which was subjected to the next reaction without purification.

The crude triflate was dissolved in acetonitrile (30 ml). N-Hydroxyphthalimide ($0.74 \mathrm{~g}, 4.52 \mathrm{mmol}$) and DBU ($0.68 \mathrm{ml}, 4.52 \mathrm{mmol}$) were added to the above solution and the mixture was then stirred at room temperature for 4 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The resultant residue was purified by column chromatography (hexane/ $\mathrm{AcOEt}=2: 1$ to $1: 1$) to give $3(1.59 \mathrm{~g}, 64 \%)$ as a light yellow powder: $\mathrm{Mp} 101-103{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27}=+46.5\left(c=1.19, \mathrm{CHCl}_{3}\right)$; IR (KBr): 3189, 3065, 2926, 1793, 1738, 1696, 1468, 1455, 1362, 1271, 1190, $978 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{~s}$, $3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=6,2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}$, $J=12 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.39(\mathrm{~m}, 7 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H})$, 7.75-7.78(m, 2H), 7.82-7.85 (m, 4H), $8.15(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.7,21.6,69.1,70.1,73.1,73.6,74.7$, 85.9, 87.4, 88.3, 110.6, 123.7, 127.6, 128.1, 128.1, 128.1, 128.2, 128.5, 128.6, 129.9, 132.6, 134.7, 135.4, 136.8, 137.0, 144.8, 149.7, 163.1, 163.3; MS (FAB) $m / z 768\left(M+H^{+}\right)$. HRMS (FAB) Calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{~S}\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$:
768.2227. Found: 768.2221.
(1S,3R,4R,7S)-7-benzyloxy-1-benzyloxymethyl-3-(thymine-1-yl)-2,5-dioxabicyclo[2.2.1]heptane

Hydrazine monohydrate ($32 \mu \mathrm{l}, 0.66 \mathrm{mmol}$) was added to a stirred solution of 3 (300

$\mathrm{mg}, 0.39 \mathrm{mmol})$ in ethanol $(9 \mathrm{ml})$ and the mixture was stirred at room temperature for

10 min . The mixture was filtered to separate the precipitate, and the filtrate was concentrated to remove ethanol.

The concentrated mixture was then diluted with AcOEt, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated again to give crude amine (249 mg), a portion of which was employed for the next reaction without further purification.
$60 \% \mathrm{NaH}(4 \mathrm{mg}, 0.094 \mathrm{mmol})$ was added to a stirred solution of $3(20 \mathrm{mg}, 0.031 \mathrm{mmol})$ in THF $(1 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature for 17 h . the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by the addition of MeOH acid solution and extracted with AcOEt , washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The concentrate was purified by column chromatography (hexane/ $\mathrm{AcOEt}=2 / 1$) to give $4(9.9 \mathrm{mg}, 71 \%)$ as a white powder which showed identical spectral data of that reported for the $2^{\prime}, 4^{\prime}$-BNA (LNA) precursor $4 .^{1,5}$

2'-O-(N-Benzyloxycarbonylamino)-3',5'-di-O-benzyl-5-methyl-4'-(p-toluenesulphonyloxymethyl)uridine

(5). To a solution of the crude amine (93 mg) (obtained from the compound $\mathbf{3}$ as described above) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.5

$\mathrm{ml})$ were added an aqueous solution of $\mathrm{NaHCO}_{3}(0.6 \mathrm{ml}$, ca. 0.65 mmol$)$
and benzyl chloroformate ($28 \mu \mathrm{l}, 0.195 \mathrm{mmol}$) under ice cooling, and the
mixture was stirred at the same temperature for 30 min . The reaction mixture was then poured into saturated
NaHCO_{3} solution and extracted with AcOEt. The organic phase was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resultant residue was purified by column chromatography (hexane/ $\mathrm{AcOEt}=1 / 2$) to give $5(82.0 \mathrm{mg}, 82 \%)$ as a white powder: $\mathrm{Mp} 137-139{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27}=+35.1\left(c=1.25, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}): 3179$, 3034, 2955, 1762, 1692, 1457, 1364, 1259, 1105, 980, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.52(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$,
$3.58(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=6$
$\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}$,
$J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 17 \mathrm{H})$, $7.73(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.9,21.6,67.8,69.2,70.4,73.7,73.9$, 85.2, 86.2, 88.0, 111.3, 123.5, 127.6, 128.0. 128.1, 128.2, 128.3, 128.5, 128.6, 128.6, 128.6, 129.8, 132.5, 134.2,
135.2, 136.1, 137.0, 145.0, 150.1, 157.1, 163.4; MS (FAB) $m / z 772\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HRMS (FAB) Calcd for $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 772.2540$. Found: 772.2537.

