Total Synthesis of the Strychnos Alkaloid (+)-Minfiensine: Tandem Enantioselective Intramolecular Heck-Iminium Ion Cyclization

Amy B. Dounay, Philip G. Humphreys, Larry E. Overman,* and Aaron D. Wrobleski
Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697-2025, USA

Supporting Information - Table of Contents

Experimental Procedures S1
References S32
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 33

For materials and methods, see: Becker, M. H.; Chua, P.; Downham, R.; Douglas, C. J.; Garg, N. K.; Hiebert, S.; Jaroch, S.; Matsuoka, R. T.; Middleton, J. A.; Ng, F. W.; Overman, L. E. J. Am. Chem. Soc. 2007, 129, 11987-12002.

Experimental Procedures.

Enone 15. A mixture of $\mathbf{1 3}^{1}(19.1 \mathrm{~g}, 71.4 \mathrm{mmol})$, enone $\mathbf{1 4}^{2}(15.6 \mathrm{~g}, 86.1 \mathrm{mmol})$, benzene (180 mL), and p-toluenesulfonic acid mono hydrate ($14.9 \mathrm{~g}, 78.3 \mathrm{mmol}$) was heated at $50^{\circ} \mathrm{C}$ under Ar for 2 h , during which time the solution became homogeneous. The mixture was cooled to rt, diluted with EtOAc (100 mL), and washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$. The separated organic layer was washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$) gave 15 (24.4 g , $67.8 \mathrm{mmol}, 95 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23$ (dd, $J=8.0,1.5$
$\mathrm{Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{ddd}, J=15.0,8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{ddd}, J=8.0,8.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.46(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.03$ (dddd, $J=6.0,6.0,6.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.6,145.5,136.1,133.6,121.2,120.1,118.1,116.6,116.1,38.0$, $25.0,23.1,18.2,13.2$; IR (neat) $3377,2944,2867,1679,1596,1522,1476 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{SiH}[\mathrm{M}+\mathrm{H}]$: 359.2281. Found: 359.2278 .

Carbamate 16. n - BuLi (2.48 M in hexanes, $26.9 \mathrm{~mL}, 66.7 \mathrm{mmol}$) was added dropwise over 10 min to a stirring solution of HMDS ($13.9 \mathrm{~mL}, 66.7 \mathrm{mmol}$) in THF (90 mL) at $-78{ }^{\circ} \mathrm{C}$ under Ar. Following warming to rt over 30 min , the solution was added dropwise via cannula over 1 h to a stirring solution of $\mathbf{1 5}(8.0 \mathrm{~g}, 22.3 \mathrm{mmol})$, methyl cyanoformate ($6.90 \mathrm{~mL}, 89.0 \mathrm{mmol}$) and THF $(70 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under Ar. After 15 min, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added. The resultant mixture was warmed to rt and diluted with EtOAc (100 mL). The separated aqueous phase was washed with EtOAc $(3 \times 100 \mathrm{~mL})$ and the combined organic phase was washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to $15 \% \mathrm{EtOAc} /$ hexanes) gave 16 (8.3 g , $19.9 \mathrm{mmol}, 89 \%$) as a cream solid: mp $110-112{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) ${ }^{3}$ $\delta 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{ddd}, J=9.0,9.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 6.74$ (ddd, J $=8.5,8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.75(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.41(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.30$ (m, 3H), 1.15 (d, $J=7.5 \mathrm{~Hz}, 18 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 193.6,155.4$, $153.1,143.4,142.4,134.8,130.8,128.7,122.0,119.3,52.9,39.0,25.9,23.1,18.6,13.8 ;$ IR (neat) 2946, 2867, 1721, 1692, 1596, 1499, 1439, $1333 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiH}[\mathrm{M}+\mathrm{H}]: 418.2414$. Found: 418.2400 .

Triflate 18. NaHMDS (1.0 M in THF, $48.3 \mathrm{~mL}, 48.3 \mathrm{mmol}$) was added dropwise to a solution of 16 ($13.5 \mathrm{~g}, 32.3 \mathrm{mmol}$), 2-[N, N-bis(trifluoromethylsulfonyl)amino]-5chloropyridine (17) (19.0 g, 48.3 mmol), and THF (300 mL) at $-78^{\circ} \mathrm{C}$ under Ar. After 15 min , saturated aqueous $\mathrm{NaHCO}_{3}(75 \mathrm{~mL})$ was added, the mixture was warmed to rt , and extracted with EtOAc (200 mL). The separated aqueous phase was washed with additional EtOAc (100 mL) and the combined organic phases were washed with brine (150 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to $20 \% \mathrm{EtOAc} /$ hexanes) gave $\mathbf{1 8}$ $(14.5 \mathrm{~g}, 26.4 \mathrm{mmol}, 82 \%)$ as a pale yellow solid: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{ddd}, J=8.0,8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~m}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 152.9,143.6,130.0,128.7,128.3$, $128.0,127.7,121.9,119.7$ (q, $J_{\mathrm{C}, \mathrm{F}}=319 \mathrm{~Hz}$), 119.0, 116.4, 53.3, 22.1, 22.0, 18.7, 13.9; IR (neat) 2948, 2869, 1729, 1598, 1499, 1420, $1320 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{NO}_{6} \mathrm{SSiH}[\mathrm{M}+\mathrm{H}]: 550.1907$. Found: 550.1890.

Biscarbamate 20. 9-BBN (0.5 M in THF, $32 \mathrm{~mL}, 16 \mathrm{mmol}$) was added dropwise over 15 min to a solution of N-vinyl-tert-butyl carbamate ($\mathbf{1 9})^{4}(2.1 \mathrm{~g}, 14.6 \mathrm{mmol})$ in THF (45 mL) at $0^{\circ} \mathrm{C}$ under Ar. The reaction was allowed to warm to rt over a period of 1 h , then maintained at rt for an additional 15 h . An aqueous solution of $\mathrm{NaOH}(15 \mathrm{~mL}$ of a 3.0 M solution, 45 mmol) was added, and the resulting mixture was degassed by sparging with Ar through a submerged needle for 45 minutes. The mixture was transferred via cannula to a degassed solution of $\mathbf{1 8}(4.0 \mathrm{~g}, 7.3 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf})(715$
$\mathrm{mg}, 0.87 \mathrm{mmol}$), and THF (45 mL) at rt . After 40 min , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, and pH 7 buffer solution (50 mL) was added followed by slow addition of 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(50 \mathrm{~mL})$. When gas evolution slowed, the mixture was warmed to room temperature. After an additional 30 min at rt , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added, the mixture was extracted with EtOAc $(2 \times 75 \mathrm{~mL})$, and the combined organic extracts were washed with brine $(75 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. Purification of the crude residue by column chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$) gave $20(2.8 \mathrm{~g}, 5.2 \mathrm{mmol}, 71 \%)$ as a colorless foam: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right) \delta 7.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H})$, $2.41(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 6{ }^{\circ} \mathrm{C}$) $\delta 156.3,152.8,134.4,129.2,128.9,128.7,128.5,128.3,125.0$, $122.8,121.7,119.2,78.8,52.9,40.8,31.7,29.0,23.1,22.7,18.7,13.9$; IR (neat) 3363 , 2946, 2869, 1715, 1499, 1441, $1335 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}$: 544.3333. Found: 544.3326.

21

Triflate 21. CsF ($13.8 \mathrm{~g}, 90.8 \mathrm{mmol}$) was added to a stirring solution of $20(9.9 \mathrm{~g}$, 18.2 mmol) and $2-[N, N$-bis(trifluoromethylsulfonyl)amino]-5-chloropyridine (17) (14.3 g, 36.2 mmol) in anhydrous DMF (150 mL) under Ar. ${ }^{5}$ Following stirring for 3 min , crushed cesium carbonate ($24.0 \mathrm{~g}, 73.6 \mathrm{mmol}$) was added and the resultant suspension was stirred vigorously for 15 min . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, and the separated aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with brine $(3 \times$ $100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (15% to $25 \% \mathrm{EtOAc} /$ hexanes) gave $\mathbf{1 8}$ ($8.90 \mathrm{~g}, 17.1 \mathrm{mmol}, 94 \%$) as a colorless foam: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 7.18-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{ddd}, J=7.5,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{ddd}, J=8.5,8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.76(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 156.3,155.1,145.7,140.3,136.3,133.6,129.0,128.9,128.0,126.0,125.9,122.2,119.6$ (q, $J_{\mathrm{C}, \mathrm{F}}=318 \mathrm{~Hz}$), 78.9, 53.6, 40.6, 31.8, 28.9, 23.1, 22.5; IR (neat) 3436, 3363, 3037, 2977, 1713, 1675, 1493, 1422, $1329 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}$: 520.1491. Found: 520.1483.

