Total Synthesis of the *Strychnos* Alkaloid (+)-Minfiensine: Tandem Enantioselective Intramolecular Heck–Iminium Ion Cyclization

Amy B. Dounay, Philip G. Humphreys, Larry E. Overman,* and Aaron D. Wrobleski

Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697–2025, USA

Supporting Information – Table of Contents

Experimental Procedures	S1
References ¹ H and ¹³ C NMR Spectra	

For materials and methods, see: Becker, M. H.; Chua, P.; Downham, R.; Douglas, C. J.; Garg, N. K.; Hiebert, S.; Jaroch, S.; Matsuoka, R. T.; Middleton, J. A.; Ng, F. W.; Overman, L. E. J. Am. Chem. Soc. **2007**, *129*, 11987–12002.

Experimental Procedures.

Enone 15. A mixture of 13^1 (19.1 g, 71.4 mmol), enone 14^2 (15.6 g, 86.1 mmol), benzene (180 mL), and *p*-toluenesulfonic acid mono hydrate (14.9 g, 78.3 mmol) was heated at 50 °C under Ar for 2 h, during which time the solution became homogeneous. The mixture was cooled to rt, diluted with EtOAc (100 mL), and washed with saturated aqueous NaHCO₃ (2 × 100 mL). The separated organic layer was washed with brine (100 mL), dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% EtOAc/hexanes) gave 15 (24.4 g, 67.8 mmol, 95%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 7.23 (dd, J = 8.0, 1.5 Hz, 1H), 6.99 (s, 1H), 6.89 (ddd, J = 15.0, 8.0, 1.5 Hz, 2H), 6.74 (ddd, J = 8.0, 8.0, 1.5 Hz, 1H), 6.46 (t, J = 5.0 Hz, 1H), 2.58 (t, J = 6.0 Hz, 2H), 2.49 (q, J = 6.0 Hz, 2H), 2.03 (dddd, J = 6.0, 6.0, 6.0, 6.0 Hz, 2H), 1.35 (m, 3H), 1.14 (d, J = 7.5 Hz, 18 H); ¹³C NMR (125 MHz, CDCl₃) δ 195.6, 145.5, 136.1, 133.6, 121.2, 120.1, 118.1, 116.6, 116.1, 38.0, 25.0, 23.1, 18.2, 13.2; IR (neat) 3377, 2944, 2867, 1679, 1596, 1522, 1476 cm⁻¹; HRMS (CI) calcd for C₂₁H₃₃NO₂SiH [M + H]: 359.2281. Found: 359.2278.

Carbamate 16. n-BuLi (2.48 M in hexanes, 26.9 mL, 66.7 mmol) was added dropwise over 10 min to a stirring solution of HMDS (13.9 mL, 66.7 mmol) in THF (90 mL) at -78 °C under Ar. Following warming to rt over 30 min, the solution was added dropwise via cannula over 1 h to a stirring solution of 15 (8.0 g, 22.3 mmol), methyl cyanoformate (6.90 mL, 89.0 mmol) and THF (70 mL) at -78 °C under Ar. After 15 min, saturated aqueous NH₄Cl (20 mL) was added. The resultant mixture was warmed to rt and diluted with EtOAc (100 mL). The separated aqueous phase was washed with EtOAc $(3 \times 100 \text{ mL})$ and the combined organic phase was washed with brine (100 mL), dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to 15% EtOAc/hexanes) gave 16 (8.3 g, 19.9 mmol, 89%) as a cream solid: mp 110-112 °C; ¹H NMR (500 MHz, C₆D₆, 60 °C)³ δ 7.54 (d, J = 7.5 Hz, 1H), 6.94 (ddd, J = 9.0, 9.0, 1.5 Hz, 1H), 6.85 (m, 2H), 6.74 (ddd, J = 8.5, 8.5, 1.0 Hz, 1H), 3.48 (s, 3H), 2.24 (br s, 2H), 1.75 (br s, 2H), 1.41 (br s, 2H), 1.30 (m, 3H), 1.15 (d, J = 7.5 Hz, 18 H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 193.6, 155.4, 153.1, 143.4, 142.4, 134.8, 130.8, 128.7, 122.0, 119.3, 52.9, 39.0, 25.9, 23.1, 18.6, 13.8; IR (neat) 2946, 2867, 1721, 1692, 1596, 1499, 1439, 1333 cm⁻¹; HRMS (CI) calcd for C₂₃H₃₅NO₄SiH [M + H]: 418.2414. Found: 418.2400.

Triflate 18. NaHMDS (1.0 M in THF, 48.3 mL, 48.3 mmol) was added dropwise to a solution of **16** (13.5 g, 32.3 mmol), 2-[*N*,*N*-bis(trifluoromethylsulfonyl)amino]-5-chloropyridine (**17**) (19.0 g, 48.3 mmol), and THF (300 mL) at -78 °C under Ar. After 15 min, saturated aqueous NaHCO₃ (75 mL) was added, the mixture was warmed to rt, and extracted with EtOAc (200 mL). The separated aqueous phase was washed with additional EtOAc (100 mL) and the combined organic phases were washed with brine (150 mL), dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to 20% EtOAc/hexanes) gave **18** (14.5 g, 26.4 mmol, 82%) as a pale yellow solid: ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.50 (d, *J* = 7.5 Hz, 1H), 6.94 (ddd, *J* = 8.0, 8.0, 1.5 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 6.74 (t, *J* = 7.5 Hz, 1H), 5.62 (m, 2H), 3.50 (s, 3H), 1.70 (m, 4H), 1.24 (m, 3H), 1.10 (d, *J* = 7.5 Hz, 18H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 152.9, 143.6, 130.0, 128.7, 128.3, 128.0, 127.7, 121.9, 119.7 (q, *J*_{C,F} = 319 Hz), 119.0, 116.4, 53.3, 22.1, 22.0, 18.7, 13.9; IR (neat) 2948, 2869, 1729, 1598, 1499, 1420, 1320 cm⁻¹; HRMS (ESI) calcd for C₂₄H₃₄F₃NO₆SSiH [M + H]: 550.1907. Found: 550.1890.

Biscarbamate 20. 9-BBN (0.5 M in THF, 32 mL, 16 mmol) was added dropwise over 15 min to a solution of *N*-vinyl-*tert*-butyl carbamate $(19)^4$ (2.1 g, 14.6 mmol) in THF (45 mL) at 0 °C under Ar. The reaction was allowed to warm to rt over a period of 1 h, then maintained at rt for an additional 15 h. An aqueous solution of NaOH (15 mL of a 3.0 M solution, 45 mmol) was added, and the resulting mixture was degassed by sparging with Ar through a submerged needle for 45 minutes. The mixture was transferred via cannula to a degassed solution of **18** (4.0 g, 7.3 mmol), PdCl₂(dppf) (715 mg, 0.87 mmol), and THF (45 mL) at rt. After 40 min, the reaction mixture was cooled to 0 °C, and pH 7 buffer solution (50 mL) was added followed by slow addition of 30% aqueous H_2O_2 (50 mL). When gas evolution slowed, the mixture was warmed to room temperature. After an additional 30 min at rt, saturated aqueous NH₄Cl (50 mL) was added, the mixture was extracted with EtOAc (2 × 75 mL), and the combined organic extracts were washed with brine (75 mL), dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% EtOAc/hexanes) gave **20** (2.8 g, 5.2 mmol, 71%) as a colorless foam: ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.21(d, *J* = 7.5 Hz, 1H), 6.94 (t, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.76 (t, *J* = 7.5 Hz, 1H), 5.78 (s, 1H), 5.56 (s, 1H), 3.51 (s, 3H), 3.36 (s, 2H), 2.41 (s, 2H), 1.85 (s, 4H), 1.45 (s, 9H), 1.28 (m, 3H), 1.14 (d, *J* = 7.0 Hz, 18H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 156.3, 152.8, 134.4, 129.2, 128.9, 128.7, 128.5, 128.3, 125.0, 122.8, 121.7, 119.2, 78.8, 52.9, 40.8, 31.7, 29.0, 23.1, 22.7, 18.7, 13.9; IR (neat) 3363, 2946, 2869, 1715, 1499, 1441, 1335 cm⁻¹; HRMS (CI) calcd for C₃₀H₄₈N₂O₅Si: 544.3333. Found: 544.3326.

Triflate 21. CsF (13.8 g, 90.8 mmol) was added to a stirring solution of **20** (9.9 g, 18.2 mmol) and 2-[*N*,*N*-bis(trifluoromethylsulfonyl)amino]-5-chloropyridine (**17**) (14.3 g, 36.2 mmol) in anhydrous DMF (150 mL) under Ar.⁵ Following stirring for 3 min, crushed cesium carbonate (24.0 g, 73.6 mmol) was added and the resultant suspension was stirred vigorously for 15 min. Saturated aqueous NH₄Cl (100 mL) was added, the mixture was diluted with Et₂O (100 mL), and the separated aqueous phase was extracted with Et₂O (3 × 100 mL). The combined organic extracts were washed with brine (3 × 100 mL), dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (15% to 25% EtOAc/hexanes) gave **18** (8.90 g, 17.1 mmol, 94%) as a colorless foam: ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.18–7.13 (m, 2H), 6.84 (ddd, *J* = 7.5, 7.5, 1.5 Hz, 1H), 6.70 (ddd, *J* = 8.5, 8.5, 1.5 Hz, 1H),

5.76 (t, J = 4.5 Hz, 1H), 5.54 (m, 1H), 4.42 (s, 1H), 3.54 (s, 3H), 3.28 (q, J = 6.5 Hz, 2H), 2.27 (t, J = 7.0 Hz, 2H), 1.83 (m, 4H), 1.45 (s, 9H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 156.3, 155.1, 145.7, 140.3, 136.3, 133.6, 129.0, 128.9, 128.0, 126.0, 125.9, 122.2, 119.6 (q, $J_{C,F} = 318$ Hz), 78.9, 53.6, 40.6, 31.8, 28.9, 23.1, 22.5; IR (neat) 3436, 3363, 3037, 2977, 1713, 1675, 1493, 1422, 1329 cm⁻¹; HRMS (CI) calcd for C₂₂H₂₇F₃N₂O₇Si: 520.1491. Found: 520.1483.

Dihydrocarbazole 25. Toluene was sparged with Ar for 30 min prior to use in this reaction. A microwave reaction tube containing $Pd(OAc)_2$ (5 mg, 23 µmol) and (S)-4-*tert*-butyl-2-[2-(diphenylphosphinyl)phenyl]-4,5-dihydrooxazole (**26b**)⁶ (27 mg, 69 µmol) under Ar was charged with a solution of 21 (120 mg, 0.23 mmol), toluene (1.5 mL), and 1,2,2,6,6-pentamethylpiperidine (170 µL, 0.92 mmol). After stirring at rt for 10 min, the reaction mixture was microwave-heated (CEM Discover System, 60 Hz and 300 W instrument) at 170 °C for 45 min. Following cooling, the reaction mixture was concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to 20% EtOAc/hexanes) gave 25 (74 mg, 0.20 mmol, 87%) as a colorless foam: $[\alpha]_{589}$ +94.1, $[\alpha]_{577}$ +98.9, $[\alpha]_{546}$ +114, $[\alpha]_{435}$ +229 (c 3.7, CHCl₃); ¹H NMR (500 MHz, C_6D_6 , 60 °C) δ 8.00 (d, J = 8.0 Hz, 1H), 7.08 (ddd, J = 8.0, 8.0, 1.5 Hz, 1H), 6.98 (d, J = 7.5 Hz, 1H), 6.89 (t, J = 7.5 Hz, 1H), 6.15 (d, J = 5.5 Hz, 1H), 6.00 (dd, J = 9.5, 3.0 Hz, 1H), 5.71 (dd, J = 9.0, 4.5 Hz, 1H), 3.90 (br s, 1H), 3.52 (s, 3H), 2.95 (m, 2H), 2.61 (dddd, J = 22.0, 2.0, 2.0, 2.0, Hz, 1H), 2.48 (ddd, J = 22.0, 5.5, 5.5 Hz, 1H), 1.50 (t, J = 7.5 Hz, 2H), 1.39 (s, 9H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 155.9, 153.5, 143.9. 141.8. 135.9. 129.8. 128.9. 127.3. 124.0. 122.4. 116.5. 108.1. 78.8. 52.7. 47.4. 44.2, 37.4, 28.9, 27.6; IR (neat) 3375, 2974, 1715, 1514, 1475 cm⁻¹; HRMS (CI) calcd for C₂₁H₂₆N₂O₄: 370.1893. Found: 370.1886.