2'-O,4'-C-Aminomethylene-3',5'-di-O-benzyl-5-methyluridine (6). To a stirred suspension of $60 \% \mathrm{NaH}$ (7.8

$\mathrm{mg}, 0.194 \mathrm{mmol})$ in THF (0.2 ml) was added a solution of $5(50 \mathrm{mg}, 0.065 \mathrm{mmol})$ in THF $(0.5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature for 18 h . the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched by the addition of saturated oxalic acid solution and extracted with AcOEt, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The concentrate was purified by column chromatography (hexane $/ \mathrm{AcOEt}=2 / 1$ to $1 / 1$) to afford $\mathbf{6}(42.3 \mathrm{mg}, 70 \%)$ as a white powder: $\mathrm{Mp} 93-95^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27}=+89.9\left(c=1.60, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}): 3064,2939,2874,1690,1459,1273$, 1104, $747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=$ $11 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=$ $11 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.35(\mathrm{~m}, 10 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 9.07$ (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.0,49.3,67.7,70.5,71.9,73.7,78.6,82.0,85.7,110.4,127.8,127.9,128.1$, 128.2, 128.5, 128.7, 135.0, 137.1, 137.1, 149.9, 163.8; MS (FAB) $m / z 466\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$. HRMS (FAB) Calcd for
$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right): 466.1978$. Found: 466.2001.

3',5’-Di-O-benzyl-5-methyl-2'-O,4'-C-(N-methylaminomethylene)uridine (7). A 20% solution of formalin (7

$\mu 1,0.0473 \mathrm{mmol})$ was added at room temperature to a stirred solution of $\mathbf{6}(20 \mathrm{mg}$, $0.043 \mathrm{mmol})$ in methanolic solution of pyridinium p-toluenesulfonate ($1 \mathrm{M}, 0.43 \mathrm{ml}$, 0.43 mmol) and the mixture was stirred for 10 min . The mixture was then cooled to
$0^{\circ} \mathrm{C}$ and sodium cyanoborohydride $(5 \mathrm{mg}, 0.086 \mathrm{mmol})$ was added to the reaction mixture. After stirring at $0^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was diluted with AcOEt, washed periodically with water, saturated NaHCO_{3} solution and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resultant residue was purified by column chromatography (hexane/ EtOAc $=2 / 1$) to give compound $7(19.8 \mathrm{~g}, 96 \%)$ as a white powder: $\mathrm{Mp} 73-74{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{27}=+54.4\left(c=0.80, \mathrm{CHCl}_{3}\right) ;$ IR (KBr): 3187, 3064, 2886, 1694, 1454, 1362, 1266, 1078, 911, $744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.50(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=11 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=$ $12 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 10 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.0,45.5,58.0,68.0,70.5,71.5,73.6,78.1,82.7,86.2,109.3,127.7,127.7,128.0,128.1,128.4$, 128.6, 135.5, 137.3, 137.4, 149.8, 163.8; MS (FAB) $m / z 480\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HRMS (FAB) Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right): 480.2135$. Found: 480.2128 .

2'-O,4'-C-Aminomethylene-5-methyl-3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)uridine (12). Hydrazine

$(0.04 \mathrm{ml}, 1.3 \mathrm{mmol})$ was added to a stirred solution of phthalimide derivative
$\mathbf{1 1}(1.0 \mathrm{~g}, 1.2 \mathrm{mmol})$ in pyridine $(20 \mathrm{ml})$ at room temperature. After 1 h ,

DABCO ($260 \mathrm{mg}, 2.4 \mathrm{mmol}$) was added and the mixture was stirred at room temperature for 2 d , then water was added to the reaction mixture and excess pyridine was evaporated. The reaction mixture was then extracted with

AcOEt. The organic phase was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The concentrate was purified by column chromatography (hexane/ $\mathrm{AcOEt}=4 / 1$ to $1 / 2$) to afford $\mathbf{1 2}(0.47 \mathrm{~g}, 74 \%)$ as a white powder: $\mathrm{Mp} 113-115^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{26}=-6.1\left(c=0.93, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}): 3479,3262,3071,2946,2868,1698$, $1464,1388,1363,1272,1229,1165,1143 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta 0.94-1.13(\mathrm{~m}, 28 \mathrm{H}), 1.93(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}, 3 \mathrm{H})$, $2.53(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \mathrm{d} 12.2$, $12.8,13.0,13.4,16.9,17.0,17.1,17.1,17.1,17.3,17.3,17.5,48.6,60.0,64.4,81.0,82.5,85.4,110.3,134.3$, 150.0, 164.2; MS (FAB) $m / z 528\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{239} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}_{2} \cdot 1 / 10 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 52.17 ; \mathrm{H}, 7.84 ; \mathrm{N}, 7.93$.

Found: C, 52.02; H, 7.78; N, 7.89.