Dihydrocarbazole 25. Toluene was sparged with Ar for 30 min prior to use in this reaction. A microwave reaction tube containing $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{mg}, 23 \mu \mathrm{~mol})$ and (S) -4-tert-butyl-2-[2-(diphenylphosphinyl)phenyl]-4,5-dihydrooxazole (26b) ${ }^{6}$ ($27 \mathrm{mg}, 69$ $\mu \mathrm{mol})$ under Ar was charged with a solution of $21(120 \mathrm{mg}, 0.23 \mathrm{mmol})$, toluene (1.5 $\mathrm{mL})$, and $1,2,2,6,6$-pentamethylpiperidine ($170 \mu \mathrm{~L}, 0.92 \mathrm{mmol})$. After stirring at rt for 10 min , the reaction mixture was microwave-heated (CEM Discover System, 60 Hz and 300 W instrument) at $170{ }^{\circ} \mathrm{C}$ for 45 min . Following cooling, the reaction mixture was concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to 20% EtOAc/hexanes) gave $25(74 \mathrm{mg}, 0.20 \mathrm{mmol}, 87 \%$) as a colorless foam: $[\alpha]_{589}+94.1,[\alpha]_{577}+98.9,[\alpha]_{546}+114,[\alpha]_{435}+229\left(c 3.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right) \delta 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{ddd}, J=8.0,8.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}$, $J=9.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~m}$, $2 \mathrm{H}), 2.61$ (dddd, $J=22.0,2.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (ddd, $J=22.0,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 155.9,153.5$, $143.9,141.8,135.9,129.8,128.9,127.3,124.0,122.4,116.5,108.1,78.8,52.7,47.4$, 44.2, 37.4, 28.9, 27.6; IR (neat) $3375,2974,1715,1514,1475 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}: 370.1893$. Found: 370.1886.

Iminoethanocarbazole 27. Trifluoroacetic acid ($0.16 \mathrm{~mL}, 2.1 \mathrm{mmol}$) was added to a stirring solution of $\mathbf{2 5}(260 \mathrm{mg}, 0.70 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar . After 30 min , saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added. The separated aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and the combined organic fractions were washed with brine (15 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to 20% EtOAc/hexanes) gave $27(220 \mathrm{mg}, 0.59 \mathrm{mmol}, 85 \%)$ as a colorless foam: $[\alpha]_{589}-41.8$, $[\alpha]_{577}-44.1,[\alpha]_{546}-49.8,[\alpha]_{435}-86.6,[\alpha]_{405}-110\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 8.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{ddd}, J=7.5,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J$ $=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{ddd}, J=10.0,4.0,4.0 \mathrm{~Hz}$, 1 H), 5.47 (ddd, $J=10.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 3.11$ (ddd, $J=10.5$, $9.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ (ddd, $J=13.5,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (ddd, $J=13.5,8.0,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.85$ (ddd, $J=12.5,7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.67$ (ddd, $J=$ $12.5,8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 155.1,153.8$, 142.6, 135.3, 128.9, 128.7, 127.1, 123.6, 122.6, 117.8, 99.4, 79.7, 57.0, 52.3, 47.1, 35.5, 29.0, 28.8, 23.5; IR (neat) 2975, 1706, 1480, 1439, $1378 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}: 370.1893$. Found: 370.1895. HPLC (Daicel Chiracel OD-H column, column temperature $23^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=98: 2$, flow rate $1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$): 6.7 min (minor enantiomer), 14.1 min (major enantiomer), 99% ee. See page S 47 for chiral HPLC traces

Generation of 27 by a Cascade Sequence: A solution of triflate 21 ($96 \mathrm{mg}, 0.19$ $\mathrm{mmol})$ and toluene (1.2 ml) in a 10 mL microwave reaction vessel was sparged with Ar for 10 min . To this solution was added $\mathrm{Pd}(\mathrm{OAc})_{2}(6.4 \mathrm{mg}, 0.028 \mathrm{mmol}),(S)-4$-tert-butyl-2-[2-(diphenylphosphinyl)phenyl]-4,5-dihydrooxazole (26b) ${ }^{6}(33 \mathrm{mg}, 0.084 \mathrm{mmol})$, and 1,2,2,6,6-pentamethylpiperidine ($105 \mu \mathrm{l}, 0.57 \mathrm{mmol}$). The reaction was then degassed for an additional 20 min . This solution was subsequently heated with stirring in a
microwave reactor (CEM Discover System, 60 Hz and 300 W instrument) at $170^{\circ} \mathrm{C}$ for 30 min . The reaction was then cooled to $0^{\circ} \mathrm{C}$, and to it was added a $0^{\circ} \mathrm{C}$ solution of trifluoroacetic acid ($0.17 \mathrm{ml}, 2.28 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$. After stirring for 15 min at this temperature, the reaction was poured into saturated aqueous NaHCO_{3}. The isolated organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography ($15 \% \mathrm{EtOAc} / \mathrm{hexanes}$) gave tetracycle 27 ($51 \mathrm{mg}, 0.14 \mathrm{mmol}, 75 \%$) as a colorless oil: $[\alpha]_{589}-41.8$.

Epoxide 34. m-chloroperoxybenzoic acid (400 mg of 70% purity reagent, 1.6 $\mathrm{mmol})$ was added to a stirring solution of $27(240 \mathrm{mg}, 0.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ and the reaction mixture was slowly warmed to rt over 30 min . After 2 h , the reaction was cooled to $0{ }^{\circ} \mathrm{C}$, and another portion of m-chloroperoxybenzoic acid (400 mg of 70% purity reagent, 1.6 mmol) was added. The reaction mixture was allowed to warm to rt over 30 min . After 2.5 h , the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The separated organic phase was washed with $1 \mathrm{M} \mathrm{NaOH}(3 \times 10 \mathrm{~mL})$ and brine (10 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to $20 \% \mathrm{EtOAc} /$ hexanes) gave 34 (217 $\mathrm{mg}, 0.56 \mathrm{mmol}, 87 \%)$ as a colorless crystalline solid: mp $178-180{ }^{\circ} \mathrm{C} ;[\alpha]_{589}-79.3$, $[\alpha]_{577}-82.8,[\alpha]_{546}-94.6,[\alpha]_{435}-166,[\alpha]_{405}-209\left(c 2.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}\right) \delta 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.54$ (ddd, $J=14.0,3.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=12.0,9.5,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.80(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.33$ (ddd, $J=12.0,12.0,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{ddd}, J=13.5,11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 6{ }^{\circ} \mathrm{C}$) $\delta 155.6,153.6,145.1,132.2,129.8,128.9,123.8,123.3,117.8,86.9$, $79.9,56.5,55.2,53.5,52.5,45.8,30.2,28.9,24.6,22.5$; IR (neat) 2977, 1702, 1602, 1478, 1437, 1382, $1358 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}: 386.1842$. Found: 386.1842.

Epoxide 35. m-chloroperoxybenzoic acid (215 mg of 70% purity reagent, 0.88 mmol) was added to a stirred solution of racemic $33(140 \mathrm{mg}, 0.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$, and the reaction mixture was allowed to warm to rt . After 1 h at rt , the reaction was re-cooled to $0^{\circ} \mathrm{C}$, and another portion of m-chloroperoxybenzoic acid (140 mg of 70% purity reagent, 0.88 mmol) was added. The reaction mixture was allowed to warm to rt and the reaction was stirred for 1 h at rt . The reaction was then diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The separated organic phase was washed with $1 \mathrm{M} \mathrm{NaOH}(3 \times 10$ $\mathrm{mL})$ and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to 20% EtOAc/hexanes) gave $35(85 \mathrm{mg}, 0.14 \mathrm{mmol}, 58 \%)$ as a colorless crystalline solid ${ }^{7}: \mathrm{mp}$ $185-187{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 8.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.63(\mathrm{~m}$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{dt}, J=13.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 1 \mathrm{H})$, $2.80-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.72$ (ddd, $J=16.8,11.9,4.9$ $\mathrm{Hz}, 1 \mathrm{H}$), $1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 157.5,155.1,153.8,138.8$, $133.9,118.9,114.5,110.3,87.2,80.1,56.6,55.9,55.5,53.7,52.6,45.9,30.3,29.1,24.8$, 22.8; IR (neat) 2949, 1698, 1486, 1436, 1382, $1359 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}: 439.1845$. Found: 439.1849.