Iminoethanocarbazole 27. Trifluoroacetic acid (0.16 mL, 2.1 mmol) was added to a stirring solution of 25 (260 mg, 0.70 mmol) and CH₂Cl₂ (8 mL) at 0 °C under Ar. After 30 min, saturated aqueous NaHCO₃ (10 mL) was added. The separated aqueous phase was washed with CH₂Cl₂ (15 mL), and the combined organic fractions were washed with brine (15 mL), dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to 20%) EtOAc/hexanes) gave 27 (220 mg, 0.59 mmol, 85%) as a colorless foam: $[\alpha]_{589}$ -41.8, $[\alpha]_{577}$ -44.1, $[\alpha]_{546}$ -49.8, $[\alpha]_{435}$ -86.6, $[\alpha]_{405}$ -110 (c 1.0, CHCl₃); ¹H NMR (500 MHz, C_6D_6 , 60 °C) δ 8.13 (d, J = 8.0 Hz, 1H), 7.09 (ddd, J = 7.5, 7.5, 1.5 Hz, 1H), 6.90 (dd, J= 7.5, 1.5 Hz, 1H), 6.86 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 5.54 (ddd, J = 10.0, 4.0, 4.0 Hz, 1H), 5.47 (ddd, J = 10.0, 2.0, 2.0 Hz, 1H), 3.65 (s, 3H), 3.47 (m, 1H), 3.11 (ddd, J = 10.5, 9.0, 7.5 Hz, 1H), 3.03 (ddd, J = 13.5, 5.5, 5.5 Hz, 1H), 2.40 (ddd, J = 13.5, 8.0, 5.0 Hz, 1H), 2.11 (m, 1H), 2.02 (m, 1H), 1.85 (ddd, J = 12.5, 7.5, 3.5 Hz, 1H), 1.67 (ddd, J =12.5, 8.5, 8.5 Hz, 1H), 1.43 (s, 9H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 155.1, 153.8, 142.6, 135.3, 128.9, 128.7, 127.1, 123.6, 122.6, 117.8, 99.4, 79.7, 57.0, 52.3, 47.1, 35.5, 29.0, 28.8, 23.5; IR (neat) 2975, 1706, 1480, 1439, 1378 cm⁻¹; HRMS (CI) calcd for C₂₁H₂₆N₂O₄: 370.1893. Found: 370.1895. HPLC (Daicel Chiracel OD-H column, column temperature 23 °C, *n*-hexane/*i*-propanol = 98:2, flow rate 1.0 mL·min⁻¹): 6.7 min (minor enantiomer), 14.1 min (major enantiomer), 99% ee. See page S47 for chiral HPLC traces

Generation of 27 by a Cascade Sequence: A solution of triflate 21 (96 mg, 0.19 mmol) and toluene (1.2 ml) in a 10 mL microwave reaction vessel was sparged with Ar for 10 min. To this solution was added $Pd(OAc)_2$ (6.4 mg, 0.028 mmol), (*S*)-4-*tert*-butyl-2-[2-(diphenylphosphinyl)phenyl]-4,5-dihydrooxazole (26b)⁶ (33 mg, 0.084 mmol), and 1,2,2,6,6-pentamethylpiperidine (105 µl, 0.57 mmol). The reaction was then degassed for an additional 20 min. This solution was subsequently heated with stirring in a

microwave reactor (CEM Discover System, 60 Hz and 300 W instrument) at 170 °C for 30 min. The reaction was then cooled to 0 °C, and to it was added a 0 °C solution of trifluoroacetic acid (0.17 ml, 2.28 mmol) in CH_2Cl_2 (2 ml). After stirring for 15 min at this temperature, the reaction was poured into saturated aqueous NaHCO₃. The isolated organic layer was dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (15% EtOAc/hexanes) gave tetracycle **27** (51 mg, 0.14 mmol, 75%) as a colorless oil: [α]₅₈₉–41.8.

Epoxide 34. *m*-chloroperoxybenzoic acid (400 mg of 70% purity reagent, 1.6) mmol) was added to a stirring solution of 27 (240 mg, 0.65 mmol) in CH₂Cl₂ (7 mL) at 0 °C and the reaction mixture was slowly warmed to rt over 30 min. After 2 h, the reaction was cooled to 0 °C, and another portion of *m*-chloroperoxybenzoic acid (400 mg of 70%) purity reagent, 1.6 mmol) was added. The reaction mixture was allowed to warm to rt over 30 min. After 2.5 h, the reaction was diluted with H_2O (10 mL) and Et_2O (20 mL). The separated organic phase was washed with 1 M NaOH (3×10 mL) and brine (10 mL), dried (Na_2SO_4), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to 20% EtOAc/hexanes) gave 34 (217 mg, 0.56 mmol, 87%) as a colorless crystalline solid: mp 178–180 °C; $[\alpha]_{589}$ –79.3, $[\alpha]_{577} - 82.8, [\alpha]_{546} - 94.6, [\alpha]_{435} - 166, [\alpha]_{405} - 209 (c 2.1, CHCl_3); {}^{1}H NMR (500 MHz,$ C_6D_6 , 60 °C) δ 8.14 (d, J = 8.0 Hz, 1H), 7.08 (m, 1H), 6.86 (m, 2H), 3.70 (s, 3H), 3.54 (ddd, J = 14.0, 3.5, 3.5 Hz, 1H), 3.36 (t, J = 9.0 Hz, 1H), 2.85 (ddd, J = 12.0, 9.5, 6.5 Hz)1H), 2.80 (d, J = 3.5 Hz, 1H), 2.78 (m, 1H), 2.33 (ddd, J = 12.0, 12.0, 8.5 Hz, 1H), 1.90–1.83 (m, 3H), 1.73 (ddd, J = 13.5, 11.0, 5.5 Hz, 1H), 1.34 (s, 9H); ¹³C NMR (125) MHz, C₆D₆, 60 °C) & 155.6, 153.6, 145.1, 132.2, 129.8, 128.9, 123.8, 123.3, 117.8, 86.9, 79.9, 56.5, 55.2, 53.5, 52.5, 45.8, 30.2, 28.9, 24.6, 22.5; IR (neat) 2977, 1702, 1602, 1478, 1437, 1382, 1358 cm⁻¹; HRMS (CI) calcd for C₂₁H₂₆N₂O₅: 386.1842. Found: 386.1842.

Epoxide 35. *m*-chloroperoxybenzoic acid (215 mg of 70% purity reagent, 0.88 mmol) was added to a stirred solution of racemic **33** (140 mg, 0.35 mmol) in CH₂Cl₂ (4 mL) at 0 °C, and the reaction mixture was allowed to warm to rt. After 1 h at rt, the reaction was re-cooled to 0 °C, and another portion of *m*-chloroperoxybenzoic acid (140 mg of 70%) purity reagent, 0.88 mmol) was added. The reaction mixture was allowed to warm to rt and the reaction was stirred for 1 h at rt. The reaction was then diluted with H₂O (10 mL) and Et₂O (20 mL). The separated organic phase was washed with 1 M NaOH (3×10 mL) and brine (10 mL), dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to 20%) EtOAc/hexanes) gave **35** (85 mg, 0.14 mmol, 58%) as a colorless crystalline solid⁷: mp 185–187 °C; ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 8.08 (d, J = 8.8 Hz, 1H), 6.65–6.63 (m, 2H), 3.71 (s, 3H), 3.55 (dt, J = 13.9, 3.2 Hz, 1H), 3.36 (br s, 4H), 2.91–2.85 (m, 1H), 2.80-2.78 (m, 2H), 2.33-2.26 (m, 1H), 1.92-1.82 (m, 2H), 1.72 (ddd, J = 16.8, 11.9, 4.9Hz, 1H), 1.36 (s, 9H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 157.5, 155.1, 153.8, 138.8, 133.9, 118.9, 114.5, 110.3, 87.2, 80.1, 56.6, 55.9, 55.5, 53.7, 52.6, 45.9, 30.3, 29.1, 24.8, 22.8; IR (neat) 2949, 1698, 1486, 1436, 1382, 1359 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₈N₂O₆Na: 439.1845. Found: 439.1849.

Allylic Alcohol 36. Following a general procedure,⁸ a bulk solution of NaSePh was prepared by addition of two portions of NaBH₄ (12 mg, 0.32 mmol each) to a stirring yellow suspension of Ph₂Se₂ (50 mg, 0.16 mmol) in absolute ethanol (1.5 mL, degassed by sparging with Ar for 30 min prior to use) at 0 °C. The reaction mixture was warmed to rt over 20 min and maintained at rt for 20 min until the solution became colorless, indicating complete reduction of Ph₂Se₂. A solution of **34** (22 mg, 57 µmol) and THF

(0.5 mL, degassed by sparging with Ar for 30 min prior to use) under Ar at rt was charged with a portion of the bulk NaSePh solution (0.5 mL, 50 mmol). The reaction mixture was heated to 60 °C and maintained at this temperature for 2 h. An additional portion of NaSePh solution (0.25 mL, 25 mmol) was added. Two additional portions of NaBH₄ (5 mg each) were added at 2 h intervals over the next 4 h to maintain a colorless reaction mixture and reduce any Ph₂Se₂ that formed during the course of the reaction. The reaction mixture was cooled to 0 °C, and 30% H₂O₂ (0.5 mL) was added dropwise. After 20 min, the reaction mixture was warmed to rt and maintained at this temperature for ca. 30 min, until gas evolution ceased. TLC analysis showed complete consumption of the alkylselenide intermediate. The reaction mixture was heated at 60 °C for 1.5 h. The reaction mixture was cooled to rt and diluted with H₂O (1 mL) and Et₂O (3 mL). The separated aqueous layer was extracted with Et_2O (3 × 3 mL). The combined organic fractions were washed with saturated aqueous NaHCO₃ (3×3 mL), brine (5 mL), dried (Na_2SO_4) , filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to 20% EtOAc/hexanes) gave 36 (11 mg, 28 mmol, 50%) as a colorless foam. Note: See preparation of 44 for an improved procedure. [α]₅₈₉ -98.6, [α]₅₇₇ -104, [α]₅₄₆ -118, [α]₄₃₅ -206, [α]₄₀₅ -259 (*c* 1.1, CHCl₃); ¹H NMR $(500 \text{ MHz}, \text{C}_6\text{D}_6, 60 \text{ °C}) \delta 8.22 \text{ (d}, J = 8.0 \text{ Hz}, 1\text{H}), 7.35 \text{ (d}, J = 7.0 \text{ Hz}, 1\text{H}), 7.14 \text{ (dd}, J = 7.0 \text{ Hz}, 1\text{H})$ 8.0, 7.5 Hz, 1H), 6.90 (t, J = 7.5 Hz, 1H), 5.82 (m, 1H), 5.59 (ddd, J = 9.5, 2.5, 2.5 Hz, 1H), 4.28 (dd, J = 15.0, 6.5 Hz, 1H), 3.99 (s, 1H), 3.75 (dd, J = 11.5, 7.5 Hz, 1H), 3.63 (s, 3H), 2.83 (ddd, J = 11.5, 11.5, 4.5 Hz, 1H), 2.37 (m, 1H), 1.95 (ddd, J = 12.0, 12.0, 7.5 Hz, 1H), 1.70 (dd, J = 12.0, 5.0 Hz, 1H), 1.42 (s, 9H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 153.8, 152.4, 143.6, 134.6, 133.7, 128.8, 126.6, 124.1, 123.4, 115.7, 91.1, 79.3, 73.2, 64.5, 51.9, 46.2, 34.3, 31.3, 28.5; IR (neat) 3464, 2977, 2854, 1711, 1690, 1484, 1389 cm^{-1} ; HRMS (ESI) calcd for C₂₁H₂₆N₂O₅Na [M + Na]: 409.1740. Found: 409.1736.