5-Methyl-2'-O,4'-C-(N-phenoxyacetylaminomethylene)uridine (13). Triethylamine ($32 \mu \mathrm{l}, 0.23 \mathrm{mmol}$) and
 phenoxyacetyl chloride ($29 \mu \mathrm{l}, 0.21 \mathrm{mmol}$) were added to a stirred solution of $\mathbf{1 2}$ $(100 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dicholoromethane $(2 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ (ice cooling) for 1 h . Saturated NaHCO_{3} (aq.) was added and the
reaction mixture was extracted with AcOEt. The organic phase was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resultant residue was purified by column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=50 / 1\right)$ to give the N-phenoxyacetyl derivative of 12 (justified by spectral data) ${ }^{3}$ which was deprotected (using the procedure described earlier) ${ }^{3}$ to afford monomer 13 (for full spectral data see Supporting Information of
reference 3).

5-Methyl-2'-O,4'-C-(N-benzylaminomethylene)uridine (14). Triethylamine ($0.4 \mathrm{ml}, 2.82 \mathrm{mmol}$) and benzyl

bromide $(0.15 \mathrm{ml})$ were added at $0{ }^{\circ} \mathrm{C}$ to a stirred solution of $\mathbf{1 2}(0.5 \mathrm{~g}, 0.95$ $\mathrm{mmol})$ in dichloromethane $(5 \mathrm{ml})$. The reaction mixture was stirred at room temperature for 9 h , then quenched with saturated NaHCO_{3} solution and extracted with AcOEt. The organic phase was washed with water and brine, and then concentrated. The resultant residue was purified by column chromatography (hexane/ $\mathrm{AcOEt}=1 / 4$ to $2 / 1$) to give the benzylated compound (5-methyl-2'-O,4'-C-(N-benzylaminomethylene)-3',5'-O-(tetraisopropyldisiloxane-1,3-diyl)uridine) (0.46 g , 79%) as a white powder: $\mathrm{Mp} 101-103{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27}=-27.0\left(c=0.71, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}): 3186,2941,2668,1193$, $1461,1387,1264,1164,1039,875,{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CHCl}_{3}\right) \delta 0.88-1.10(\mathrm{~m}, 28 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}$, $1 \mathrm{H}), 2.90(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J$ $=13 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.4,12.7,12.8,12.8,13.4$, $17.0,17.2,17.2,17.3,17.5,54.6,60.2,62.2,64.6,80.8,83.8,86.1,110.0,127.5,128.4,129.0,135.1,135.8$, 149.7, 163.7; MS (FAB) $m / z 618\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$. HRMS (FAB) Calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 618.3031. Found: 618.3025.

Tetrabutylammonium fluoride (1 M in $\mathrm{THF}, 1.26 \mathrm{ml}, 1.26 \mathrm{mmol}$) was added at room temperature to the above benzylated derivative ($392 \mathrm{mg}, 0.634 \mathrm{mmol}$) in THF (7.5 ml). After stirring the mixture at room temperature for 10 min , the reaction mixture was concentrated and chromatographed on silica gel $(\mathrm{AcOEt} / \mathrm{MeOH}=20 / 1)$ to
afford the monomer $14(260 \mathrm{mg}$, quant. $)$ as a powder: $\mathrm{Mp} 107-109{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{27}=-57.3\left(c=0.59, \mathrm{CHCl}_{3}\right)$; IR (KBr): 3423, 2926, 1690, 1464, 1263, 1054, $732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.87(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H})$, $2.98(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8 \mathrm{~Hz}$, 2H), $7.38(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \oint \quad 12.7,56.5,61.3,63.2,65.5,82.8$, 85.0, 86.9, 110.7, 128.3, 129.3, 130.0, 137.7, 138.3, 152.1, 166.6; MS (FAB) $\mathrm{m} / \mathrm{z} 376\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HRMS (FAB) Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right): 376.1509$. Found: 376.1505 .

5'-O-(4,4'-dimethoxytrityl)-5-methyl-2'-O,4'-C-(N-benzylaminomethylene)uridine
(17).
 was stirred at room temperature for 3.5 h . Saturated NaHCO_{3} (aq.) solution was
added and the mixture was extracted with AcOEt. The organic phase was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The concentrate was purified by column chromatography (1% triethylamine in hexane $/ \mathrm{AcOEt}=1 / 2$ to $\mathrm{AcOEt} / \mathrm{MeOH}=50 / 1)$ to afford $52 \mathrm{mg}(92 \%)$ of 17 as a white powder: $\mathrm{Mp} 142-144{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{27}=-46.7\left(c=1.41, \mathrm{CHCl}_{3}\right) ;$ IR (KBr): 3534, 2939, 2837, 1694, 1506, 1456, 1253, 1073, 832, $735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.43(\mathrm{~s}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J$ $=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.88(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J$ $=3,8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=9 \mathrm{~Hz}, 4 \mathrm{H}), 7.21-7.31(\mathrm{~m}, 12 \mathrm{H}), 7.42(\mathrm{dd}, J=1$, $9 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{\mathfrak{3}}\right) \delta 12.1,55.2,55.5,61.4,62.2,65.5,81.3,83.3$,
85.4, 86.6, 110.4, 113.3, 127.1, 127.7, 128.0, 128.5, 129.0, 130.0, 135.2, 135.3, 144.2, 149.8, 158.7, 163.8; MS
(FAB) $m / z 700\left(M+\mathrm{Na}^{+}\right), 677\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HRMS (FAB) Calcd for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Na}\left(\mathrm{M}^{2}+\mathrm{Na}^{+}\right)$: 700.2629. Found:
700.2633.