Allylic Alcohol 36. Following a general procedure, ${ }^{8}$ a bulk solution of NaSePh was prepared by addition of two portions of $\mathrm{NaBH}_{4}(12 \mathrm{mg}, 0.32 \mathrm{mmol}$ each $)$ to a stirring yellow suspension of $\mathrm{Ph}_{2} \mathrm{Se}_{2}$ ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) in absolute ethanol (1.5 mL , degassed by sparging with Ar for 30 min prior to use) at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt over 20 min and maintained at rt for 20 min until the solution became colorless, indicating complete reduction of $\mathrm{Ph}_{2} \mathrm{Se}_{2}$. A solution of $34(22 \mathrm{mg}, 57 \mu \mathrm{~mol})$ and THF
(0.5 mL , degassed by sparging with Ar for 30 min prior to use) under Ar at rt was charged with a portion of the bulk NaSePh solution $(0.5 \mathrm{~mL}, 50 \mathrm{mmol})$. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ and maintained at this temperature for 2 h . An additional portion of NaSePh solution $(0.25 \mathrm{~mL}, 25 \mathrm{mmol})$ was added. Two additional portions of NaBH_{4} (5 mg each) were added at 2 h intervals over the next 4 h to maintain a colorless reaction mixture and reduce any $\mathrm{Ph}_{2} \mathrm{Se}_{2}$ that formed during the course of the reaction. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.5 \mathrm{~mL})$ was added dropwise. After 20 min , the reaction mixture was warmed to rt and maintained at this temperature for ca .30 min , until gas evolution ceased. TLC analysis showed complete consumption of the alkylselenide intermediate. The reaction mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was cooled to rt and diluted with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$. The separated aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic fractions were washed with saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 3 \mathrm{~mL})$, brine (5 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to $20 \% \mathrm{EtOAc} / \mathrm{hexanes}$) gave 36 ($11 \mathrm{mg}, 28$ $\mathrm{mmol}, 50 \%$) as a colorless foam. Note: See preparation of 44 for an improved procedure. $[\alpha]_{589}-98.6,[\alpha]_{577}-104,[\alpha]_{546}-118,[\alpha]_{435}-206,[\alpha]_{405}-259\left(c \quad 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right) \delta 8.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=$ $8.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.59$ (ddd, $J=9.5,2.5,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.28(\mathrm{dd}, J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=11.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}$, $3 \mathrm{H}), 2.83$ (ddd, $J=11.5,11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 1.95$ (ddd, $J=12.0,12.0,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 153.8,152.4,143.6,134.6,133.7,128.8,126.6,124.1,123.4,115.7,91.1,79.3,73.2$, 64.5, 51.9, 46.2, 34.3, 31.3, 28.5; IR (neat) 3464, 2977, 2854, 1711, 1690, 1484, 1389 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$: 409.1740. Found: 409.1736.

Indole 38: NaH (60% dispersion in mineral oil, $8 \mathrm{mg}, 0.22 \mathrm{mmol}$) was added to a stirring solution of alcohol $36(17 \mathrm{mg}, 0.044 \mathrm{mmol})$ and THF $(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar. The reaction was allowed to warm to rt over 10 min and then re-cooled to $0^{\circ} \mathrm{C}$. To this was added benzyl bromide ($13 \mu \mathrm{l}, 0.11 \mathrm{mmol}$) and tetrabutylammonium iodide (6 mg , 0.016 mmol), and the reaction was warmed to rt and stirred for 3 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (15% hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) gave 37 ($14 \mathrm{mg}, 0.030 \mathrm{mmol}, 67 \%$) as a clear, colorless oil: ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 6{ }^{\circ} \mathrm{C}$) $\delta 8.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.09(\mathrm{~m}$, $6 \mathrm{H}), 6.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=9.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J$ $=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=14.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.79(\mathrm{dd}, J=11.2,7.6,1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=12.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.

Trifluoroacetic acid ($25 \mu \mathrm{~L}, 20 \mathrm{eq}$) was added to a stirred solution of benzyl ether $38(8 \mathrm{mg}, 0.017 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Following stirring for 10 min at 0 ${ }^{\circ} \mathrm{C}$, saturated aqueous NaHCO_{3} was added. The aqueous phase was then extracted with EtOAc , and the combined organic extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (20% to $35 \% \mathrm{EtOAc} /$ hexanes) gave $38(6 \mathrm{mg}, 0.016 \mathrm{mmol}, 92 \%$) as a clear, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 9.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dt}, J=1.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.14(\mathrm{~m}$, $1 \mathrm{H}), 6.42(\mathrm{dt}, J=6.0,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{ddt}, J=1.6,7.5,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.65(\mathrm{dd}, J=1.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 191.8,153.4,151.7,136.0,133.1$, $132.6,129.8,128.2,124.4,123.0,118.6,118.2,115.9,78.5,52.5,40.5,29.4,28.1,24.6 ;$

IR (neat) $3382,1735,1688 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$: 409.1740. Found: 409.1743.

Epoxide 42. Trifluoroacetic acid (3.2 mL) was added to a stirring solution of $\mathbf{3 4}$ $(500 \mathrm{mg}, 1.29 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The cooling bath was removed, and the reaction mixture was allowed to warm to rt for 2.5 h . The reaction mixture then was cooled to $0{ }^{\circ} \mathrm{C}$ and saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ was added dropwise. The mixture was diluted with EtOAc (100 mL), and the separated organic phase was washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (50% EtOAc/hexanes) gave $42(360 \mathrm{mg}, 1.26 \mathrm{mmol}, 98 \%)$ as a colorless oil: $[\alpha]_{589}-146,[\alpha]_{577}$ $-153,[\alpha]_{546}-176,[\alpha]_{435}-330,[\alpha]_{405}-431\left(c ~ 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 7.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{ddd}, J=6.5,6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~s}$, $3 \mathrm{H}), 3.08(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=7.0$, $7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=10.0,9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{ddd}, J=$ $12.5,11.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ (ddd, $J=13.5,13.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.84 (ddd, $J=11.5,5.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.64 (dddd, $J=15.0,4.0,4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.37 (dddd, $J=13.5,13.5,3.5$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 154.2,144.3,133.7,129.2,124.2$, $123.6,115.8,88.8,57.6,54.4,53.2,52.2,43.3,38.0,27.8,21.4$; IR (neat) 3377,2958 , 2850, 1698, 1598, 1484, 1439, $1374 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$: 287.1396. Found: 287.1396.

Epoxide 43. Allyl chloroformate ($3.40 \mathrm{~mL}, 31.1 \mathrm{mmol}$) was added to a stirring solution of aminal $42(2.96 \mathrm{~g}, 10.3 \mathrm{mmol})$ in THF $(125 \mathrm{~mL})$ at $0^{\circ} \mathrm{C} . \mathrm{K}_{2} \mathrm{CO}_{3}(4.30 \mathrm{~g}, 31.1$
$\mathrm{mmol})$ was added, followed by 18 -crown-6 ($300 \mathrm{mg}, 1.04 \mathrm{mmol}$). The reaction was warmed to rt over 2 h , stirred for an additional 18 h , and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic fractions were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (20% EtOAc/hexanes) gave epoxide $43(3.52 \mathrm{~g}, 9.5 \mathrm{mmol}, 92 \%)$ as a thick, clear oil: $[\alpha]_{589}-$ 81.1, $[\alpha]_{577}-84.4,[\alpha]_{546}-96.4,[\alpha]_{435}-167,[\alpha]_{405}-208\left(c 2.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right) \delta 8.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.92(\mathrm{~m}, 2 \mathrm{H})$, $5.65-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.41-4.45 (m, 1H), $4.30(\mathrm{dd}, J=13.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{ddd}, J=14.1,3.3$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=12.0,10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 2 \mathrm{H})$, 2.31 (ddd, $J=12.6,12.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=12.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.83(\mathrm{~m}$, $2 \mathrm{H}), 1.63-1.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 154.6,153.4,144.5,133.6$, $131.6,129.5,123.6,123.0,117.5,116.9,86.6,65.6,56.0,54.8,53.1,52.2,45.1,29.7$, 24.1, 22.1; IR (neat) $1698 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$: 393.1426. Found: 393.1415.