Indole 38: NaH (60% dispersion in mineral oil, 8 mg, 0.22 mmol) was added to a stirring solution of alcohol **36** (17 mg, 0.044 mmol) and THF (0.5 mL) at 0 °C under Ar. The reaction was allowed to warm to rt over 10 min and then re-cooled to 0 °C. To this was added benzyl bromide (13 μ l, 0.11 mmol) and tetrabutylammonium iodide (6 mg, 0.016 mmol), and the reaction was warmed to rt and stirred for 3 h. The reaction was quenched with saturated aqueous NH₄Cl and extracted with EtOAc. The combined organic extract was washed with brine, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (15% hexanes/Et₂O) gave **37** (14 mg, 0.030 mmol, 67%) as a clear, colorless oil: ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 8.25 (d, *J* = 8.1 Hz, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.21–7.09 (m, 6H), 6.89 (t, *J* = 7.6 Hz, 1H), 5.97–5.92 (m, 1H), 5.84 (dt, *J* = 9.5, 2.4 Hz, 1H), 4.44 (d, *J* = 11.7 Hz, 1H), 4.38 (dd, *J* = 14.9, 6.6 Hz, 1H), 4.29 (d, *J* = 11.7 Hz, 1H), 3.96 (br s, 1H), 3.79 (dd, *J* = 11.2, 7.6, 1H), 3.65 (s, 3H), 2.87–2.82 (m, 1H), 2.49 (d, *J* = 15.2 Hz, 1H), 2.22–2.15 (m, 1H), 1.82 (dd, *J* = 12.5, 5.1 Hz, 1H), 1.43 (s, 9H).

Trifluoroacetic acid (25 µL, 20 eq) was added to a stirred solution of benzyl ether **38** (8 mg, 0.017 mmol) in CH₂Cl₂ (0.5 mL) at 0 °C. Following stirring for 10 min at 0 °C, saturated aqueous NaHCO₃ was added. The aqueous phase was then extracted with EtOAc, and the combined organic extract was washed with brine, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (20% to 35% EtOAc/hexanes) gave **38** (6 mg, 0.016 mmol, 92%) as a clear, colorless oil. ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 9.33 (d, *J* = 7.5 Hz, 1H), 8.08 (d, *J* = 8.3 Hz, 1H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.18 (dt, *J* = 1.3, 7.2 Hz, 1H), 7.10–7.14 (m, 1H), 6.42 (dt, *J* = 6.0, 15.7 Hz, 1H), 5.96 (ddt, *J* = 1.6, 7.5, 15.7 Hz, 1H), 3.97 (br s, 1H), 3.65 (dd, *J* = 1.5, 6.0 Hz, 2H), 3.33 (s, 3H), 3.01 (q, *J* = 6.7 Hz, 2H), 2.54 (t, *J* = 7.0 Hz, 2H), 1.38 (s, 9H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 191.8, 153.4, 151.7, 136.0, 133.1, 132.6, 129.8, 128.2, 124.4, 123.0, 118.6, 118.2, 115.9, 78.5, 52.5, 40.5, 29.4, 28.1, 24.6;

IR (neat) 3382, 1735, 1688 cm⁻¹; HRMS (ESI) calcd for $C_{21}H_{26}N_2O_5Na$ [M + Na]: 409.1740. Found: 409.1743.

Epoxide 42. Trifluoroacetic acid (3.2 mL) was added to a stirring solution of 34 (500 mg, 1.29 mmol) in CH₂Cl₂ (16 mL) at 0 °C under Ar. The cooling bath was removed, and the reaction mixture was allowed to warm to rt for 2.5 h. The reaction mixture then was cooled to 0 °C and saturated aqueous NaHCO₃ (40 mL) was added dropwise. The mixture was diluted with EtOAc (100 mL), and the separated organic phase was washed with brine (50 mL), dried (Na_2SO_4), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (50%) EtOAc/hexanes) gave 42 (360 mg, 1.26 mmol, 98%) as a colorless oil: $[\alpha]_{589}$ –146, $[\alpha]_{577}$ -153, $[\alpha]_{546} - 176$, $[\alpha]_{435} - 330$, $[\alpha]_{405} - 431$ (c 1.0, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.94 (d, J = 7.0 Hz, 1H), 7.10 (ddd, J = 6.5, 6.5, 2.0 Hz, 1H), 6.88 (m, 2H), 3.48 (s, 3H), 3.08 (d, J = 4.0 Hz, 1H), 2.77 (t, J = 8.5 Hz, 1H), 2.71 (m, 1H), 2.68 (ddd, J = 7.0, 7.0, 2.0 Hz, 1H), 2.61 (br s, 1H), 2.50 (ddd, J = 10.0, 9.0, 5.0 Hz, 1H), 2.39 (ddd, J =12.5, 11.5, 7.0 Hz, 1H), 2.02 (ddd, J = 13.5, 13.5, 4.0 Hz, 1H), 1.84 (ddd, J = 11.5, 5.0, 1.0 Hz, 1H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 154.2, 144.3, 133.7, 129.2, 124.2, 123.6, 115.8, 88.8, 57.6, 54.4, 53.2, 52.2, 43.3, 38.0, 27.8, 21.4; IR (neat) 3377, 2958, 2850, 1698, 1598, 1484, 1439, 1374 cm⁻¹; HRMS (ESI) calcd for $C_{16}H_{19}N_2O_3$ [M + H]: 287.1396. Found: 287.1396.

Epoxide 43. Allyl chloroformate (3.40 mL, 31.1 mmol) was added to a stirring solution of aminal **42** (2.96 g, 10.3 mmol) in THF (125 mL) at 0 °C. K_2CO_3 (4.30 g, 31.1

mmol) was added, followed by 18-crown-6 (300 mg, 1.04 mmol). The reaction was warmed to rt over 2 h, stirred for an additional 18 h, and then guenched with saturated aqueous NH₄Cl (50 mL). The aqueous layer was extracted with Et₂O, and the combined organic fractions were washed with brine, dried (Na_2SO_4) , filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (20%) EtOAc/hexanes) gave epoxide 43 (3.52 g, 9.5 mmol, 92%) as a thick, clear oil: $[\alpha]_{589}$ – 81.1, $[\alpha]_{577}$ -84.4, $[\alpha]_{546}$ -96.4, $[\alpha]_{435}$ -167, $[\alpha]_{405}$ -208 (c 2.10, CHCl₃); ¹H NMR (500 MHz, C_6D_6 , 60 °C) δ 8.11 (d, J = 8.2 Hz, 1H), 7.07–7.10 (m, 1H), 6.86–6.92 (m, 2H), 5.65-5.71 (m, 1H), 5.00 (dd, J = 17.2, 1.6 Hz, 1H), 4.90 (dd, J = 10.5, 1.4 Hz, 1H), 4.41-4.45 (m, 1H), 4.30 (dd, J = 13.4, 5.4 Hz, 1H), 3.69 (s, 3H), 3.42 (ddd, J = 14.1, 3.3, 3.3 Hz, 1H), 3.37 (d, J = 9.3 Hz, 1H), 2.85 (ddd, J = 12.0, 10.5, 6.5 Hz, 1H), 2.79 (s, 2H), 2.31 (ddd, J = 12.6, 12.6, 8.5 Hz, 1H), 1.93 (dd, J = 12.7, 6.4 Hz, 1H), 1.81–1.83 (m, 2H), 1.63–1.68 (m, 1H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 154.6, 153.4, 144.5, 133.6, 131.6, 129.5, 123.6, 123.0, 117.5, 116.9, 86.6, 65.6, 56.0, 54.8, 53.1, 52.2, 45.1, 29.7, 24.1, 22.1; IR (neat) 1698 cm⁻¹; HRMS (ESI) calcd for $C_{20}H_{22}O_5N_2Na$ [M + Na]: 393.1426. Found: 393.1415.

Allyl alcohol 44. Following a general procedure,⁸ a mixture of PhSeSePh (1.71 g, 5.48 mmol) and absolute EtOH (20 mL) was stirred at 0 °C. Solid NaBH₄ (420 mg, 11.0 mmol) was added in portions to this mixture over a period of 3 min (rapid gas evolution resulted). The originally yellow mixture turned to a clear, colorless solution upon complete addition of NaBH₄. The resulting sodium phenyl selenide solution was warmed to rt and stirred for 5 min. To this solution was added epoxide 43 (1.84 g, 4.97 mmol) in 1:1 THF/EtOH (20 mL), and the reaction was heated to 70 °C for 2 h. To reduce any PhSeSePh formed during the course of the reaction, which resulted in yellowing of the reaction, ca. 10 mg portions of NaBH₄ were added twice. The reaction was then cooled to 0 °C, diluted with THF (15 mL), and 30% H₂O₂ (11 mL) was added slowly. The

reaction was again heated to 70 °C for 20 min during which time rapid gas evolution was noticed. The reaction then was poured into saturated NaHCO₃, extracted with CH₂Cl₂, and the combined organic layers were dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (20% EtOAc/hexanes) gave allyl alcohol **44** (1.54 g, 4.15 mmol, 83%) as clear, colorless oil: $[\alpha]_{589} -126$, $[\alpha]_{577} -132$, $[\alpha]_{546} -150$, $[\alpha]_{435} -258$, $[\alpha]_{405} -320$ (*c* 1.30, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 8.15 (d, *J* = 8.2 Hz, 1H), 7.44 (dd, *J* = 1.1, 7.5 Hz, 1H), 7.11–7.15 (m, 1H), 6.91 (ddd, *J* = 7.5, 7.5, 1.0 Hz, 1H), 5.80–5.83 (m, 1H), 5.72–5.80 (m, 2H), 5.09 (ddd, *J* = 15.2, 6.5 Hz, 1H), 4.13 (d, *J* = 1.7 Hz, 1H), 3.77 (dd, *J* = 11.1, 7.3 Hz, 1H), 3.61 (s, 3H), 2.85 (ddd, *J* = 11.3, 11.3, 5.5 Hz, 1H), 2.39–2.42 (m, 2H), 2.05 (ddd, *J* = 12.4, 12.4, 7.9 Hz, 1H), 1.79 (dd, *J* = 12.4, 5.3 Hz, 1H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 153.8, 153.1, 143.4, 134.6, 134.2, 133.7, 128.8, 126.2, 124.3, 123.6, 117.0, 115.7, 91.3, 73.1, 65.7, 64.4, 52.0, 46.1, 34.4, 31.2; IR (neat) 3462, 1690, 1728 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₂O₅N₂Na [M + Na]: 393.1426. Found: 393.1415.