3'-O-[2-Cyanoethoxy(diisopropylamino)phosphino]-5'-O-(4,4'-dimethoxytrityl)-5-methyl-2'-O,4'-C-(N-be

 nzylaminomethylene)uridine (20). Next, 4,5-dicyanoimidazole (7.5 mg .0 .014 mmol) and 2-cyanoethyl N, N, N ', N '-tetraisopropylphosphorodiamidite $(0.023 \mathrm{ml}, 0.072 \mathrm{mmol})$ were added to a stirred solution of $\mathbf{1 7}(40 \mathrm{mg}, 0.059 \mathrm{mmol})$ in acetonitrile $(0.5 \mathrm{ml})$ at room temperature, and the mixture was stirred at room temperature for 7 h . After addition of saturated NaHCO_{3} (aq.) solution, the reaction mixture was extracted with AcOEt. The organic phase was washed sequentially with saturated NaHCO_{3} solution, water and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by column chromatography (1% triethylamine in hexane/ $\mathrm{AcOEt}=1 / 1$ to $1 / 2$) afforded a white mass, which was further purified by precipitation by pouring a concentrated solution of the mass in AcOEt to excess hexane under vigorous stirring. The precipitate was a white powder composed of an enantiomeric mixture of $\mathbf{2 0}$ ($37 \mathrm{mg}, 71 \%$): $\mathrm{Mp} 115-117{ }^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 148.96; MS (FAB) m/z $878\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HRMS (FAB) Calcd for $\mathrm{C}_{48} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{P}\left(\mathrm{M}+\mathrm{H}^{+}\right): 878.3894$. Found: 878.3864.

1-[3'-O-[2-Cyanoethoxy(diisopropylamino)phosphino]-5'-O-(4,4'-dimethoxytrityl)-2'-O,4'-C-(N-methylam inomethylene)- β-D-ribo-furanosyl]-5-methy-4-(1,2,4-traizol-1-yl)-2-pyrimidinone (22). Phosphoryl chloride ($86 \mu \mathrm{l}, 0.92 \mathrm{mmol}$) was added to a stirred suspension of $1,2,4$-triazole ($278 \mathrm{mg}, 4.03 \mathrm{mmol}$) in acetonitrile (9 ml) at $0{ }^{\circ} \mathrm{C},{ }^{6}$ and the whole was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . Triethylamine $(0.64 \mathrm{ml}, 4.62 \mathrm{mmol})$ was added and the

reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for an additional 35 min . A solution of compound 19 ($95 \mathrm{mg}, 0.12 \mathrm{mmol}$) in acetonitrile (3 ml) was added to the mixture and stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 5.5 h , and then at room temperature for 2.5 h . The reaction mixture was poured into saturated NaHCO_{3} (aq.) solution and extracted with AcOEt. The organic phase was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification by column chromatography (hexane/ $\mathrm{AcOEt}=$ $1 / 2)$ afforded a white powder, which was further purified by precipitation to give $22(83 \mathrm{mg}, 83 \%)$ as a white powder; Mp 107-109 ${ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR (acetone- d_{6}) $\delta 148.24,149.91$; MS (FAB) $\mathrm{m} / \mathrm{z} 853\left(\mathrm{M}+\mathrm{H}^{+}\right)$. HRMS (FAB) Calcd for $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{P}\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$: 853.3802. Found: 853.3766.

4. Optimization of reaction conditions for the synthesis of key intermediate 12:

Compound $\mathbf{1 2}$ was synthesized from compound $\mathbf{1 1}$ directly via one pot deprotection and cyclization to form a perhydro-1,2-oxazine ring. Optimization of the conditions for this reaction is summarized in Table SI-1. When the reaction was conducted for a very short period with hydrazine monohydrate, the free aminoxy derivative of 11 was obtained exclusively. However, increased amounts of hydrazine monohydrate and prolonged reaction time (entry 2) resulted in the formation of cyclized product 12. The use of anhydrous hydrazine improved the yield slightly, but a substantial amount of hydrazine was necessary. Employment of MeCN, THF or dichloromethane (entries 3 to 5 respectively) did not improve the yield. In contrast, $\mathbf{1 2}$ was obtained in good yield in pyridine (entry 6). In the presence of DBN or DABCO (entries 7-9), hydrazine was reduced to 1 equiv. to obtain the desired cyclized product in very good yield. Product $\mathbf{1 2}$ can also be obtained by using hydrazine
monohydrate (entry 10) instead of anhydrous hydrazine (which is toxic), albeit in lower yield