Allyl alcohol 44. Following a general procedure, ${ }^{8}$ a mixture of $\mathrm{PhSeSePh}(1.71 \mathrm{~g}$, $5.48 \mathrm{mmol})$ and absolute $\mathrm{EtOH}(20 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$. Solid $\mathrm{NaBH}_{4}(420 \mathrm{mg}, 11.0$ mmol) was added in portions to this mixture over a period of 3 min (rapid gas evolution resulted). The originally yellow mixture turned to a clear, colorless solution upon complete addition of NaBH_{4}. The resulting sodium phenyl selenide solution was warmed to rt and stirred for 5 min . To this solution was added epoxide $43(1.84 \mathrm{~g}, 4.97 \mathrm{mmol})$ in 1:1 THF/EtOH (20 mL), and the reaction was heated to $70^{\circ} \mathrm{C}$ for 2 h . To reduce any PhSeSePh formed during the course of the reaction, which resulted in yellowing of the reaction, ca. 10 mg portions of NaBH_{4} were added twice. The reaction was then cooled to $0{ }^{\circ} \mathrm{C}$, diluted with THF (15 mL), and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(11 \mathrm{~mL})$ was added slowly. The
reaction was again heated to $70^{\circ} \mathrm{C}$ for 20 min during which time rapid gas evolution was noticed. The reaction then was poured into saturated NaHCO_{3}, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (20% EtOAc/hexanes) gave allyl alcohol 44 ($1.54 \mathrm{~g}, 4.15 \mathrm{mmol}, 83 \%$) as clear, colorless oil: $[\alpha]_{589}-126,[\alpha]_{577}-132,[\alpha]_{546}-150,[\alpha]_{435}-258,[\alpha]_{405}-320\left(c \quad 1.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=1.1,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.91$ (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.72-5.80$ (m, 2H), 5.09 (ddd, $J=17.2,1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.51$ (m, 2H), 4.23 (dd, $J=15.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.1,7.3$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.61(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{ddd}, J=11.3,11.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.05$ (ddd, $J=12.4,12.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=12.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}\right) \delta 153.8,153.1,143.4,134.6,134.2,133.7,128.8,126.2,124.3,123.6$, 117.0, 115.7, 91.3, 73.1, 65.7, 64.4, 52.0, 46.1, 34.4, 31.2; IR (neat) 3462, 1690, 1728 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$: 393.1426. Found: 393.1415.

Silyl Ether 45. TESCl ($1.64 \mathrm{~mL}, 9.73 \mathrm{mmol}$) was added to a stirred solution of allyl alcohol 44 ($2.40 \mathrm{~g}, 6.48 \mathrm{mmol}$) and imidazole ($660 \mathrm{mg}, 9.73 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (60 mL) at rt . TLC analysis after 20 min indicated complete consumption of the starting alcohol, and the reaction was then quenched with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$) gave silylated alcohol $45(2.82 \mathrm{~g}, 5.83 \mathrm{mmol}, 90 \%)$ as a colorless amorphous solid: $[\alpha]_{589}-$ $132,[\alpha]_{577}-138,[\alpha]_{546}-157,[\alpha]_{435}-272,[\alpha]_{405}-339\left(c \quad 1.13, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 8.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.15(\mathrm{~m}$, $1 \mathrm{H}), 6.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.82(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{dd}, J=17.2$,
$1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J$ $=15.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=11.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{ddd}, J=12.3,5.4$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=12.4,7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=12.4$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.57(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}\right) \delta 153.8,152.9,143.9,134.2,134.0,133.9,129.0,126.7,124.4,123.1$, $116.8,115.7,91.3,74.2,65.5,65.1,51.9,46.1,34.6,31.3,7.0,5.6$; IR (neat) 1692,1727 $\mathrm{cm}^{-1} ;$ HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]$: 507.2291. Found: 507.2298.

Tetracyclic Amine 46. A solution of $45(2.50 \mathrm{~g}, 5.16 \mathrm{mmol})$, pyrrolidine (8.7 $\mathrm{mL}, 103 \mathrm{mmol}$) and THF (50 mL) was degassed with Ar for 30 min and stirred at rt . To this mixture was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(605 \mathrm{mg}, 0.52 \mathrm{mmol})$ in one portion, and stirring was continued for an additional 30 min . The reaction was then concentrated under reduced pressure. Purification of the crude residue by column chromatography (20% to 50% EtOAc/hexanes) gave aminal $46(2.07 \mathrm{~g}, 5.16 \mathrm{mmol}, 100 \%)$ as a thick, light yellow oil: $[\alpha]_{589}-78.1,[\alpha]_{577}-82.1,[\alpha]_{546}-94.2,[\alpha]_{435}-171,[\alpha]_{405}-216\left(c 1.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 7.95$ (br s, 1H), 7.57 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13-7.15 (m, 1H), $6.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddd}, J=9.4,9.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.73(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.53-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=11.8,11.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ $(\mathrm{dd}, J=11.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 6{ }^{\circ} \mathrm{C}\right.$) $\delta 153.6,143.7,136.1,134.0,128.4,126.8,125.1,123.0,114.7$, 92.1, 75.1, 63.0, 51.7, 43.6, 37.9, 34.5, 7.0, 5.7; IR (neat) $3378,3047,1691 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{SiH}[\mathrm{M}+\mathrm{H}]: 401.2260$. Found: 401.2253.

Vinyl iodide 48. A mixture of 46 ($372 \mathrm{mg}, 0.93 \mathrm{mmol}$), (Z)-2-iodo-2-butenyl tosylate (47) ${ }^{9}(660 \mathrm{mg}, 1.87 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(640 \mathrm{mg}, 4.65 \mathrm{mmol})$ and $\mathrm{MeCN}(10 \mathrm{~mL})$ was stirred at $70^{\circ} \mathrm{C}$ for 18 h . After cooling to rt , the reaction was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and water. The aqueous layer was extracted with additional $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (5\% $\mathrm{EtOAc} /$ hexanes) gave vinyl iodide $48(520 \mathrm{mg}, 0.89 \mathrm{mmol}, 96 \%)$ as a clear, colorless oil: $[\alpha]_{589}+22.7,[\alpha]_{577}+23.8,[\alpha]_{546}+27.4,[\alpha]_{435}+52.1,[\alpha]_{405}+67.1\left(c \quad 1.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, C $\left.\mathrm{C}_{6}, 60^{\circ} \mathrm{C}\right) \delta 7.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.13-7.15 (m, 1H), 6.98 (dt, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.92(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{q}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=15.8,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.50(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.28(\mathrm{~m}, 3 \mathrm{H})$, $1.93-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=6.4,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.61(\mathrm{q}, J=$ 8.0 Hz, 6H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 154.5,144.0,135.3,134.1,130.1$, $128.5,126.8,125.5,122.9,115.9,112.2,93.5,74.4,65.6,59.9,51.8,48.2,34.5,33.1$, 21.6, 7.0, 5.6; IR (neat) $1704 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{IN}_{2} \mathrm{SiH}[\mathrm{M}+\mathrm{H}]$: 581.1697. Found: 581.1698.

It was observed that extended exposure of $\mathbf{4 8}$ to silica gel during chromatography caused partial isomerization to olefin 63 (see below).

Ketone 49. A solution of $27(575 \mathrm{mg}, 1.55 \mathrm{mmol})$ and THF (25 mL) under Ar was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{BH}_{3} \mathrm{DMS}(0.51 \mathrm{~mL}, 5.5 \mathrm{mmol})$ was added dropwise. The reaction mixture was gradually warmed to rt over 0.5 h and maintained at rt for 1 h . TLC
analysis showed incomplete conversion, so the solution was cooled to $0^{\circ} \mathrm{C}$ and additional BH_{3} DMS ($0.51 \mathrm{~mL}, 5.5 \mathrm{mmol}$) was added. The reaction mixture was gradually warmed to rt over 0.5 h and maintained at rt for 2 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and 3 N NaOH and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (1 mL each) were added sequentially, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and at rt for an additional 30 min . The mixture was diluted with EtOAc (30 mL), and the separated organic phase was washed sequentially with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and brine $(15 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure to afford a clear, colorless oil which was used immediately without purification.

A stirring rt solution of this crude residue (1.55 mmol theoretical) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) was charged sequentially with crushed $4 \AA$ molecular sieves ($\sim 1 \mathrm{~g}$), TPAP (55 mg , $0.16 \mathrm{mmol})$, and NMO ($360 \mathrm{mg}, 3.1 \mathrm{mmol}$). The reaction mixture was maintained at rt for 20 min , then concentrated to $\sim 5 \mathrm{~mL}$ under a stream of N_{2}. The mixture was filtered through a small SiO_{2} plug ($20 \% \mathrm{EtOAc} /$ hexanes) and the filtrate was concentrated under reduced pressure. Purification of the crude residue by column chromatography (10% to $20 \% \mathrm{EtOAc} /$ hexanes $)$ gave $49(380 \mathrm{mg}, 0.98 \mathrm{mmol}, 63 \%)$ as a colorless foam ($\mathbf{5 0}$ was isolated in 21% yield; see below for optimized procedure for $\mathbf{5 0}$): $49{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}, 6{ }^{\circ} \mathrm{C}$) $\delta 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{ddd}, J=7.5,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=$ $7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.45 (s, 3H), 3.41 (ddd, $J=8.5,8.5$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{ddd}, J=11.0,9.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 2.31$ (ddd, $J=13.0,9.0$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ (ddddd, $J=17.0,17.0,17.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{ddd}, J=13.0,7.5$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) δ 206.7, $153.9,153.1,143.7,130.6,129.9,123.9,123.8,116.7,93.3,80.0,69.0,52.4,46.8,38.1$, 34.1, 32.1, 28.9, 19.4; IR (neat) 2958, 1707, 1483, 1444, $1383 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}: 386.1842$. Found: 386.1846.