Silyl Ether 45. TESCI (1.64 mL, 9.73 mmol) was added to a stirred solution of allyl alcohol 44 (2.40 g, 6.48 mmol) and imidazole (660 mg, 9.73 mmol) in CH₂Cl₂ (60 mL) at rt. TLC analysis after 20 min indicated complete consumption of the starting alcohol, and the reaction was then quenched with H₂O (50 mL). The aqueous layer was extracted with CH₂Cl₂, and the combined organic layers were washed with saturated aqueous NH₄Cl, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% EtOAc/hexanes) gave silylated alcohol 45 (2.82 g, 5.83 mmol, 90%) as a colorless amorphous solid: $[\alpha]_{589}$ – 132, $[\alpha]_{577}$ –138, $[\alpha]_{546}$ –157, $[\alpha]_{435}$ –272, $[\alpha]_{405}$ –339 (*c* 1.13, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 8.23 (d, *J* = 8.2 Hz, 1H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.13–7.15 (m, 1H), 6.93 (t, *J* = 7.4 Hz, 1H), 5.83–5.86 (m, 1H), 5.74–5.82 (m, 2H), 5.10 (dd, *J* = 17.2,

1.6 Hz, 1H), 4.95 (dd, J = 10.5, 1.4 Hz, 1H), 4.44–4.53 (m, 2H), 4.38 (s, 1H), 4.25 (dd, J = 15.3, 6.4 Hz, 1H), 3.80 (dd, J = 11.1, 7.8 Hz, 1H), 3.63 (s, 3H), 2.87 (ddd, J = 12.3, 5.4, 4.6 Hz, 1H), 2.55–2.59 (m, 1H), 2.15 (ddd, J = 12.4, 7.9, 7.9 Hz, 1H), 1.79 (dd, J = 12.4, 5.3 Hz, 1H), 0.94 (t, J = 8.0 Hz, 9H), 0.57 (q, J = 8.0 Hz, 6H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 153.8, 152.9, 143.9, 134.2, 134.0, 133.9, 129.0, 126.7, 124.4, 123.1, 116.8, 115.7, 91.3, 74.2, 65.5, 65.1, 51.9, 46.1, 34.6, 31.3, 7.0, 5.6; IR (neat) 1692, 1727 cm⁻¹; HRMS (ESI) calcd for C₂₆H₃₆O₅N₂SiNa [M + Na]: 507.2291. Found: 507.2298.

Tetracyclic Amine 46. A solution of **45** (2.50 g, 5.16 mmol), pyrrolidine (8.7 mL, 103 mmol) and THF (50 mL) was degassed with Ar for 30 min and stirred at rt. To this mixture was added Pd(PPh₃)₄ (605 mg, 0.52 mmol) in one portion, and stirring was continued for an additional 30 min. The reaction was then concentrated under reduced pressure. Purification of the crude residue by column chromatography (20% to 50% EtOAc/hexanes) gave aminal **46** (2.07 g, 5.16 mmol, 100%) as a thick, light yellow oil: $[\alpha]_{589} - 78.1, [\alpha]_{577} - 82.1, [\alpha]_{546} - 94.2, [\alpha]_{435} - 171, [\alpha]_{405} - 216 (c 1.60, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.95 (br s, 1H), 7.57 (d,$ *J*= 7.4 Hz, 1H), 7.13–7.15 (m, 1H), 6.96 (t,*J*= 7.5 Hz, 1H), 5.85 (ddd,*J*= 9.4, 9.4, 2.7 Hz, 1H), 5.70–5.73 (m, 1H), 4.41 (d,*J*= 2.1 Hz, 1H), 3.51 (s, 3H), 3.28 (br s, 1H), 3.05 (br s, 1H), 2.72 (t,*J*= 8.0 Hz, 1H), 2.53–2.58 (m, 1H), 2.29 (ddd,*J*= 11.8, 11.8, 6.9 Hz, 1H), 2.13 (d,*J*= 14.4 Hz, 1H), 1.93 (dd,*J*= 11.9, 4.7 Hz, 1H), 0.98 (t,*J*= 8.0 Hz, 9H), 0.63 (q,*J*= 8.0 Hz, 6H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 153.6, 143.7, 136.1, 134.0, 128.4, 126.8, 125.1, 123.0, 114.7, 92.1, 75.1, 63.0, 51.7, 43.6, 37.9, 34.5, 7.0, 5.7; IR (neat) 3378, 3047, 1691 cm⁻¹; HRMS (ESI) calcd for C₂₂H₃₂O₃N₂SiH [M + H]: 401.2260. Found: 401.2253.

Vinvl iodide 48. A mixture of 46 (372 mg, 0.93 mmol), (Z)-2-iodo-2-butenyl tosylate (47)⁹ (660 mg, 1.87 mmol), K₂CO₃ (640 mg, 4.65 mmol) and MeCN (10 mL) was stirred at 70 °C for 18 h. After cooling to rt, the reaction was partitioned between Et₂O and water. The aqueous layer was extracted with additional Et₂O, and the combined organic layers were washed with brine, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (5%) EtOAc/hexanes) gave vinyl iodide 48 (520 mg, 0.89 mmol, 96%) as a clear, colorless oil: $[\alpha]_{589}$ +22.7, $[\alpha]_{577}$ +23.8, $[\alpha]_{546}$ +27.4, $[\alpha]_{435}$ +52.1, $[\alpha]_{405}$ +67.1 (c 1.55, CHCl₃); ¹H NMR (500 MHz, C_6D_6 , 60 °C) δ 7.98 (d, J = 8.1 Hz, 1H), 7.57 (dd, J = 7.5, 1.0 Hz, 1H), 7.13–7.15 (m, 1H), 6.98 (dt, J = 7.5, 1.0 Hz, 1H), 5.84–5.92 (m, 2H), 5.45 (q, J = 6.4 Hz, 1H), 4.49 (d, J = 14.7 Hz, 1H), 4.41 (d, J = 2.1 Hz, 1H), 3.59 (dd, J = 15.8, 7.1 Hz, 1H), 3.50 (s, 3H), 3.33 (d, J = 14.7 Hz, 1H), 2.69 (t, J = 6.9 Hz, 1H), 2.20–2.28 (m, 3H), 1.93–1.96 (m, 1H), 1.59 (dd, J = 6.4, 1.8 Hz, 3H), 0.97 (t, J = 8.0 Hz, 9H), 0.61 (q, J = 8.0 Hz, 6H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 154.5, 144.0, 135.3, 134.1, 130.1, 128.5, 126.8, 125.5, 122.9, 115.9, 112.2, 93.5, 74.4, 65.6, 59.9, 51.8, 48.2, 34.5, 33.1, 21.6, 7.0, 5.6; IR (neat) 1704 cm⁻¹; HRMS (ESI) calcd for $C_{26}H_{37}O_3IN_2SiH$ [M + H]: 581.1697. Found: 581.1698.

It was observed that extended exposure of **48** to silica gel during chromatography caused partial isomerization to olefin **63** (see below).

Ketone 49. A solution of **27** (575 mg, 1.55 mmol) and THF (25 mL) under Ar was cooled to 0 $^{\circ}$ C, and BH₃DMS (0.51 mL, 5.5 mmol) was added dropwise. The reaction mixture was gradually warmed to rt over 0.5 h and maintained at rt for 1 h. TLC

analysis showed incomplete conversion, so the solution was cooled to 0 °C and additional BH_3 DMS (0.51 mL, 5.5 mmol) was added. The reaction mixture was gradually warmed to rt over 0.5 h and maintained at rt for 2 h. The reaction mixture was cooled to 0 °C, and 3 N NaOH and 30% H_2O_2 (1 mL each) were added sequentially, and the mixture was stirred at 0 °C for 30 min and at rt for an additional 30 min. The mixture was diluted with EtOAc (30 mL), and the separated organic phase was washed sequentially with saturated aqueous NaHCO₃ (15 mL), H_2O (15 mL), and brine (15 mL). The organic phase was dried (Na₂SO₄), filtered and concentrated under reduced pressure to afford a clear, colorless oil which was used immediately without purification.

A stirring rt solution of this crude residue (1.55 mmol theoretical) in CH₂Cl₂ (25 mL) was charged sequentially with crushed 4 Å molecular sieves (~1 g), TPAP (55 mg, 0.16 mmol), and NMO (360 mg, 3.1 mmol). The reaction mixture was maintained at rt for 20 min, then concentrated to ~ 5 mL under a stream of N₂. The mixture was filtered through a small SiO₂ plug (20% EtOAc/hexanes) and the filtrate was concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to 20% EtOAc/hexanes) gave 49 (380 mg, 0.98 mmol, 63%) as a colorless foam (50 was isolated in 21% yield; see below for optimized procedure for **50**): **49** ¹H NMR (500 MHz, C_6D_6 , 60 °C) δ 7.97 (d, J = 8.0 Hz, 1H), 6.92 (ddd, J = 7.5, 7.5, 1.5 Hz, 1H), 6.85 (dd, J =7.5, 1.0 Hz, 1H), 6.62 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 3.45 (s, 3H), 3.41 (ddd, J = 8.5, 8.5, 3.5 Hz, 1H, 2.82 (ddd, J = 11.0, 9.0, 7.5 Hz, 1H), 2.56 (m, 2H), 2.31 (ddd, J = 13.0, 9.0, 1.5 Hz, 1.5 Hz3.5 Hz, 1H), 1.30 (m, 2H), 1.26 (s, 9H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 206.7, 153.9, 153.1, 143.7, 130.6, 129.9, 123.9, 123.8, 116.7, 93.3, 80.0, 69.0, 52.4, 46.8, 38.1, 34.1, 32.1, 28.9, 19.4; IR (neat) 2958, 1707, 1483, 1444, 1383 cm⁻¹; HRMS (CI) calcd for C₂₁H₂₆N₂O₅: 386.1842. Found: 386.1846.

Enone 52. A solution of 49 (200 mg, 0.52 mmol) in toluene (3.5 mL) and DMSO (1.7 mL) under Ar was charged with IBX (580 mg, 2.07 mmol), and the reaction mixture was heated to 70 °C.¹⁰ Over the course of a 24 h period, the reaction was charged with two additional portions of IBX (580 mg, 2.07 mmol each). The reaction was cooled to rt and diluted with Et₂O (20 mL). Saturated aqueous NaHCO₃ (35 mL) and saturated aqueous Na₂S₂O₃ (35 mL) were added, and the mixture was stirred vigorously for 1 h. The separated aqueous phase was washed with ether (30 mL), and the combined organic fractions were washed with brine (25 mL), dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (35% EtOAc/hexanes) gave 52 (119 mg, 0.31 mmol, 59%) as a colorless foam: ¹H NMR $(500 \text{ MHz}, \text{C}_6\text{D}_6, 60 \text{ }^\circ\text{C}) \delta 7.93 \text{ (d, } J = 8.0 \text{ Hz}, 1\text{H}), 7.47 \text{ (dd, } J = 7.5, 1.0 \text{ Hz}, 1\text{H}), 7.07$ (ddd, J = 8.0, 8.0, 1.0 Hz, 1H), 6.85 (t, J = 7.5 Hz, 1H), 6.43 (ddd, J = 9.5, 4.5, 4.5 Hz, 1H), 5.89 (ddd, J = 10.0, 1.5, 1.5 Hz, 1H), 3.55 (s, 3H), 3.37 (m, 3H), 3.05 (ddd, J = 11.0, 1.58.0, 8.0 Hz, 1H), 2.18 (ddd, J = 13.0, 8.5, 8.5 Hz, 1H), 1.98 (ddd, J = 12.5, 8.0, 4.5 Hz, 1H), 1.40 (s, 9H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 195.4, 153.9, 153.6, 147.0, 142.9, 130.2, 129.9, 129.7, 124.6, 124.5, 117.4, 90.5, 80.2, 65.9, 52.4, 47.6, 33.2, 30.4, 28.9; IR (neat) 2979, 1694, 1675, 1478, 1387 cm⁻¹; HRMS (CI) calcd for C₂₁H₂₄N₂O₅: 384.1685. Found: 384.1685.