Table SI-1: Optimization of Reaction Condition for the Synthesis of Key Intermediate 5.

entry	reagent (s) (eq.)	solvent	conditions	yield
1	$\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (1.7 eq.)	EtOH	$\mathrm{rt}, 15 \mathrm{~min}$	$0 \%{ }^{a}$
2	$\mathrm{NH}_{2} \mathrm{NH}_{2} \bullet \mathrm{H}_{2} \mathrm{O}(20 \mathrm{eq} .)^{\text {b }}$	EtOH	rt, 24 h	38\%
2	$\mathrm{NH}_{2} \mathrm{NH}_{2}(10 \mathrm{eq})^{\text {b }}$	EtoH	rt, 34 h	44\%
3	$\mathrm{NH}_{2} \mathrm{NH}_{2}(10 \mathrm{eq})^{\text {b }}$	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{rt}, 36 \mathrm{~h}$	40\%
4	$\mathrm{NH}_{2} \mathrm{NH}_{2}(20 \mathrm{eq})^{\text {b }}$	THF	rt, 34 h	38\%
5	$\mathrm{NH}_{2} \mathrm{NH}_{2}(20 \mathrm{eq})$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{rt}, 28 \mathrm{~h}$	35\%
6	$\mathrm{NH}_{2} \mathrm{NH}_{2}(20 \mathrm{eq})$	pyridine	$\mathrm{rt}, 35 \mathrm{~h}$	64\%
7	$\mathrm{NH}_{2} \mathrm{NH}_{2}(5 \mathrm{eq})$, DBN (0.2 eq.)	pyridine	rt, 40 h	74\%
8	$\mathrm{NH}_{2} \mathrm{NH}_{2}$ (1.1 eq), DBN (1.0 eq)	pyridine	$\mathrm{rt}, 28 \mathrm{~h}$	66\%
9	$\mathrm{NH}_{2} \mathrm{NH}_{2}$ (1.1 eq), DABCO (2 eq. $)^{\text {c }}$	pyridine	$\mathrm{rt}, 40 \mathrm{~h}$	78\%
10	$\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{eq}), \mathrm{DABCO}(2 \mathrm{eq} .)^{\text {c }}$	pyridine	rt, 24 h	43\%

${ }^{a}$ Only deprotection of the phthalimide moiety occurred, giving only the free aminoxy derivative; ${ }^{3}{ }^{b}$ Reaction was started with a lower amount of hydrazine which was increased portionwise because a substantial amount of free aminoxy intermediate did not undergo cyclization. $\operatorname{DBN}=1,5$-diazabicyclo[4.3.0]non-5-ene; $\operatorname{DABCO}=$ 1,4-diazabicyclo[2.2.2]octane. ${ }^{c}$ Employment of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) gave lower yield.

5. References:

(1) Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.; Kumar, R.; Meldgaard, M.; Wengel, J. Tetrahedron 1998, 54, 3607.
(2) Koshkin, A. A.; Rajwanshi, V. K; Wengel, J. Tetrahedron Lett. 1998, 39, 4381.
(3) Rahman, S. M. A.; Seki, S. Obika, S.; Haitani, S.; Miyashita, K.; Imanishi, T. Angew.Chem Int. Ed. 2007, 46, 4306.
(4) Miyashita, K.; Rahman, S. M. A.; Seki, S. Obika, S.; Imanishi, T. Chem. Commun. 2007, 3765.
(5) Sing, S. K.; Nielsen, P.; Koshkin, A. A.; Wengel, J. Chem. Commun. 1998, 455.
(6) Scerr, M.; Klebba, C.; Hanner, A.; Ganser, A.; Engels, J. W. Biorg. Med. Chem. Lett. 1997, 7, 1751.
6. Complete reference of the reference 32 (in text):

Wahlestedt, C.; Salmi, P.; Good, L.; Kela, J.; Johnsson, T.; Hökfelt, T.; Broberger, C.; Porreca, F.; Lai, J.; Ren,
K.; Ossipov, M.; Koshkin, A.; Jakobsen, M.; Skouv, J.; Oerum, H.; Jacobsen, M. H.; Wengel, J. Proc. Natl. Acad.

Sci. USA 2000, 97, 5633.

Table S-2: Yield and MALDI-TOF Mass Data of $2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}[\mathrm{NH}]$, [NMe], [NBn] and 2’, 4^{\prime} - BNA (LNA)-Modified Oligonucleotides.