Enone 52. A solution of 49 ($200 \mathrm{mg}, 0.52 \mathrm{mmol}$) in toluene (3.5 mL) and DMSO $(1.7 \mathrm{~mL})$ under Ar was charged with IBX ($580 \mathrm{mg}, 2.07 \mathrm{mmol}$), and the reaction mixture was heated to $70{ }^{\circ} \mathrm{C} .{ }^{10}$ Over the course of a 24 h period, the reaction was charged with two additional portions of IBX ($580 \mathrm{mg}, 2.07 \mathrm{mmol}$ each). The reaction was cooled to rt and diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. Saturated aqueous $\mathrm{NaHCO}_{3}(35 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(35 \mathrm{~mL})$ were added, and the mixture was stirred vigorously for 1 h . The separated aqueous phase was washed with ether (30 mL), and the combined organic fractions were washed with brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (35% EtOAc/hexanes) gave 52 ($119 \mathrm{mg}, 0.31 \mathrm{mmol}, 59 \%$) as a colorless foam: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 6{ }^{\circ} \mathrm{C}$) $\delta 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (ddd, $J=8.0,8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ (ddd, $J=9.5,4.5,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.89$ (ddd, $J=10.0,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~m}, 3 \mathrm{H}), 3.05$ (ddd, $J=11.0$, $8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.18 (ddd, $J=13.0,8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98 (ddd, $J=12.5,8.0,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 195.4,153.9,153.6,147.0,142.9$, $130.2,129.9,129.7,124.6,124.5,117.4,90.5,80.2,65.9,52.4,47.6,33.2,30.4,28.9$; IR (neat) 2979, 1694, 1675, 1478, $1387 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}: 384.1685$. Found: 384.1685.

Enone 53. Trifluoroacetic acid (0.75 mL) was added to a stirred solution of $\mathbf{5 2}$ ($115 \mathrm{mg}, 0.30 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The cooling bath was removed, and the reaction mixture was allowed to warm to rt for 2.5 h . The reaction mixture then was cooled to $0{ }^{\circ} \mathrm{C}$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added dropwise. The
mixture was diluted with EtOAc (30 mL), and the separated organic phase was washed with brine (15 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography ($35 \% \mathrm{EtOAc} /$ hexanes) gave $53(58 \mathrm{mg}, 0.20 \mathrm{mmol}, 67 \%)$ as a pale orange foam: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 7.79$ (dd, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (br s, 1 H), 7.08 (ddd, $J=8.5,8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{ddd}, J=10.0,5.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{ddd}, J=10.0$, $3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (s, 3H), 3.46 (br s, 1H), 2.98 (m, 1H), 2.61 (ddd, $J=8.5,8.5,2.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.53 (ddd, $J=10.0,10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (ddd, $J=12.5,10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{ddd}, J=12.5,6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 196.5,153.2,145.4,131.4,128.8,128.3,127.7,125.1,123.8,114.9,91.1,62.0,51.9$, $42.9,41.8,35.7$; IR (neat) $3365,2954,2846,1692,1671,1482 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: 284.1161 . Found: 284.1162 .

Proof of Absolute Configuration by Heavy Atom X-Ray Analysis of Benzyl
Ester 51. Solid $\mathrm{NaBH}_{4}(20 \mathrm{mg}, 0.52 \mathrm{mmol})$ was added in one portion to ketone $\mathbf{5 0}$ (100 $\mathrm{mg}, 0.26 \mathrm{mmol}$) and $\mathrm{EtOH}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 15 min at $0{ }^{\circ} \mathrm{C}$, the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and warmed to rt . The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (35\% to 50% $\mathrm{EtOAc} /$ hexanes) gave a $1: 1$ ratio of cleanly separated diastereomeric alcohols $(91 \mathrm{mg}$ combined, $0.24 \mathrm{mmol}, 91 \%)$. The stereochemistry of each alcohol was not determined at this stage. The alcohols were distinguished based on their R_{f} values (35\% $\mathrm{EtOAc} /$ hexanes): lower isomer $\mathrm{R}_{f} 0.1$; upper isomer $\mathrm{R}_{f} 0.2$.

DMAP ($\sim 1 \mathrm{mg}$) was added to a stirring solution of the lower R_{f} diastereomeric alcohol ($10 \mathrm{mg}, 0.026 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(8 \mu \mathrm{~L}, 0.052 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at rt. The mixture was then treated with p-bromobenzoyl chloride ($8.5 \mathrm{mg}, 0.039 \mathrm{mmol}$) and stirred at rt for 4 h . After this time, 1 N NaOH was added to the reaction and stirred for 20 min .

The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by preparative TLC (50% EtOAc/hexanes) gave 51 as a clear, colorless oil ($13 \mathrm{mg}, 0.023 \mathrm{mmol}, 88 \%$) that slowly solidified. Re-crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes gave X-ray quality crystals ${ }^{7}:[\alpha]_{589}-$ 90.2, $[\alpha]_{577}-93.6,[\alpha]_{546}-106,[\alpha]_{435}-183,[\alpha]_{405}-222\left(c \quad 0.84, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right) \delta 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.16$ (m, 2H), $7.00(\mathrm{dt}, J=1.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=1.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dt}, J=0.9,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02-5.07(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{ddd}, J=8.4,8.4,9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.80-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=6.8,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.74(\mathrm{~m}$, $2 \mathrm{H}), 1.56(\mathrm{dd}, J=3.4,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{ddd}, J=5.0,8.4,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.46$ (m, $1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 164.7,153.9,153.2,141.3,136.1$, $131.5,131.3,129.8,128.0,128.1,122.9,121.6,117.2,89.3,79.3,69.4,54.3,51.7,46.2$, 35.1, 34.0, 28.3, 26.9, 26.4; IR (neat) $1708 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{6} \mathrm{Na}$ [$\mathrm{M}+\mathrm{Na}$]: 593.1263. Found: 593.1262.

Pentacycle 57. A solution of $48(40 \mathrm{mg}, 0.069 \mathrm{mmol})$ and $\mathrm{MeCN}(1.2 \mathrm{~mL})$ was degassed with argon for 15 min . To this solution was added $\mathrm{Pd}(\mathrm{OAc})_{2}(8.0 \mathrm{mg}, 0.034$ mmol) and bis(diphenylphosphoryl)butane ($22 \mathrm{mg}, 0.053 \mathrm{mmol}$), and degassing was continued for an additional 10 min . The sealed reaction vial was then heated to $80^{\circ} \mathrm{C}$ for 3 h . Following cooling, the mixture was concentrated under pressure. Purification of the crude residue by column chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$) gave $57(15 \mathrm{mg}, 0.033$ $\mathrm{mmol}, 48 \%)$ as a clear, colorless oil: $[\alpha]_{589}+21.6,[\alpha]_{577}+22.6,[\alpha]_{546}+26.4,[\alpha]_{435}+53.8$, $[\alpha]_{405}+71.6\left(c \quad 1.80, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right) \delta 8.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{ddd}, J=7.4,7.4,1.0 \mathrm{~Hz}$, 1 H), 5.78 (ddd, $J=10.0,3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.39 (ddd, $J=10.0,10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.10-5.13 (m, 1H), $4.37(\mathrm{q}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (br.s, 4H), 3.15-3.19 (m, 1H), 2.72 (ddd, $J=11.9,11.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (dd, $J=11.7,6.9 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.17$ (ddd, $J=12.2,12.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ (dd, $J=12.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.56$ $(\mathrm{m}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.59(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60\right.$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 154.4,145.8,143.6,134.0,132.2,128.8,128.7,124.7,122.3,115.6,111.0,102.1$, $73.8,63.2,60.8,53.1,51.1,46.4,33.0,13.8,7.0,5.6$; IR (neat) $1694 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$: 453.2574. Found: 453.2567.

Alcohol 59. Tetrabutylammonium fluoride (1.0 M in THF, $60 \mu \mathrm{l}, 0.060 \mathrm{mmol}$) was added to a stirring solution of aminal $57(13 \mathrm{mg}, 0.029 \mathrm{mmol})$ in THF (1 ml) at rt . Following stirring for 30 min , the reaction was partitioned between water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (50% EtOAc/hexanes) gave 59 ($8.6 \mathrm{mg}, 0.026 \mathrm{mmol}, 89 \%$) as a colorless, amorphous solid. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes afforded X-ray quality crystals ${ }^{7}$: $[\alpha]_{589}+56.1,[\alpha]_{577}$ $+55.5,[\alpha]_{546}+65.7,[\alpha]_{435}+132,[\alpha]_{405}+171\left(c 0.47, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, $\left.60^{\circ} \mathrm{C}\right) \delta 8.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=1.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dt}, J=1.4,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87$ (dt, $J=1.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ (ddd, $J=1.9,3.3,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (ddd, $J=$ $2.6,2.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-5.06(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ (br s, 1H), $3.40(\mathrm{~s}, 3 \mathrm{H}), 3.05-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{ddd}, J=5.0,11.9,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (dd, $J=6.9,11.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98 (ddd, $J=7.1,12.112 .1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85$ (dd, $J=4.0,12.3$ $\mathrm{Hz}, 1 \mathrm{H}$), $1.45-1.47$ (m, 3H), 1.31 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 154.0,145.0,143.2,133.9,131.0,128.4,128.2,123.3,122.5,115.3,110.8,101.3,72.2$, 62.3, 60.2, 52.4, 50.8, 46.0, 32.2, 13.4; IR (neat) $3473,1692 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 339.1709$. Found: 339.1700.