Enone 53. Trifluoroacetic acid (0.75 mL) was added to a stirred solution of **52** (115 mg, 0.30 mmol) in CH_2Cl_2 (4 mL) at 0 °C under Ar. The cooling bath was removed, and the reaction mixture was allowed to warm to rt for 2.5 h. The reaction mixture then was cooled to 0 °C and saturated aqueous NaHCO₃ (10 mL) was added dropwise. The

mixture was diluted with EtOAc (30 mL), and the separated organic phase was washed with brine (15 mL), dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (35% EtOAc/hexanes) gave **53** (58 mg, 0.20 mmol, 67%) as a pale orange foam: ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.79 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.77 (br s, 1H), 7.08 (ddd, *J* = 8.5, 8.5, 1.5 Hz, 1H), 6.86 (ddd, *J* = 7.5, 7.5, 1.0 Hz, 1H), 6.06 (ddd, *J* = 10.0, 5.5, 3.0 Hz, 1H), 5.93 (ddd, *J* = 10.0, 3.0, 1.5 Hz, 1H), 3.47 (s, 3H), 3.46 (br s, 1H), 2.98 (m, 1H), 2.61 (ddd, *J* = 8.5, 8.5, 2.0 Hz, 1H), 2.53 (ddd, *J* = 10.0, 10.0, 6.5 Hz, 1H), 2.42 (ddd, *J* = 12.5, 10.0, 8.0 Hz, 1H), 2.34 (m, 1H), 2.00 (ddd, *J* = 12.5, 6.5, 2.0 Hz, 1H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 196.5, 153.2, 145.4, 131.4, 128.8, 128.3, 127.7, 125.1, 123.8, 114.9, 91.1, 62.0, 51.9, 42.9, 41.8, 35.7; IR (neat) 3365, 2954, 2846, 1692, 1671, 1482 cm⁻¹; HRMS (CI) calcd for C₁₆H₁₆N₂O₃: 284.1161. Found: 284.1162.

Proof of Absolute Configuration by Heavy Atom X-Ray Analysis of Benzyl Ester 51. Solid NaBH₄ (20 mg, 0.52 mmol) was added in one portion to ketone **50** (100 mg, 0.26 mmol) and EtOH (3 mL) at 0 °C. After 15 min at 0 °C, the reaction was quenched with saturated aqueous NH₄Cl and warmed to rt. The reaction was extracted with CH₂Cl₂, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (35% to 50% EtOAc/hexanes) gave a 1:1 ratio of cleanly separated diastereomeric alcohols (91 mg combined, 0.24 mmol, 91%). The stereochemistry of each alcohol was not determined at this stage. The alcohols were distinguished based on their R_f values (35% EtOAc/hexanes): lower isomer R_f 0.1; upper isomer R_f 0.2.

DMAP (~1 mg) was added to a stirring solution of the lower R_f diastereomeric alcohol (10 mg, 0.026 mmol) and Et₃N (8 µL, 0.052 mmol) in CH₂Cl₂ (1 mL) at rt. The mixture was then treated with *p*-bromobenzoyl chloride (8.5 mg, 0.039 mmol) and stirred at rt for 4 h. After this time, 1 N NaOH was added to the reaction and stirred for 20 min.

The reaction was extracted with CH_2Cl_2 , dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by preparative TLC (50% EtOAc/hexanes) gave **51** as a clear, colorless oil (13 mg, 0.023 mmol, 88%) that slowly solidified. Re-crystallization from CH_2Cl_2 /hexanes gave X-ray quality crystals⁷: $[\alpha]_{589}$ – 90.2, $[\alpha]_{577}$ –93.6, $[\alpha]_{546}$ –106, $[\alpha]_{435}$ –183, $[\alpha]_{405}$ –222 (*c* 0.84, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 8.07 (d, *J* = 7.8 Hz, 1H), 7.42–7.44 (m, 2H), 7.14–7.16 (m, 2H), 7.00 (dt, *J* = 1.5, 7.7 Hz, 1H), 6.70 (dd, *J* = 1.1, 7.4 Hz, 1H), 6.66 (dt, *J* = 0.9, 7.4 Hz, 1H), 5.02–5.07 (m, 1H), 3.59 (s, 3H), 3.31–3.35 (m, 1H), 3.07 (ddd, *J* = 8.4, 8.4, 9.9 Hz, 1H), 2.80–2.84 (m, 1H), 2.54 (br s, 1H), 1.82 (dd, *J* = 6.8, 14.6 Hz, 1H), 1.65–1.74 (m, 2H), 1.56 (dd, *J* = 3.4, 14.6 Hz, 1H), 1.50 (ddd, *J* = 5.0, 8.4, 13.0 Hz, 1H), 1.42–1.46 (m, 1H), 1.40 (s, 9H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 164.7, 153.9, 153.2, 141.3, 136.1, 131.5, 131.3, 129.8, 128.0, 128.1, 122.9, 121.6, 117.2, 89.3, 79.3, 69.4, 54.3, 51.7, 46.2, 35.1, 34.0, 28.3, 26.9, 26.4; IR (neat) 1708 cm⁻¹; HRMS (ESI) calcd for C₂₈H₃₁BrN₂O₆Na [M + Na]: 593.1263. Found: 593.1262.

Pentacycle 57. A solution of **48** (40 mg, 0.069 mmol) and MeCN (1.2 mL) was degassed with argon for 15 min. To this solution was added Pd(OAc)₂ (8.0 mg, 0.034 mmol) and bis(diphenylphosphoryl)butane (22 mg, 0.053 mmol), and degassing was continued for an additional 10 min. The sealed reaction vial was then heated to 80 °C for 3 h. Following cooling, the mixture was concentrated under pressure. Purification of the crude residue by column chromatography (10% EtOAc/hexanes) gave **57** (15 mg, 0.033 mmol, 48%) as a clear, colorless oil: $[\alpha]_{589}$ +21.6, $[\alpha]_{577}$ +22.6, $[\alpha]_{546}$ +26.4, $[\alpha]_{435}$ +53.8, $[\alpha]_{405}$ +71.6 (*c* 1.80, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 8.30 (d, *J* = 8.1 Hz, 1H), 7.45 (dd, *J* = 7.4, 1.0 Hz, 1H), 7.17–7.20 (m, 1H), 6.96 (ddd, *J* = 7.4, 7.4, 1.0 Hz, 1H), 5.78 (ddd, *J* = 10.0, 3.4, 1.8 Hz, 1H), 5.39 (ddd, *J* = 10.0, 10.0, 2.4 Hz, 1H), 5.10–5.13 (m, 1H), 4.37 (q, *J* = 1.8 Hz, 1H), 3.73 (d, *J* = 12.5 Hz, 1H), 3.46 (br.s, 4H), 3.15–3.19 (m, 1H), 2.72 (ddd, *J* = 11.9, 11.9, 5.1 Hz, 1H), 2.39 (dd, *J* = 11.7, 6.9 Hz,

1H), 2.17 (ddd, J = 12.2, 12.2, 7.2 Hz, 1H), 2.02 (dd, J = 12.4, 5.0 Hz, 1H), 1.54–1.56 (m, 3H), 0.94 (t, J = 8.0 Hz, 9H), 0.59 (q, J = 8.0 Hz, 6H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 154.4, 145.8, 143.6, 134.0, 132.2, 128.8, 128.7, 124.7, 122.3, 115.6, 111.0, 102.1, 73.8, 63.2, 60.8, 53.1, 51.1, 46.4, 33.0, 13.8, 7.0, 5.6; IR (neat) 1694 cm⁻¹; HRMS (ESI) calcd for C₂₆H₃₇O₃N₂Si [M + H]: 453.2574. Found: 453.2567.

Alcohol 59. Tetrabutylammonium fluoride (1.0 M in THF, 60 µl, 0.060 mmol) was added to a stirring solution of aminal 57 (13 mg, 0.029 mmol) in THF (1 ml) at rt. Following stirring for 30 min, the reaction was partitioned between water and CH₂Cl₂. The organic layer was washed with brine, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (50% EtOAc/hexanes) gave 59 (8.6 mg, 0.026 mmol, 89%) as a colorless, amorphous solid. Crystallization from CH₂Cl₂/hexanes afforded X-ray quality crystals⁷: $[\alpha]_{589}$ +56.1, $[\alpha]_{577}$ +55.5, $[\alpha]_{546}$ +65.7, $[\alpha]_{435}$ +132, $[\alpha]_{405}$ +171 (c 0.47, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 8.26 (d, J = 8.2 Hz, 1H), 7.24 (dd, J = 1.0, 7.4 Hz, 1H), 7.14 (dt, J = 1.4, 7.5 Hz, 1H), 6.87 (dt, J = 1.0, 7.4 Hz, 1H), 5.57 (ddd, J = 1.9, 3.3, 10.0 Hz, 1H), 5.29 (ddd, J =2.6, 2.6, 10.0 Hz, 1H), 5.04–5.06 (m, 1H), 3.94 (br s, 1H), 3.64 (d, J = 12.4 Hz, 1H), 3.51 (br s, 1H), 3.40 (s, 3H), 3.05-3.09 (m, 1H), 2.62 (ddd, J = 5.0, 11.9, 11.9 Hz, 1H), 2.31 (dd, J = 6.9, 11.8 Hz, 1H), 1.98 (ddd, J = 7.1, 12.1 Hz, 1H), 1.85 (dd, J = 4.0, 12.3)Hz, 1H), 1.45–1.47 (m, 3H), 1.31 (br s, 1H); ¹³C NMR (125 MHz, C_6D_6 , 60 °C) δ 154.0, 145.0, 143.2, 133.9, 131.0, 128.4, 128.2, 123.3, 122.5, 115.3, 110.8, 101.3, 72.2, 62.3, 60.2, 52.4, 50.8, 46.0, 32.2, 13.4; IR (neat) 3473, 1692 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₃N₂O₃ [M + H]: 339.1709. Found: 339.1700.

Alkene 63. Exposure of 48 to silica gel during chromatography for extended periods of time (>10 min) resulted in the formation of the chromatographically inseparable olefin 63.¹¹ ¹H NMR (500 MHz, C_6D_6 , 60 °C) δ 7.91 (d, J = 8.1 Hz, 1H), 7.37 (dd, J = 7.5, 1.0 Hz, 1H), 7.13–7.15 (m, 1H), 6.94–6.98 (m, 1H), 6.85 (br d, J = 10.5 Hz, 1H), 5.51 (ddd, J = 4.1, 4.1, 10.5 Hz, 1H), 5.46 (q, J = 6.4 Hz, 1H), 4.15 (br d, J = 15.0 Hz, 1H), 3.82 (t, J = 8.1 Hz, 1H), 3.63 (d, J = 15.0 Hz, 1H), 3.52 (s, 3H), 2.69–2.72 (m, 1H), 2.55 (ddd, J = 3.4, 3.4, 7.0 Hz, 1H), 2.15–2.19 (m, 1H), 2.07–2.10 (m, 2H), 2.00–2.05 (m, 1H), 1.55 (d, J = 6.4 Hz, 1H), 0.84 (t, J = 8.0 Hz, 9H), 0.43 (q, J = 8.0 Hz, 6H); ¹³C NMR (125 MHz, C_6D_6 , 60 °C) δ 154.4, 142.0, 136.6, 129.4, 128.3, 125.5, 125.4, 124.0, 122.8, 116.8, 111.7, 90.5, 72.4, 61.3, 60.2, 52.0, 49.7, 31.5, 27.7, 21.5, 6.94, 5.56.