Oligonucleotides	2'4'- ${ }^{\text {BNA }}{ }^{\text {NC }}$ [NH]		2'4'-BNA ${ }^{\text {NC }}$ [NMe]		2'4'-BNA ${ }^{\text {NC }}$ [NBn]		2'4'-BNA (LNA)	
	Yield (\%)	Mass [M-H] (found/calcd)	Yield (\%)	Mass [M-H] (found/calcd)	Yield (\%)	Mass [M-H] (found/calcd)	Yield (\%)	Mass [M-H] (found/calcd)
5'-d(GCGTTTTTTGCT)-3' (24a -24d)	26	3675.8/3675.4	48	3688.5/3689.5	52	3765.4/3765.5	22	3660.8/3660.4
5'-d(GCGITTTTTGCT)-3' (25a-25d)	19	3762.6/3761.5	63	3804.9/3803.6	26	4031.4/4031.8	38	3016.9/3016.4
5'-d(GCGTTTTTTGCT)-3' (26a -26d)	8	3761.2/3761.5	34	3803.2/3803.6	19	4032.0/4031.8	35	3716.5/3716.4
5'-d(GCGTTTTTTGCT)-3' (27a -27d)	12	3890.6/3890.6	50	3975.3/3974.7	44	4430.7/4431.2	31	3800.7/3800.4
$5^{\prime}-\mathrm{d}\left(\right.$ TTTTT $\left.^{\mathrm{m}} \mathrm{CTIT}^{\text {m }} \mathrm{CT}^{\mathrm{m}} \mathrm{CT}^{\mathrm{m}} \mathrm{CT}\right)-3{ }^{\text {' (} 29 a-29 d)}$	30	4539.3/4539.1	36	4552.7/4553.1	44	4630.0/4629.1	28	4523.1/4523.0
	13	4625.7/4625.1	31	4667.4/4667.2	34	4894.8/4895.4	17	4580.8/4580.0
$5^{\prime}-\mathrm{d}\left(\right.$ TTTTT $\left.^{\mathrm{m}} \mathrm{CTTT}^{\mathrm{m}} \mathrm{CT}^{\mathrm{m}} \mathrm{CT}^{\mathrm{m}} \mathrm{CT}\right)-3{ }^{\text {3 }}$ (31a-31d)	28	4625.7/4625.1	30	4666.9/4667.2	28	4895.1/4895.4	26	4580.1/4580.0
5'-d $\left(\underline{\mathbf{T} T T T} \underline{\underline{T}}^{\mathrm{m}} \mathrm{CTT} \underline{\underline{m}}^{\mathrm{m}} \mathrm{CT}^{\mathrm{m}} \mathbf{C} \underline{\mathbf{m}}^{\mathrm{m}} \mathrm{CT}\right)-3^{\prime}(\mathbf{3 2 a}, \mathbf{b}, \mathbf{d})$	19	4668.5/4668.1	41	4723.7/4724.3		-	18	4608.8/4608.0
	25	4710.7/4710.1	13	4781.2/4781.3		-	18	4637.1/4636.0
	17	4797.8/4797.2	21	4896.4/4895.4		-	19	4691.3/4692.1
	4	5141.9/5141.4	13	5352.0/5351.8		-	11	4916.0/4916.1
$5{ }^{\text {'-d(TTTTTTTTTT }}$)-3' ($\mathbf{3 6 a} \mathbf{- 3 6 d}$)	28	3021.9/3022.0	50	3036.4/3036.1	51	3111.5/3112.1	57	3007.1/3007.0

39; $5^{\prime}-r(G C G U U U U U U G C T)-3^{\prime}$
37; $3^{\prime}-r(C G C A A A A A A C G A)-5^{\prime}$
23; 5'-d(GCGTTTTTTGCT) - 3^{\prime}
37 ; $3^{\prime}-r(C G C A A A A A A C G A)-5^{\prime}$
25c; 5'-d (GCGTTTTTTGCT) - 3^{\prime}
37; $3^{\prime}-r(C G C A A A A A A C G A)-5^{\prime}$
27c; 5-d (GCGTTTTTTGCT) - 3^{\prime}
37 ; $3^{\prime}-r(C G C A A A A A A C G A)-5^{\prime}$
25c;5-d(GCGTTTTTTGCT) - 3^{\prime}

39; 5-r (GCGUUUUUUGCT) - 3^{\prime}
38; 3-d (CGCAAAAAACGA) - 5^{\prime}

23; 5-d (GCGTTTTTTGCT) - 3^{\prime}
38; 3-d (CGCAAAAAACGA) - 5^{\prime}
25c; 5-d (GCGTTTTTTGCT) - 3^{\prime}
38; 3-d (CGCAAAAAACGA) - 5^{\prime}