Alkene 63. Exposure of 48 to silica gel during chromatography for extended periods of time ($>10 \mathrm{~min}$) resulted in the formation of the chromatographically inseparable olefin $63 .{ }^{11}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}\right) \delta 7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (dd, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{br} \mathrm{d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.51$ (ddd, $J=4.1,4.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{br} \mathrm{d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.72(\mathrm{~m}$, $1 \mathrm{H}), 2.55(\mathrm{ddd}, J=3.4,3.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.10(\mathrm{~m}, 2 \mathrm{H})$, $2.00-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.43(\mathrm{q}, J=8.0 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 154.4,142.0,136.6,129.4,128.3,125.5,125.4$, $124.0,122.8,116.8,111.7,90.5,72.4,61.3,60.2,52.0,49.7,31.5,27.7,21.5,6.94,5.56$.

Pentacycle 58. A suspension of vinyl iodide $48(1.20 \mathrm{~g}, 2.07 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.43$ $\mathrm{g}, 10.4 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NCl} \cdot \mathrm{H}_{2} \mathrm{O}(1.43 \mathrm{~g}, 5.18 \mathrm{mmol}), \mathrm{NaO}_{2} \mathrm{CH}(170 \mathrm{mg}, 2.48 \mathrm{mmol})$ and DMF (30 mL) was degassed with Ar for 15 min . To this suspension was added $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$), and degassing was continued for an additional 10 min . The sealed reaction vial was then heated at $80^{\circ} \mathrm{C}$ for 90 min by which time TLC analysis indicated complete consumption of starting material. After cooling to rt , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with brine. The organic layer was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification of the crude residue by column chromatography (5% to $10 \% \mathrm{EtOAc} /$ hexanes) gave $58(750 \mathrm{mg}, 1.65 \mathrm{mmol}, 80 \%)$ as a clear, colorless oil: $[\alpha]_{589}-55.2,[\alpha]_{577}-57.9,[\alpha]_{546}-64.9,[\alpha]_{435}-106,[\alpha]_{405}-127(c$ $1.25, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right) \delta 8.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=7.5,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{ddd}, J=7.5,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{q}, J=6.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.29$ (br s, 1H), 4.15 (dd, $J=11.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 ($\mathrm{s}, 3 \mathrm{H}$), 3.04 (ddd, $J=14.6$, $7.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.63-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{ddd}, J=13.4,11.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{ddd}, J=13.4,7.3,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=13.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{dd}, J=6.8,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.40(\mathrm{~m}$, $1 \mathrm{H}), 0.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}\right)$ $\delta 154.1,144.5,141.9,136.8,128.4,124.9,122.5,117.1,115.3,93.0,73.4,60.9,55.7$, 54.4, 51.6, 36.6, 34.0, 27.3, 25.8, 13.0, 7.1, 6.1; IR (neat) $1698 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{SiH}[\mathrm{M}+\mathrm{H}]: 455.2730$. Found: 455.2739.

Alcohol 64. CsF ($1.5 \mathrm{~g}, 9.90 \mathrm{mmol}$) was added to a stirred solution of aminal 58 ($750 \mathrm{mg}, 1.65 \mathrm{mmol}$) in DMF (25 mL) at rt . TLC analysis after 4 h indicated complete consumption of the starting material, and the reaction was subsequently partitioned between EtOAc and water. The aqueous layer was extracted with EtOAc, and the combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography ($50 \% \mathrm{EtOAc} /$ hexanes) gave alcohol $64(562 \mathrm{mg}, 1.65 \mathrm{mmol}, 100 \%)$ as a colorless, amorphous solid. Crystallization from benzene/chloroform afforded X-ray quality crystals ${ }^{7}:[\alpha]_{589}-66.8,[\alpha]_{577}-69.5,[\alpha]_{546}-78.1,[\alpha]_{435}-127,[\alpha]_{405}-150(c 1.00$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77($ br s, 1 H$), 7.51(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23 (ddd, $J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{q}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.26 (br d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.18$ (ddd, $J=$ $14.7,7.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{br} \mathrm{d}, J=10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.55(\mathrm{ddd}, J=14.7,7.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=13.8,7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.78-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.64(\mathrm{dd}, J=6.7,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.47(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.4,143.7,141.2,136.5,128.5,124.6,123.2,118.3,115.1,93.3,72.3$, $60.5,55.8,54.6,52.6,36.4,33.4,27.2,26.3,13.6$; IR (neat) $3449,1686 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{H}[\mathrm{M}+\mathrm{H}]: 341.1865$. Found: 341.1854 .

Ketone 46. Dess-Martin periodinane ($2.1 \mathrm{~g}, 4.96 \mathrm{mmol}$) was added in one portion to a stirred solution of alcohol $64(560 \mathrm{mg}, 1.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at rt. The reaction was stirred for 16 h , and subsequently poured into saturated aqueous NaHCO_{3}. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (35% to $50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) gave ketone $65(553 \mathrm{mg}, 1.63 \mathrm{mmol}, 99 \%)$ as a colorless foam: $[\alpha]_{589}-165,[\alpha]_{577}-175,[\alpha]_{546}-200$, $[\alpha]_{435}-404,[\alpha]_{405}-545\left(c 1.36, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right) \delta 8.06(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.5,1 \mathrm{H}), 5.08(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{br} \mathrm{d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.68$ (br d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.42$ (ddd, $J=12.4,6.3,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.38(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=18.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{ddd}, J=12.0,7.4$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{dd}, J=13.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right) \delta 207.9,153.8,140.9,137.8,129.8,129.1,124.4,122.8,122.1,115.6$, $93.1,67.7,54.2,53.2,51.8,45.1,39.2,28.4,28.2,13.0$; IR (neat) $1701 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$: 361.1528. Found: 361.1528 .

$\boldsymbol{\beta}$-Ketoester 66. LiHMDS (1.0 M in THF, $3.1 \mathrm{ml}, 3.10 \mathrm{mmol}$) was added dropwise to a stirred solution of ketone $\mathbf{6 5}(530 \mathrm{mg}, 1.57 \mathrm{mmol})$ in THF (40 mL) at $-78^{\circ} \mathrm{C}$. The reaction was then warmed to $0^{\circ} \mathrm{C}$ for 30 min and subsequently re-cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{NCCO}_{2} \mathrm{Me}(0.5 \mathrm{ml}, 6.28 \mathrm{mmol})$ was added and following stirring for 30 min at $-78{ }^{\circ} \mathrm{C}$, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was allowed to warm to rt.

The reaction was extracted with EtOAc, and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. Purification of the crude residue by column chromatography (20% to $35 \% \mathrm{EtOAc} /$ hexanes) gave β-ketoester $66(443 \mathrm{mg}, 1.12 \mathrm{mmol}, 71 \%)$ as a clear, colorless oil: $[\alpha]_{589}-196,[\alpha]_{577}-207,[\alpha]_{546}-$ $237,[\alpha]_{435}-438,[\alpha]_{405}-566\left(c 1.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}\right) \delta 13.1(\mathrm{~s}$, $1 \mathrm{H}), 8.06$ (br d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ (dd, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (m, 1H), 6.89 (dt, J $=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{br} \mathrm{d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.54(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.57(\mathrm{~m}, 1 \mathrm{H})$, 2.44 (dd, $J=12.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (ddd, $J=11.8,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.56$ (m, 4H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 172.4,171.4,153.7,140.7$, 137.1, 130.9, 129.0, $125.1,122.8,120.7,115.7,103.7,92.0,59.8,53.06,53.05,51.8,50.9,37.7,28.70,28.67$, 13.5; IR (neat) 1702, $1645 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}$: 419.1583. Found: 419.1584.