Pentacycle 58. A suspension of vinyl iodide **48** (1.20 g, 2.07 mmol), K_2CO_3 (1.43 g, 10.4 mmol), $Bu_4NCl \cdot H_2O$ (1.43 g, 5.18 mmol), NaO_2CH (170 mg, 2.48 mmol) and DMF (30 mL) was degassed with Ar for 15 min. To this suspension was added $Pd(OAc)_2$ (5 mg, 0.02 mmol), and degassing was continued for an additional 10 min. The sealed reaction vial was then heated at 80 °C for 90 min by which time TLC analysis indicated complete consumption of starting material. After cooling to rt, the reaction was diluted with Et_2O and washed with brine. The organic layer was then dried (Na_2SO_4) and concentrated under reduced pressure. Purification of the crude residue by column chromatography (5% to 10% EtOAc/hexanes) gave **58** (750 mg, 1.65 mmol, 80%) as a clear, colorless oil: $[\alpha]_{589}$ -55.2, $[\alpha]_{577}$ -57.9, $[\alpha]_{546}$ -64.9, $[\alpha]_{435}$ -106, $[\alpha]_{405}$ -127 (*c* 1.25, CHCl₃); ¹H NMR (500 MHz, C_6D_6 , 60 °C) δ 8.15 (br s, 1H), 7.60 (dd, J = 7.5, 1.1 Hz, 1H), 7.17–7.20 (m, 1H), 6.96 (ddd, J = 7.5, 7.5, 1.1 Hz, 1H), 5.03 (q, J = 6.8 Hz,

1H), 4.29 (br s, 1H), 4.15 (dd, J = 11.4, 7.0 Hz, 1H), 3.57 (s, 3H), 3.04 (ddd, J = 14.6, 7.3, 3.5 Hz, 1H), 2.93 (d, J = 16.0 Hz, 1H), 2.79–2.74 (m, 1H), 2.66 (d, J = 11.1 Hz, 2H), 2.63–2.57 (m, 1H), 2.23 (ddd, J = 13.4, 11.5, 7.0 Hz, 1H), 1.72 (ddd, J = 13.4, 7.3, 6.1 Hz, 1H), 1.59 (dd, J = 13.9, 3.2 Hz, 1H), 1.44 (dd, J = 6.8, 2.0 Hz, 3H), 1.35–1.40 (m, 1H), 0.99 (t, J = 8.0 Hz, 9H), 0.63 (q, J = 8.0 Hz, 6H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 154.1, 144.5, 141.9, 136.8, 128.4, 124.9, 122.5, 117.1, 115.3, 93.0, 73.4, 60.9, 55.7, 54.4, 51.6, 36.6, 34.0, 27.3, 25.8, 13.0, 7.1, 6.1; IR (neat) 1698 cm⁻¹; HRMS (ESI) calcd for C₂₆H₃₈O₃N₂SiH [M + H]: 455.2730. Found: 455.2739.

Alcohol 64. CsF (1.5 g, 9.90 mmol) was added to a stirred solution of aminal 58 (750 mg, 1.65 mmol) in DMF (25 mL) at rt. TLC analysis after 4 h indicated complete consumption of the starting material, and the reaction was subsequently partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc, and the combined organic layers were washed with brine, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (50% EtOAc/hexanes) gave alcohol 64 (562 mg, 1.65 mmol, 100%) as a colorless, amorphous solid. Crystallization from benzene/chloroform afforded X-ray quality crystals⁷: $[\alpha]_{589}$ -66.8, $[\alpha]_{577}$ -69.5, $[\alpha]_{546}$ -78.1, $[\alpha]_{435}$ -127, $[\alpha]_{405}$ -150 (c 1.00, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.77 (br s, 1H), 7.51 (dd, J = 7.5, 1.0 Hz, 1H), 7.23 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 7.00 (ddd, J = 7.5, 7.5, 1.0 Hz, 1H), 5.32 (q, J = 6.7Hz, 1H), 4.26 (br d, J = 14.6 Hz, 1H), 4.13–4.20 (m, 1H), 3.92 (s, 3H), 3.18 (ddd, J =14.7, 7.3, 3.8 Hz, 1H), 3.12 (d, J = 15.9 Hz, 1H), 2.99–3.06 (m, 2H), 2.79 (br d, J = 10.9Hz, 1H), 2.55 (ddd, J = 14.7, 7.5, 5.5 Hz, 1H), 2.50 (ddd, J = 13.8, 7.2, 2.2 Hz, 1H), 1.78-1.87 (m, 3H), 1.64 (dd, J = 6.7, 1.2 Hz, 3H), 1.41-1.47 (m, 1H); ¹³C NMR (125) MHz, CDCl₃) δ 154.4, 143.7, 141.2, 136.5, 128.5, 124.6, 123.2, 118.3, 115.1, 93.3, 72.3, 60.5, 55.8, 54.6, 52.6, 36.4, 33.4, 27.2, 26.3, 13.6; IR (neat) 3449, 1686 cm⁻¹; HRMS (ESI) calcd for $C_{20}H_{24}O_3N_2H$ [M + H]: 341.1865. Found: 341.1854.

Ketone 46. Dess-Martin periodinane (2.1 g, 4.96 mmol) was added in one portion to a stirred solution of alcohol 64 (560 mg, 1.65 mmol) in CH₂Cl₂ (100 mL) at rt. The reaction was stirred for 16 h, and subsequently poured into saturated aqueous NaHCO₃. The aqueous layer was extracted with CH_2Cl_2 , and the organic layer was washed with brine, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (35% to 50% EtOAc/hexanes) gave ketone **65** (553 mg, 1.63 mmol, 99%) as a colorless foam: $[\alpha]_{589} - 165$, $[\alpha]_{577} - 175$, $[\alpha]_{546} - 200$, $[\alpha]_{435}$ –404, $[\alpha]_{405}$ –545 (c 1.36, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 8.06 (br s, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.14 (m, 1H), 6.87 (t, J = 7.5, 1H), 5.08 (q, J = 6.8 Hz, 1H), 4.06 (br d, J = 15.0 Hz, 1H), 3.56 (s, 3H), 2.85–2.89 (m, 1H), 2.76 (d, J = 15.6 Hz, 1H), 2.68 (br d, J = 12.6 Hz, 1H), 2.50–2.58 (m, 2H), 2.42 (ddd, J = 12.4, 6.3, 1.9 Hz, 1H), 2.38 (d, J = 18.7 Hz, 1H), 2.20 (dd, J = 18.7, 7.7 Hz, 1H), 1.84 (ddd, J = 12.0, 7.4, 7.4 Hz, 1H), 1.41 (dd, J = 13.8, 2.1 Hz, 1H), 1.27 (d, J = 6.9 Hz, 3H); ¹³C NMR (125) MHz, C₆D₆, 60 °C) & 207.9, 153.8, 140.9, 137.8, 129.8, 129.1, 124.4, 122.8, 122.1, 115.6, 93.1, 67.7, 54.2, 53.2, 51.8, 45.1, 39.2, 28.4, 28.2, 13.0; IR (neat) 1701 cm⁻¹; HRMS (ESI) calcd for $C_{20}H_{22}O_3N_2Na$ [M + Na]: 361.1528. Found: 361.1528.

β-Ketoester 66. LiHMDS (1.0 M in THF, 3.1 ml, 3.10 mmol) was added dropwise to a stirred solution of ketone 65 (530 mg, 1.57 mmol) in THF (40 mL) at -78 °C. The reaction was then warmed to 0 °C for 30 min and subsequently re-cooled to -78 °C. NCCO₂Me (0.5 ml, 6.28 mmol) was added and following stirring for 30 min at -78 °C, saturated aqueous NH₄Cl was added and the mixture was allowed to warm to rt.

The reaction was extracted with EtOAc, and the organic layer was washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the crude residue by column chromatography (20% to 35% EtOAc/hexanes) gave β -ketoester **66** (443 mg, 1.12 mmol, 71%) as a clear, colorless oil: $[\alpha]_{589}$ –196, $[\alpha]_{577}$ –207, $[\alpha]_{546}$ – 237, $[\alpha]_{435}$ –438, $[\alpha]_{405}$ –566 (*c* 1.40, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 13.1 (s, 1H), 8.06 (br d, *J* = 8.1 Hz, 1H), 7.90 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.15 (m, 1H), 6.89 (dt, *J* = 7.5, 1.0 Hz, 1H), 5.20 (q, *J* = 6.5 Hz, 1H), 4.11 (br d, *J* = 15.9 Hz, 1H), 3.64 (br s, 1H), 3.54 (s, 3H), 3.34 (s, 3H), 2.89–2.96 (m, 2H), 2.58–2.62 (m, 1H), 2.54–2.57 (m, 1H), 2.44 (dd, *J* = 12.6, 6.1 Hz, 1H), 1.96 (ddd, *J* = 11.8, 7.4, 7.4 Hz, 1H), 1.52–1.56 (m, 4H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 172.4, 171.4, 153.7, 140.7, 137.1, 130.9, 129.0, 125.1, 122.8, 120.7, 115.7, 103.7, 92.0, 59.8, 53.06, 53.05, 51.8, 50.9, 37.7, 28.70, 28.67, 13.5; IR (neat) 1702, 1645 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₄O₅N₂Na [M + Na]: 419.1583. Found: 419.1584.

β-Hydroxyester 66. NaBH₄ (243 mg, 6.36 mmol) was added in three portions over a 2 h to a stirring solution of β-ketoester **66** (420 mg, 1.06 mmol) in 10:1 THF/MeOH (10 mL) at -20 °C. After the final NaBH₄ addition, the reaction was warmed to 0 °C and stirred at this temperature for 2 h. The mixture was quenched with saturated aqueous NH₄Cl and allowed to warm to rt. The reaction was extracted with CH₂Cl₂, and the organic layer was washed with brine, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (35% to 50% EtOAc/hexanes) gave β-hydroxyester **67** (254 mg, 0.64 mmol, 60%) as a clear, colorless oil and ~10-15% recovered starting material. **66**: $[\alpha]_{589}$ – 89.7, $[\alpha]_{577}$ –93.0, $[\alpha]_{546}$ –106, $[\alpha]_{435}$ –176, $[\alpha]_{405}$ –215 (*c* 0.90, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 8.14 (br s, 1H), 7.10 (t, *J* = 7.4 Hz, 1H), 6.79 (t, *J* = 7.4 Hz, 1H), 6.68 (d, *J* = 7.3 Hz, 1H), 5.05 (q, *J* = 6.8 Hz, 1H), 4.56 (d, *J* = 4.1 Hz, 1H), 4.25 (br s, 1H), 3.81 (br s, 1H), 3.52 (s, 3H), 3.51 (s, 3H), 2.85–2.93 (m, 3H), 2.72–2.76 (m, 2H),

2.51–2.56 (m, 1H), 1.75 (ddd, J = 12.7, 8.2, 8.2 Hz, 1H), 1.53–1.57 (m, 2H), 1.51 (d, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 173.2, 154.1, 143.6, 131.9, 129.1, 128.5, 128.3, 122.8, 118.1, 116.0, 91.4, 72.8, 61.9, 56.9, 54.0, 51.7, 51.6, 49.8, 38.8, 28.7, 26.0, 13.2; IR (neat) 3461, 1741, 1702 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₆O₅N₂H [M + H]: 399.1920. Found: 399.1914.