27c; 5-d (GCGTTTTTTGCT) - 3^{\prime}
33; 3-d (CGCAAAAAACGA) - 5^{\prime}

$$
\mathbf{T}=2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}[\mathrm{~N}-\mathrm{Bn}]-\mathrm{T}
$$

Figure SI-1. CD Spectra of duplexes formed by $2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}[\mathrm{NBn}]$-modified oligonucleotides $\mathbf{2 5 c}$ and $\mathbf{2 7 c}$ with complementary RNA (37, Figure A) and DNA (38, Figure B). The spectra were compared with those of natural RNA duplex (39/37), DNA/RNA duplex (23/37), RNA/DNA duplex (39/38) and DNA duplex (23/38). Duplex concentration: $4 \mu \mathrm{M}$ in 10 mM sodium phosphate buffer (pH 7.2) containing 100 mM NaCl .

Figure SI-2. UV melting curves (T_{m} curves) for the duplexes formed by natural oligonucleotide 23 and $2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}[\mathrm{NH}]-$, [NMe]- [NBn]- and $2^{\prime}, 4^{\prime}-\mathrm{BNA}(\mathrm{LNA})-$ modified oligonucleotides 24a-d to 27a-d against the complementary ssRNA 37.

Figure SI-3. UV melting curves (T_{m} curves) for the duplexes formed by natural oligonucleotide 23 and $2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}[\mathrm{NH}]-$, [NMe]- [NBn]- and $2^{\prime}, 4^{\prime}$-BNA (LNA)-modified oligonucleotides 24a-d to 27a-d respectively, against the complementary DNA 38.

Figure SI-4. Mismatch discriminating studies. UV melting curves (T_{m} curves) for the duplexes formed by $2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}[\mathrm{NH}]-$, [NMe]- [NBn]- and $2^{\prime}, 4^{\prime}-\mathrm{BNA}(\mathrm{LNA})$-modified oligonucleotides 24a-d against match RNA target 37 and the mismatches RNAs; target RNAs $=5^{\prime}$-(AGCAAXAAACGC0-3'; $\mathbf{X}=\mathrm{A}$ (37), $\mathbf{X}=\mathrm{U}(\mathbf{U}$-RNA), $\mathbf{X}=\mathrm{G}(\mathbf{G}-R N A), \mathbf{X}=\mathrm{C}(\mathbf{C}-R N A)$.

Figure SI-5. UV melting curves (T_{m} curves) for the triplexes formed by natural TFO 28 and $2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}[\mathrm{NH}]-$, [NMe]- [NBn]- and $2^{\prime}, 4^{\prime}$-BNA (LNA)-modified TFOs 29a-d to 31a-d, respectively, against 21 mer dsDNA in the absence of Mg^{2+}. Target dsDNA $=5$ ' d (GCTAAAAAGAAAGAGAGATCG) -3 / 3'-d(CGATTTTTCTTTCTCTCTAGC)-5'; conditions: 7 mM sodium phosphate buffer (pH 7.0) containing 140 mM KCl ; strand concentration $=1.5 \mu \mathrm{M}$.

Figure SI-6. UV melting curves (T_{m} curves) for the triplexes formed by $2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}[\mathrm{NH}]-$, $[\mathrm{NMe}]$ - and $2^{\prime}, 4^{\prime}$-BNA (LNA)-modified TFOs 32a,b,d to 35a,b,d, respectively, against 21 mer dsDNA in the absence of Mg^{2+}. Target dsDNA $=5$ 'd-(GCTAAAAAGAAAGAGAGATCG)-3 / 3'-d(CGATTTTTCTTTCTCTCTAGC)-5'; conditions: 7 mM sodium phosphate buffer (pH 7.0) containing 140 mM KCl ; strand concentration $=1.5 \mu \mathrm{M}$.

Figure SI-7. UV melting curves (T_{m} curves) for the triplexes formed by natural TFO 28 and $2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}[\mathrm{NH}]-,[\mathrm{NMe}]-$, [NBn]- and $2^{\prime}, 4^{\prime}$-BNA (LNA)-modified TFOs 29a-d to 31a-d, respectively, against 21 mer dsDNA in the presence of Mg^{2+}. Target dsDNA = 5'd-(GCTAAAAAGAAAGAGAGATCG)-3 / 3'-d(CGATTTTTCTTTCTCTCTAGC)-5'; conditions: 7 mM sodium phosphate buffer (pH 7.0) containing 140 mM KCl and 10 mM MgCl 2 ; strand concentration $=1.5$ $\mu \mathrm{M}$.