β-Hydroxyester 66. NaBH_{4} ($243 \mathrm{mg}, 6.36 \mathrm{mmol}$) was added in three portions over a 2 h to a stirring solution of β-ketoester 66 ($420 \mathrm{mg}, 1.06 \mathrm{mmol}$) in $10: 1$ THF/ $\mathrm{MeOH}(10 \mathrm{~mL})$ at $-20{ }^{\circ} \mathrm{C}$. After the final NaBH_{4} addition, the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred at this temperature for 2 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and allowed to warm to rt. The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography (35% to 50% EtOAc/hexanes) gave β-hydroxyester 67 ($254 \mathrm{mg}, 0.64$ $\mathrm{mmol}, 60 \%$) as a clear, colorless oil and $\sim 10-15 \%$ recovered starting material. 66: $[\alpha]_{589}-$ 89.7, $[\alpha]_{577}-93.0,[\alpha]_{546}-106,[\alpha]_{435}-176,[\alpha]_{405}-215\left(c \quad 0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 8.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.93(\mathrm{~m}, 3 \mathrm{H}), 2.72-2.76(\mathrm{~m}, 2 \mathrm{H})$,
$2.51-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.75$ (ddd, $J=12.7,8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~d}, J=$ 6.7 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 173.2,154.1,143.6,131.9,129.1$, $128.5,128.3,122.8,118.1,116.0,91.4,72.8,61.9,56.9,54.0,51.7,51.6,49.8,38.8,28.7$, 26.0, 13.2; IR (neat) $3461,1741,1702 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{H}[\mathrm{M}+$ H]: 399.1920. Found: 399.1914.

Enoate 68. Benzoyl triflate ${ }^{12}(1.65 \mathrm{ml}, 9.8 \mathrm{mmol})$ was added to a stirring solution of β-hydroxyester $67(195 \mathrm{mg}, 0.49 \mathrm{mmol})$ and pyridine ($1.6 \mathrm{ml}, 19.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction vial was sealed and heated to $60^{\circ} \mathrm{C}$ for 24 h . The bright red solution was then cooled to rt and quenched with saturated aqueous NaHCO_{3}. The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. Purification of the crude residue by column chromatography (35% to $50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) gave the benzoate ($246 \mathrm{mg}, 0.49 \mathrm{mmol}, 100 \%$) as a clear, colorless oil which was used in the subsequent elimination step: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 6{ }^{\circ} \mathrm{C}$) $\delta 8.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.29$ $(\mathrm{m}, 4 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.25(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 3.59 (s, 1H), 3.46 (s, 3H), 3.07-2.85 (m, 4H), 2.46 (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.17$ (m, $1 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

KHMDS (0.5 M in toluene, $1.7 \mathrm{ml}, 0.85 \mathrm{mmol}$) was added dropwise to a stirring solution of this benzoate intermediate ($215 \mathrm{mg}, 0.43 \mathrm{mmol}$) in THF (8 mL) at $-78{ }^{\circ} \mathrm{C}$. After 10 min the reaction was quenched with saturated aqueous NaHCO_{3} and warmed to rt. The reaction was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by column chromatography ($50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) gave enoate 68 (135 $\mathrm{mg}, 0.36 \mathrm{mmol}, 83 \%)$ as a clear, colorless oil: $[\alpha]_{589}-124,[\alpha]_{577}-131,[\alpha]_{546}-149,[\alpha]_{435}$ $-268,[\alpha]_{405}-340\left(c \quad 1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right) \delta 8.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$,
$7.12(\mathrm{dt}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dt}, J=$ $7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.23(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (br d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.54(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{ddd}, J=12.5$, $7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=7.0,2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{dd}, J=12.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.45$ (dd, $J=12.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 167.2,153.9,140.6,136.5$, $136.3,136.0,132.3,128.7,122.50,122.48,121.9,116.0,91.7,56.7,53.3,52.6,51.8$, 51.5, 37.9, 30.7, 28.5, 13.7; IR (neat) $1705 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{H}[\mathrm{M}$ $+\mathrm{H}]: 381.1814$. Found: 381.1820.

Alcohol 69. A solution of enoate $68(100 \mathrm{mg}, 0.26 \mathrm{mmol})$ in THF (2 mL) was added dropwise to a stirring suspension of $\mathrm{LiAlH}_{4}(100 \mathrm{mg}, 2.60 \mathrm{mmol})$ in THF (10 mL) at $-20^{\circ} \mathrm{C}$. After 10 min the reaction was quenched with water $(0.1 \mathrm{ml})$, followed by 1 N $\mathrm{NaOH}(0.1 \mathrm{ml})$, and finally $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{ml})$. The resulting mixture was stirred for 10 min and then MgSO_{4} was added. The solid materials were removed by filtration and the filtrate was concentrated under reduced pressure. Purification of the crude residue by column chromatography (50% to $75 \% \mathrm{EtOAc} /$ hexanes) gave alcohol $69(82 \mathrm{mg}, 0.23$ $\mathrm{mmol}, 89 \%$) as a clear, colorless oil: $[\alpha]_{589}+15.9,[\alpha]_{577}+16.5,[\alpha]_{546}+19.8,[\alpha]_{435}+46.1$, $[\alpha]_{405}+63.6\left(c 0.90, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}\right) \delta 8.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.14$ $(\mathrm{m}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.92(\mathrm{q}, ~ J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 2.94-2.99 (m, 2H), 2.51-2.56 (m, 2H), 1.87 (ddd, $J=12.4,7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.61$ (m, 4H), 1.52 (dd, $J=12.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 154.2$, 144.6, 140.7, 137.7, 134.0, 128.4, 122.6, 122.4, 121.2, 119.5, 116.0, 92.1, 65.5, 56.2, 53.0, 52.9, 51.8, 38.5, 31.1, 28.1, 14.3; IR (neat) $3394,1697 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{H}[\mathrm{M}+\mathrm{H}]: 353.1865$. Found: 353.1854.

Minfiensine (1). $3 \mathrm{~N} \mathrm{NaOH}(3.2 \mathrm{ml}, 9.7 \mathrm{mmol})$ was added to a stirring solution of carbamate $69(68 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $1: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(12 \mathrm{ml})$. The resultant solution was heated to $100^{\circ} \mathrm{C}$ for 2.5 h and subsequently cooled to rt . The reaction was diluted with saturated aqueous NaHCO_{3}, extracted with EtOAc, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. Purification of the crude residue by column chromatography ($100 \% \mathrm{EtOAc}$ then $99 \% \mathrm{MeCN} / 1 \% \mathrm{NH}_{4} \mathrm{OH}$) gave (+)-minfiensine (1) ($54 \mathrm{mg}, 0.18 \mathrm{mmol}, 95 \%$) as a colorless foam. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the synthetic material were identical to reported literature values. ${ }^{13}$ Synthetic minfiensine displayed $[\alpha]_{\mathrm{D}}^{23}+125\left(c 0.82, \mathrm{CHCl}_{3}\right)$, whereas $[\alpha]_{\mathrm{D}}{ }^{23}+134\left(c 0.82, \mathrm{CHCl}_{3}\right)$ is reported for natural minfiensine. ${ }^{13}$

Ketone 50. Olefin 27 ($305 \mathrm{mg}, 0.82 \mathrm{mmol}$) and 9-BBN (0.5 M in THF, 5.0 mL , 2.50 mmol) were added to an 8 mL microwave reaction vial and capped. The reaction mixture was microwave-heated (CEM Discover System, 60 Hz and 300 W instrument) at $100{ }^{\circ} \mathrm{C}$ for 1 h . After cooling to rt, TLC analysis showed incomplete conversion. Additional 9-BBN (0.5 M in THF, $0.83 \mathrm{~mL}, 0.41 \mathrm{mmol}$) was added, and heating was continued at $100{ }^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and 3 N NaOH and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (2 mL each) were added sequentially, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and at rt for an additional 30 min . The mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and brine, and the separated organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure to afford a clear, colorless oil that was filtered through a plug of silica gel ($50 \% \mathrm{EtOAc} / \mathrm{hexanes}$). After concentration, this residue $(0.82 \mathrm{mmol}$ theoretical) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was charged sequentially with crushed $4 \AA$ molecular sieves ($\sim 1 \mathrm{~g}$), TPAP ($29 \mathrm{mg}, 0.082 \mathrm{mmol}$), and NMO ($985 \mathrm{mg}, 8.2 \mathrm{mmol}$). The reaction
mixture was maintained at rt for 20 min , then concentrated to $\sim 1 \mathrm{~mL}$ under reduced pressure. Purification of the crude residue by column chromatography (10% to 25% EtOAc/hexanes) gave $50(200 \mathrm{mg}, 0.52 \mathrm{mmol}, 63 \%)$ as a colorless foam ($\mathbf{4 9}$ was isolated in 25% yield; see above for optimized procedure): $50[\alpha]_{589}-157,[\alpha]_{577}-159,[\alpha]_{546}-$ 183, (c 0.52, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 8.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ $(\mathrm{dt}, J=1.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.61(\mathrm{~m}$, $4 \mathrm{H}), 3.12$ (ddd, $J=4.4,8.0,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (ddd, $J=6.1,11.4,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ $(\mathrm{ddd}, J=4.5,9.0,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{q}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{ddd}, J=4.4,9.0,18.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.98(\mathrm{ddd}, J=4.5,8.1,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{dd}, J=4.9,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{dd}, J$ $=7.9,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}$) $\delta 206.3,153.2$, $152.3,142.3,133.5,128.6,123.2,122.3,115.3,88.7,79.3,57.1,51.6,47.9,45.3,38.6$, 34.7, 29.0, 28.0; IR (neat) $1684,1719 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]: 409.1740$. Found: 409.1732.