Enoate 68. Benzoyl triflate¹² (1.65 ml, 9.8 mmol) was added to a stirring solution of β-hydroxyester **67** (195 mg, 0.49 mmol) and pyridine (1.6 ml, 19.6 mmol) in CH₂Cl₂ (6 mL) at 0 °C. The reaction vial was sealed and heated to 60 °C for 24 h. The bright red solution was then cooled to rt and quenched with saturated aqueous NaHCO₃. The reaction was extracted with CH₂Cl₂, and the organic layer was washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the crude residue by column chromatography (35% to 50% EtOAc/hexanes) gave the benzoate (246 mg, 0.49 mmol, 100%) as a clear, colorless oil which was used in the subsequent elimination step: ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 8.00 (d, *J* = 8.6 Hz, 1H), 7.41–7.29 (m, 4H), 7.17–7.14 (m, 2H), 6.99 (d, *J* = 7.3 Hz, 1H), 6.92 (t, *J* = 7.6 Hz, 1H), 6.69 (t, *J* = 7.3 Hz, 1H), 6.22 (d, *J* = 4.9 Hz, 1H), 5.29–5.25 (m, 1H), 4.20 (br s, 1H), 3.81 (s, 3H), 3.59 (s, 1H), 3.46 (s, 3H), 3.07–2.85 (m, 4H), 2.46 (d, *J* = 13.0 Hz, 1H), 2.23–2.17 (m, 1H), 1.96–1.91 (m, 1H), 1.43 (d, *J* = 6.8 Hz, 3H).

KHMDS (0.5 M in toluene, 1.7 ml, 0.85 mmol) was added dropwise to a stirring solution of this benzoate intermediate (215 mg, 0.43 mmol) in THF (8 mL) at -78 °C. After 10 min the reaction was quenched with saturated aqueous NaHCO₃ and warmed to rt. The reaction was extracted with Et₂O, and the organic layer was washed with brine, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (50% EtOAc/hexanes) gave enoate **68** (135 mg, 0.36 mmol, 83%) as a clear, colorless oil: [α]₅₈₉ –124, [α]₅₇₇ –131, [α]₅₄₆ –149, [α]₄₃₅ –268, [α]₄₀₅ –340 (*c* 1.05, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 8.04 (br s, 1H),

7.12 (dt, J = 7.5, 1.4 Hz, 1H), 6.94 (s, 1H), 6.90 (dd, J = 7.3, 1.0 Hz, 1H), 6.82 (dt, J = 7.4, 1.0 Hz, 1H), 5.23 (q, J = 7.0 Hz, 1H), 4.17 (br d, J = 15.5 Hz, 1H), 3.92 (br s, 1H), 3.54 (s, 3H), 3.47 (s, 3H), 2.88–2.90 (m, 2H), 2.54–2.59 (m, 2H), 1.85 (ddd, J = 12.5, 7.3, 7.3 Hz, 1H), 1.70 (dd, J = 7.0, 2.3 Hz, 3H), 1.63 (dd, J = 12.4, 5.9 Hz, 1H), 1.45 (dd, J = 12.8, 2.7 Hz, 1H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 167.2, 153.9, 140.6, 136.5, 136.3, 136.0, 132.3, 128.7, 122.50, 122.48, 121.9, 116.0, 91.7, 56.7, 53.3, 52.6, 51.8, 51.5, 37.9, 30.7, 28.5, 13.7; IR (neat) 1705 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₄O₄N₂H [M + H]: 381.1814. Found: 381.1820.

Alcohol 69. A solution of enoate 68 (100 mg, 0.26 mmol) in THF (2 mL) was added dropwise to a stirring suspension of LiAlH₄ (100 mg, 2.60 mmol) in THF (10 mL) at -20 °C. After 10 min the reaction was quenched with water (0.1 ml), followed by 1 N NaOH (0.1 ml), and finally H₂O (0.3 ml). The resulting mixture was stirred for 10 min and then MgSO₄ was added. The solid materials were removed by filtration and the filtrate was concentrated under reduced pressure. Purification of the crude residue by column chromatography (50% to 75% EtOAc/hexanes) gave alcohol 69 (82 mg, 0.23 mmol, 89%) as a clear, colorless oil: $[\alpha]_{589}$ +15.9, $[\alpha]_{577}$ +16.5, $[\alpha]_{546}$ +19.8, $[\alpha]_{435}$ +46.1, $[\alpha]_{405}$ +63.6 (c 0.90, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 8.08 (br s, 1H), 7.14 (m, 1H), 6.94 (s, 1H), 7.06 (d, J = 7.4 Hz, 1H), 6.89 (m, 1H), 5.67 (s, 1H), 5.16 (q, J =6.8 Hz, 1H), 4.22 (br s, 1H), 3.92 (q, J = 13.5 Hz, 2 H), 3.57 (s, 3H), 3.23 (br s, 1H), 2.94-2.99 (m, 2H), 2.51-2.56 (m, 2H), 1.87 (ddd, J = 12.4, 7.1, 7.1 Hz, 1H), 1.59-1.61(m, 4H), 1.52 (dd, J = 12.1, 5.6 Hz, 1H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 154.2, 144.6, 140.7, 137.7, 134.0, 128.4, 122.6, 122.4, 121.2, 119.5, 116.0, 92.1, 65.5, 56.2, 53.0, 52.9, 51.8, 38.5, 31.1, 28.1, 14.3; IR (neat) 3394, 1697 cm⁻¹; HRMS (ESI) calcd for $C_{21}H_{24}O_3N_2H$ [M + H]: 353.1865. Found: 353.1854.

Minfiensine (1). 3 N NaOH (3.2 ml, 9.7 mmol) was added to a stirring solution of carbamate **69** (68 mg, 0.19 mmol) in 1:1 MeOH/H₂O (12 ml). The resultant solution was heated to 100 °C for 2.5 h and subsequently cooled to rt. The reaction was diluted with saturated aqueous NaHCO₃, extracted with EtOAc, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the crude residue by column chromatography (100% EtOAc then 99% MeCN/1% NH₄OH) gave (+)-minfiensine (**1**) (54 mg, 0.18 mmol, 95%) as a colorless foam. The ¹H and ¹³C NMR spectra of the synthetic material were identical to reported literature values.¹³ Synthetic minfiensine displayed $[\alpha]_D^{23}$ +125 (*c* 0.82, CHCl₃), whereas $[\alpha]_D^{23}$ +134 (*c* 0.82, CHCl₃) is reported for natural minfiensine.¹³

Ketone 50. Olefin 27 (305 mg, 0.82 mmol) and 9-BBN (0.5 M in THF, 5.0 mL, 2.50 mmol) were added to an 8 mL microwave reaction vial and capped. The reaction mixture was microwave-heated (CEM Discover System, 60 Hz and 300 W instrument) at 100 °C for 1 h. After cooling to rt, TLC analysis showed incomplete conversion. Additional 9-BBN (0.5 M in THF, 0.83 mL, 0.41 mmol) was added, and heating was continued at 100 °C for 20 min. The reaction mixture was cooled to 0 °C, and 3 N NaOH and 30% H₂O₂ (2 mL each) were added sequentially, and the mixture was stirred at 0 °C for 10 min and at rt for an additional 30 min. The mixture was partitioned between Et₂O and brine, and the separated organic phase was dried (Na₂SO₄), filtered, and concentrated under reduced pressure to afford a clear, colorless oil that was filtered through a plug of silica gel (50% EtOAc/hexanes). After concentration, this residue (0.82 mmol theoretical) in CH₂Cl₂ (10 mL) was charged sequentially with crushed 4 Å molecular sieves (~1 g), TPAP (29 mg, 0.082 mmol), and NMO (985 mg, 8.2 mmol). The reaction

mixture was maintained at rt for 20 min, then concentrated to ~1 mL under reduced pressure. Purification of the crude residue by column chromatography (10% to 25% EtOAc/hexanes) gave **50** (200 mg, 0.52 mmol, 63%) as a colorless foam (**49** was isolated in 25% yield; see above for optimized procedure): **50** $[\alpha]_{589}$ –157, $[\alpha]_{577}$ –159, $[\alpha]_{546}$ – 183, (*c* 0.52, CHCl₃); ¹H NMR (600 MHz, C₆D₆, 60 °C) δ 8.05 (d, *J* = 8.2 Hz, 1H), 7.05 (dt, *J* = 1.1, 8.2 Hz, 1H), 6.79 (t, *J* = 7.5 Hz, 1H), 6.69 (d, *J* = 7.2 Hz, 1H), 3.58–3.61 (m, 4H), 3.12 (ddd, *J* = 4.4, 8.0, 14.5 Hz, 1H), 2.78 (ddd, *J* = 6.1, 11.4, 17.5 Hz, 1H), 2.57 (ddd, *J* = 4.5, 9.0, 13.9 Hz, 1H), 2.35 (q, *J* = 15.2 Hz, 2H), 2.16 (ddd, *J* = 4.4, 9.0, 18.6 Hz, 1H), 1.98 (ddd, *J* = 4.5, 8.1, 18.6 Hz, 1H), 1.48 (dd, *J* = 4.9, 11.3 Hz, 1H), 1.43 (dd, *J* = 7.9, 11.3 Hz, 1H), 1.40 (s, 9H); ¹³C NMR (150 MHz, C₆D₆, 60 °C) δ 206.3, 153.2, 152.3, 142.3, 133.5, 128.6, 123.2, 122.3, 115.3, 88.7, 79.3, 57.1, 51.6, 47.9, 45.3, 38.6, 34.7, 29.0, 28.0; IR (neat) 1684, 1719 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₆N₂O₅Na [M + Na]: 409.1740. Found: 409.1732.

Ketone 70. Using procedures described above ($52 \rightarrow 53$ and $46 \rightarrow 48$), 50 (104 mg, 0.27 mmol) was *N*-Boc deprotected (trifluoroacetic acid) to give the NH aminal: ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.15 (br s, 1H), 7.05 (t, *J* = 7.3 Hz, 1H), 6.81 (dt, *J* = 7.6, 0.9 Hz, 1H), 6.73 (dd, *J* = 7.3, 1.3, Hz, 1H), 4.32 (s, 1H), 3.44 (br s, 3H), 2.55–2.51 (m, 2H), 2.43–2.29 (m, 3H), 2.02–1.85 (m, 3H), 1.66–1.60 (m, 1H), 1.57 (dd, *J* = 12.2, 5.4 Hz, 1H).

Subsequent alkylation with (*Z*)-1-bromo-2-iodo-2-butene (**73**)¹⁴ and purification of the crude residue by column chromatography (25% EtOAc/hexanes) gave ketone **70** (81 mg, 0.17 mmol, 65% over two steps) as a clear, colorless oil: $[\alpha]_{589}$ +79.4, $[\alpha]_{577}$ +82.8, $[\alpha]_{546}$ +95.0, $[\alpha]_{435}$ +187, $[\alpha]_{405}$ +246 (*c* 0.66, CHCl₃); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.83 (br d, *J* = 8.0 Hz, 1H), 7.03 (dt, *J* = 1.4, 7.4 Hz, 1H), 6.79 (dt, *J* = 0.9, 7.5 Hz, 1H), 6.66 (dd, *J* = 1.1, 7.5 Hz, 1H), 5.31 (q, *J* = 6.4 Hz, 1H), 4.26 (br d, *J* = 14.1 H, 1H), 3.43 (s, 3H), 3.13 (d, *J* = 14.3 Hz, 1H), 2.88 (dt, *J* = 4.6, 12.1 Hz, 1H), 2.65 (ddd, *J* = 4.5, 12.1, 18.9 Hz, 1H), 2.49–2.53 (m, 2H), 2.25 (d, J = 15.6 Hz, 1H), 2.04 (dt, J = 4.1, 19.0 Hz, 1H), 1.95–2.00 (m, 1H), 1.82–1.88 (m, 1H), 1.51–1.58 (m, 2H), 1.49 (dd, J = 1.8, 6.4 Hz, 3H); ¹³C NMR (150 MHz, C₆D₆, 60 °C) δ 207.0, 154.0, 142.7, 135.0, 130.6, 128.0, 123.2, 122.5, 115.7, 111.1, 90.8, 59.7, 56.5, 51.4, 48.2, 46.7, 38.4, 35.1, 29.0, 21.1; IR (neat) 1702, 1717 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₃IN₂O₃Na [M + Na]: 489.0651. Found: 489.0654.