Figure SI-8. Mismatch discrimination studies. UV melting curves (T_{m} curves) for the triplexes formed by $2^{\prime}, 4^{\prime}-\mathrm{BNA}^{\mathrm{NC}}[\mathrm{NH}]-$, [NMe]- and $2^{\prime}, 4^{\prime}$-BNA (LNA)-modified TFOs 29a, 29b and 29d, respectively, against 21 mer dsDNAs having various arrangements at the center. Target dsDNA $=5$ 'd-(GCTAAAAAGAXXAGAGAGATCG)-3 / $3^{\prime}-\mathrm{d}\left(\right.$ CGATTTTTCTYTCTCTCTAGC) $-5^{\prime} ; \mathbf{X}: \mathbf{Y}=\mathrm{A}: \mathbf{T}$ (match target), $\mathbf{X}: \mathbf{Y}=\mathrm{G}: \mathrm{C}, \mathrm{C}: \mathbf{G}$ or T:A (mismatched targets). Conditions: 7 mM sodium phosphate buffer (pH 7.0) containing 140 mM KCl and $10 \mathrm{mM} \mathrm{MgCl}_{2}$; strand concentration $=1.5 \mu \mathrm{M}$.
F: \yk001\yk001.nmdata H Line
Tue Aug 21 17:52:56 2007
1 H 등

Figure SI-9: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 3

Figure SI-10: ${ }^{13} \mathrm{C}$-NMR spectrum of compound 3

Figure SI－11：${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 5
E：$\backslash 12 b n 13 C \backslash y k 004$. nmdata
1H Line
Tue Aug 21 20：10：49 2007
13C

$$
\begin{aligned}
& \begin{array}{l}
0 \\
0 \\
2 \\
2
\end{array}
\end{aligned}
$$

出
CDCL3

DFILE

WIL甘C
惑

\qquad

Figure SI－12：${ }^{13} \mathrm{C}$－NMR spectrum of compound 5

Figure SI-13: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 6

Figure SI-14: ${ }^{13} \mathrm{C}$-NMR spectrum of compound 6

F: \1

Figure SI-15: ${ }^{1} \mathrm{H}$-NMR spectrum of compound 7
DFILE $\mathrm{F}: \backslash 14 \mathrm{bn} 13 \mathrm{C} \backslash \mathrm{yk} 007 . \mathrm{nmdata}$

LOOZ 乙ォ：โて：0Z Tع 6nษ Țォ | E |
| :--- |
| 〇 |

125.65 MHz
120.00 KHz
7958.00 Hz
16384
30030.03 Hz
1700
0.5456 sec
2.4544 sec
8.00 usec

$\begin{array}{ll} & \begin{array}{c}\text { m } \\ \text { 画 } \\ \text { U }\end{array}\end{array}$

Figure SI－16：${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 7
E: \NCBN-1 \yk010.nmdata
LOOZ 8E:LS:8T 0Z qəă əụ̣T
20 18:57:38 2007 I

出
CDCL3

Figure SI-17: ${ }^{1}$ H-NMR spectrum of benzyl derivative of $\mathbf{1 2}$

$$
\begin{aligned}
& 125.65 \mathrm{MHz} \\
& 120.00 \mathrm{KHz} \\
& 7958.00 \mathrm{~Hz} \\
& 16384 \\
& 30030.03 \mathrm{~Hz} \\
& 900 \\
& 0.5456 \mathrm{sec} \\
& 2.4544 \mathrm{sec} \\
& 8.00 \mathrm{usec}
\end{aligned}
$$

Figure SI-18: ${ }^{13} \mathrm{C}$-NMR spectrum of benzyl derivative of $\mathbf{1 2}$
E: $\backslash \mathrm{NCBN}-2 ; 1 \mathrm{H} \backslash \mathrm{yk} 008$. nmdata

Figure SI-19: ${ }^{1} \mathrm{H}$-NMR spectrum of compound 14
E: \NCBN-213C\yk007.nmfid
1H Line
Tue Feb 20 20:44:57 2007 \qquad
 1H
Ô
Ô

Figure SI-20: ${ }^{13} \mathrm{C}$-NMR spectrum of compound 14

Figure SI-21: ${ }^{1} \mathrm{H}$-NMR spectrum of compound 17

Figure SI-22: ${ }^{13} \mathrm{C}$-NMR spectrum of compound 17

Figure SI-23: ${ }^{31}$ P-NMR spectrum of compound 18

Figure SI-25: ${ }^{31}$ P-NMR spectrum of compound 20

```
E: \106(21) 31P\yk001.nmdata
Feb呂品
```


Figure SI-26: ${ }^{31}$ P-NMR spectrum of compound $\mathbf{2 1}$

Figure SI-27: ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of compound 22

Figure SI-28. pH Titration curve-1: dependence of ${ }^{1} \mathrm{H}$ chemical shifts of 2',4'-BNA ${ }^{\mathrm{NC}}$ [NH] monomer upon changes of pH .

Figure SI-29. pH Titration curve-2: dependence of ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ chemical shifts of 2',4'-BNA ${ }^{\mathrm{NC}}$ [NH] monomer upon changes of pH