Iodide Palladium-Catalyzed Intramolecular Enolate/Vinyl Coupling. Preparation of Pentacycle 72: To a 1 dram vial was added ketone 70 (20 mg, 0.043) mmol), PdCl₂(dppf)•CH₂Cl₂ (3.5 mg, 0.0043 mmol), K₂CO₃ (24 mg, 0.17 mmol), and MeOH (1.5 ml). The vial was sealed with a Teflon septum cap, and the solution was degassed with argon for 10 min. The sealed vial was heated to 70 °C, and at this temperature, the solid K_2CO_3 completely dissolved. After 1 h the reaction was cooled to rt and partitioned between Et_2O and brine. The organic phase was dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by preparative TLC (75% EtOAc/hexanes) gave pentacycle 72 (10.7 mg, 0.032 mmol, 74%) as a clear, colorless oil. $[\alpha]_{589}$ +98.7, $[\alpha]_{577}$ +105, $[\alpha]_{546}$ +125, $[\alpha]_{435}$ +301, $[\alpha]_{405}$ +431 (c 1.13, CHCl₂); ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.83 (br s, 1H), 7.07 (dt, J = 1.4, 7.4Hz, 1H), 6.79 (dt, J = 1.0, 7.4 Hz, 1H), 6.68 (dd, J = 1.3, 7.4 Hz, 1H), 5.27 (q, J = 6.8 Hz, 1H), 4.27 (br s, 1H), 3.49 (s, 3H), 3.05 (br s, 1H), 2.93 (d, *J* = 16.2 Hz, 1H), 2.77 (ddd, *J* = 2.4, 7.5, 9.8 Hz, 1H), 2.54-2.60 (m, 2H), 2.48 (s, 2H), 1.79 (dd, J = 1.8, 6.4 Hz, 3H), 1.66–1.73 (m, 2H), 1.50 (ddd, J = 2.4, 6.1, 12.6 Hz, 1H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) & 207.7, 153.6, 135.6, 134.7, 128.5, 127.4, 122.8, 122.7, 122.1, 115.5, 91.4, 56.1, 53.3, 52.8, 51.5, 47.7, 44.3, 40.6, 26.9, 14.3; IR (neat) 1694 cm⁻¹; HRMS (ESI) calcd for $C_{20}H_{22}N_2O_3Na [M + Na]: 361.1528$. Found: 361.1531.

Triflate 62. A THF solution of NaHMDS (90 µL of a 2.0 M solution, 0.18 mmol) added dropwise to a solution of 72 (30 mg, 0.089 mmol), 2-[N,Nwas bis(trifluoromethylsulfonyl)amino]-5-chloropyridine (70 mg, 0.18 mmol), and THF (2 mL) at -78 °C under Ar. After 15 min, TLC analysis indicated incomplete conversion. Additional 2-[N,N-bis(trifluoromethylsulfonyl)amino]-5-chloropyridine (18 mg, 0.045 mmol) and NaHMDS (25 µL of a 2.0 M solution, 0.045 mmol) were added, and the reaction was stirred at -78 °C for 20 min. At this time, TLC indicated complete conversion, and the reaction was then guenched with saturated aqueous NH₄Cl and warmed to rt. The separated aqueous phase was washed with Et₂O, and the combined organic phases were dried (Na_2SO_4) , filtered, and concentrated under reduced pressure. Purification of the crude residue by preparative TLC (50% EtOAc/hexanes) gave 75 (36 mg, 0.077 mmol, 86%) as a clear, colorless oil: $[\alpha]_{589}$ -14.0, $[\alpha]_{577}$ -15.2, $[\alpha]_{546}$ -17.2, $[\alpha]_{435} = -23.6, [\alpha]_{405} = -26.3 (c \ 0.92, CHCl_3);$ ¹H NMR (500 MHz, C₆D₆, 60 °C) δ 7.92 (br s, 1H), 7.05 (dt, J = 1.4, 7.4 Hz, 1H), 6.81 (dd, J = 1.1, 7.2 Hz, 1H), 6.76 (t, J = 7.4 Hz, 1H), 5.68 (s, 1H), 5.15 (q, J = 6.9 Hz, 1H), 4.00 (br s, 1H), 3.47 (s, 3H), 3.13 (br s, 1H), 2.77-2.82 (m, 2H), 2.45 (ddd, J = 5.8, 8.7, 14.3 Hz, 1H), 2.34 (br s, 1H), 1.71 (ddd, J =7.3, 12.6, 12.6 Hz, 1H), 1.58 (dd, J = 2.1, 6.9 Hz, 3H), 1.55 (dd, J = 2.9, 13.2 Hz, 1H), 1.38 (dd, J = 5.7, 12.5 Hz, 1H); ¹³C NMR (125 MHz, C₆D₆, 60 °C) δ 153.5, 153.0, 140.1, 133.4, 131.4, 128.8, 122.8, 122.6, 122.1, 119.0 (q, $J_{CF} = 319$ Hz), 115.7, 115.3, 90.6, 56.3, 52.2, 51.64, 51.60, 37.9, 34.9, 27.7, 13.7; IR (neat) 1698 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₂F₃N₂O₅S [M + H]: 471.1201. Found: 471.1193.

Enoate 56. To a 1 dram vial was added triflate **75** (34 mg, 0.072 mmol), $Pd(OAc)_2$ (5 mg, 0.022 mmol), PPh_3 (11 mg, 0.43 mmol), Et_3N (30 µl, 0.22 mmol), MeOH (1 ml), and DMF (1 ml). The vial was sealed with a Teflon septum cap, and the solution was degassed with a balloon of CO for 5 min. The sealed vial was then heated to 50 °C under a balloon of CO. After 3.5 h the reaction was cooled to rt and partitioned between Et_2O and brine. The organic phase was washed an additional time with brine, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the crude residue by preparative TLC (50% EtOAc/hexanes) gave methyl ester **68** (24 mg, 0.064 mmol, 89%) as a colorless oil. The ¹H and ¹³C NMR of **68** were identical to the spectral values reported above.

References.

- 1. Kondo, Y.; Kojima, S.; Sakamoto, T. J. Org. Chem. 1997, 62, 6507-6511.
- Ohashi, M.; Takahashi, T.; Inoue, S.; Sato, K. Bull. Chem. Soc. Jpn. 1975, 48, 1892–1896.
- 3. Because of carbamate rotomers, most ¹H and ¹³C NMR spectra in Supporting Information were conducted in d_6 -benzene at 60 °C.
- 4. Hart, R. Bull. Soc. Chim. Belg. 1956, 65, 291–296.
- 5. Cesium carbonate and cesium fluoride were dried in a vacuum oven set to 120 °C for 24 h.
- 6. Loiseleur, O.; Meier, P.; Pfaltz, A. Angew. Chem. Int. Ed. 1996, 35, 200-202.
- 7. For X-ray crystallographic analysis data, see accompanying cif file.
- 8. Sharpless, K.B.; Lauer, R.F. J. Am. Chem. Soc. 1973, 95, 2697-2699.
- 9. Rawal, V.H.; Michoud, C. Tetrahedron Lett. 1991, 32, 1695-1698.
- Nicolaou, K.C.; Zhong, Y.-L.; Baran, P.S. J. Am. Chem. Soc. 2000, 122, 7596– 7597.
- 11. Copies of ¹H and ¹³C NMR data for **63** are presented as a mixture with **48** in Supporting Information, see page S81.
- 12. Brown, L.; Koreeda, M. J. Org. Chem. 1984, 49, 3875-3880.
- Massiot, G.; Thépenier, P.; Jacquier, M.; Le Men-Olivier, L.; Delaude, C. *Heterocycles* 1989, 29, 1435-1438.
- Rawal, V.H.; Michoud, C.; Monestel, R.F. J. Am. Chem. Soc. 1993, 115, 3030-3031.

Dounay et al.: Minfiensine Supporting Information – S36

- 20

Dounay et al.: Minfiensine Supporting Information – S47

Sample Name: abd-iii-157

Dounay et al.: Minfiensine Supporting Information – S49

Dounay et al.: Minfiensine Supporting Information – S56

Dounay et al.: Minfiensine Supporting Information – S59

Dounay et al.: Minfiensine Supporting Information – S66

מהבררו חווו Juc

1H spectrum

spectrum with 1H decoupling

1H spectrum

13C spectrum with 1H decoupling

spectrum ΨĮ.

Dounay et al.: Minfiensine Supporting Information – S92

1H spectrum

-1'1'1'0'3 -1'1'2008 -1'1'2008 -1'1'2008 -1'1'2008 -1'1'2008 -1'1'2008 -5''008

-3' 14010 -3' 1208 -3' 58586 -3' 58586 -3' 58582 -3' 58282

3, 30686 3, 31717 3, 32713 3, 32713 3, 32713 3, 37713

17468.5 3.69468

76068 '8-

///01 .4-

-2:31225 -2:40261 -2:41263

9+840.9

udd

Dounay et al.: Minfiensine Supporting Information - S100

Dounay et al.: Minfiensine Supporting Information – S102 ot parameters 22.80 cm 23.86 cm 230.000 ppm 26413.89 Hz -155.00 Hz -155.00 Hz 1213.67078 Hz/cm access and access and access and access and access and access and access acces access ssing parameters 65536 125.7804190 MHz EM Hz
 F2
 - Acquisition Parameter bate

 Dise
 200312/22

 Tage
 200312/22

 Tage
 200312/22

 Tage
 200312/22

 Tage
 200312/22

 Tage
 200312/22

 Tage
 20042/20

 PULPHDG
 5 am CPTCI

 D1
 20042/20

 D1
 20042/20

 SUVENT
 20030/20

 SSH
 20030/20

 SSH
 20030/20

 SSH
 20030/20

 SH
 20030/20

 SH
 20030/20

 SH
 20030/20

 SH
 20030/20

 SH
 20030/20

 SH
 0

 SH
 0
Current Data Parameters USER aaronw NAME adw-111-289 EXPNO 300 PROCND 1 1.00 1 СРОРН62 NUC2 PCPO2 PL2 PL12 SF02 SF02 0 -2 - 51.26 - 53.01 - 32.20 07.86 40-49.60 78.18 87.85 -£9'69 --9 -08 72'06 -100 -111°S2 11.211-120 77.051 81.851 74.751 74.751 74.751 74.751 74.751 74.751 74.751 74.751 74.751 74.751 75 140 -145.69 124.07 160 180 2 MeO₂C 200 -207.43 mdo

13C spectrum with 1H decoupling

OTf TI λZ MeO₂C Z Ŋ

75

84616.1-

Dounay et al.: Minfiensine Supporting Information - S105

-0

1.2209 1.2893 1.2893

1.0251

5.2459

3800.1

1.0214

8880.1 8880.1 1.2289

۵۵<u>۱، ۵۵۵۵</u>

F -თ

2

m 1880.1 3. 1333

- LO 0890.1

-0

13C spectrum with 1H decoupling