Ketone 70. Using procedures described above ($\mathbf{5 2 \rightarrow 5 3}$ and $\mathbf{4 6} \boldsymbol{\rightarrow 4 8}$), 50 (104 $\mathrm{mg}, 0.27 \mathrm{mmol}$) was N -Boc deprotected (trifluoroacetic acid) to give the NH aminal: ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 7.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dt}, J=$ $7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=7.3,1.3, \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 3.44(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2.55-2.51$ $(\mathrm{m}, 2 \mathrm{H}), 2.43-2.29(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{dd}, J=12.2$, $5.4 \mathrm{~Hz}, 1 \mathrm{H})$.

Subsequent alkylation with (Z)-1-bromo-2-iodo-2-butene (73) ${ }^{14}$ and purification of the crude residue by column chromatography ($25 \% \mathrm{EtOAc} / \mathrm{hexanes}$) gave ketone 70 ($81 \mathrm{mg}, 0.17 \mathrm{mmol}, 65 \%$ over two steps) as a clear, colorless oil: $[\alpha]_{589}+79.4,[\alpha]_{577}$ $+82.8,[\alpha]_{546}+95.0,[\alpha]_{435}+187,[\alpha]_{405}+246\left(c 0.66, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, $60{ }^{\circ} \mathrm{C}$) $\delta 7.83(\mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dt}, J=1.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dt}, J=0.9,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=1.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{br} \mathrm{d}, J=14.1 \mathrm{H}$, $1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dt}, J=4.6,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{ddd}, J$
$=4.5,12.1,18.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dt}, J=4.1$, $19.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{dd}, J=$ $1.8,6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 207.0,154.0,142.7,135.0,130.6$, $128.0,123.2,122.5,115.7,111.1,90.8,59.7,56.5,51.4,48.2,46.7,38.4,35.1,29.0$, 21.1; IR (neat) 1702, $1717 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{IN}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$: 489.0651. Found: 489.0654.

Palladium-Catalyzed Intramolecular Enolate/Vinyl Iodide Coupling.

Preparation of Pentacycle 72: To a 1 dram vial was added ketone 70 ($20 \mathrm{mg}, 0.043$ $\mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{mg}, 0.0043 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(24 \mathrm{mg}, 0.17 \mathrm{mmol})$, and $\mathrm{MeOH}(1.5 \mathrm{ml})$. The vial was sealed with a Teflon septum cap, and the solution was degassed with argon for 10 min . The sealed vial was heated to $70{ }^{\circ} \mathrm{C}$, and at this temperature, the solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ completely dissolved. After 1 h the reaction was cooled to rt and partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and brine. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by preparative TLC ($75 \% \mathrm{EtOAc} /$ hexanes) gave pentacycle 72 ($10.7 \mathrm{mg}, 0.032 \mathrm{mmol}, 74 \%$) as a clear, colorless oil. $[\alpha]_{589}+98.7,[\alpha]_{577}+105,[\alpha]_{546}+125,[\alpha]_{435}+301,[\alpha]_{405}+431(c$ $1.13, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 7.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.07(\mathrm{dt}, J=1.4,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{dt}, J=1.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=1.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (ddd, J $=2.4,7.5,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 2 \mathrm{H}), 1.79(\mathrm{dd}, J=1.8,6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.66-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{ddd}, J=2.4,6.1,12.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 207.7,153.6,135.6,134.7,128.5,127.4,122.8,122.7,122.1,115.5,91.4,56.1$, $53.3,52.8,51.5,47.7,44.3,40.6,26.9,14.3$; IR (neat) $1694 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]: 361.1528$. Found: 361.1531.

72

75

Triflate 62. A THF solution of NaHMDS ($90 \mu \mathrm{~L}$ of a 2.0 M solution, 0.18 mmol) was added dropwise to a solution of $72(30 \mathrm{mg}, 0.089 \mathrm{mmol}), 2-[\mathrm{N}, \mathrm{N}-$ bis(trifluoromethylsulfonyl)amino]-5-chloropyridine ($70 \mathrm{mg}, 0.18 \mathrm{mmol}$), and THF (2 mL) at $-78{ }^{\circ} \mathrm{C}$ under Ar. After 15 min , TLC analysis indicated incomplete conversion. Additional 2-[N, N-bis(trifluoromethylsulfonyl)amino]-5-chloropyridine ($18 \mathrm{mg}, 0.045$ mmol) and NaHMDS ($25 \mu \mathrm{~L}$ of a 2.0 M solution, 0.045 mmol) were added, and the reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min . At this time, TLC indicated complete conversion, and the reaction was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and warmed to rt. The separated aqueous phase was washed with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure. Purification of the crude residue by preparative TLC (50\% EtOAc/hexanes) gave 75 (36 $\mathrm{mg}, 0.077 \mathrm{mmol}, 86 \%$) as a clear, colorless oil: $[\alpha]_{589}-14.0,[\alpha]_{577}-15.2,[\alpha]_{546}-17.2$, $[\alpha]_{435}-23.6,[\alpha]_{405}-26.3\left(c 0.92, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}\right) \delta 7.92(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 7.05(\mathrm{dt}, J=1.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=1.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.77-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{ddd}, J=5.8,8.7,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.71$ (ddd, $J=$ $7.3,12.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{dd}, J=2.1,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.55(\mathrm{dd}, J=2.9,13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.38(\mathrm{dd}, J=5.7,12.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 153.5,153.0,140.1$, $133.4,131.4,128.8,122.8,122.6,122.1,119.0\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=319 \mathrm{~Hz}\right), 115.7,115.3,90.6$, 56.3, 52.2, 51.64, 51.60, 37.9, 34.9, 27.7, 13.7; IR (neat) $1698 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]:$ 471.1201. Found: 471.1193.

Enoate 56. To a 1 dram vial was added triflate $75(34 \mathrm{mg}, 0.072 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{mg}, 0.022 \mathrm{mmol}), \mathrm{PPh}_{3}(11 \mathrm{mg}, 0.43 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(30 \mu \mathrm{l}, 0.22 \mathrm{mmol})$, $\mathrm{MeOH}(1 \mathrm{ml})$, and DMF (1 ml). The vial was sealed with a Teflon septum cap, and the solution was degassed with a balloon of CO for 5 min . The sealed vial was then heated to $50^{\circ} \mathrm{C}$ under a balloon of CO. After 3.5 h the reaction was cooled to rt and partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and brine. The organic phase was washed an additional time with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure. Purification of the crude residue by preparative TLC (50\% EtOAc/hexanes) gave methyl ester 68 (24 mg , $0.064 \mathrm{mmol}, 89 \%$) as a colorless oil. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{6 8}$ were identical to the spectral values reported above.

References.

1. Kondo, Y.; Kojima, S.; Sakamoto, T. J. Org. Chem. 1997, 62, 6507-6511.
2. Ohashi, M.; Takahashi, T.; Inoue, S.; Sato, K. Bull. Chem. Soc. Jpn. 1975, 48, 1892-1896.
3. Because of carbamate rotomers, most ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in Supporting Information were conducted in d_{6}-benzene at $60^{\circ} \mathrm{C}$.
4. Hart, R. Bull. Soc. Chim. Belg. 1956, 65, 291-296.
5. Cesium carbonate and cesium fluoride were dried in a vacuum oven set to $120{ }^{\circ} \mathrm{C}$ for 24 h .
6. Loiseleur, O.; Meier, P.; Pfaltz, A. Angew. Chem. Int. Ed. 1996, 35, 200-202.
7. For X-ray crystallographic analysis data, see accompanying cif file.
8. Sharpless, K.B.; Lauer, R.F. J. Am. Chem. Soc. 1973, 95, 2697-2699.
9. Rawal, V.H.; Michoud, C. Tetrahedron Lett. 1991, 32, 1695-1698.
10. Nicolaou, K.C.; Zhong, Y.-L.; Baran, P.S. J. Am. Chem. Soc. 2000, 122, 75967597.
11. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for 63 are presented as a mixture with 48 in Supporting Information, see page S 81 .
12. Brown, L.; Koreeda, M. J. Org. Chem. 1984, 49, 3875-3880.
13. Massiot, G.; Thépenier, P.; Jacquier, M.; Le Men-Olivier, L.; Delaude, C. Heterocycles 1989, 29, 1435-1438.
14. Rawal, V.H.; Michoud, C.; Monestel, R.F. J. Am. Chem. Soc. 1993, 115, 30303031.

Dounay et al．：Minfiensine Supporting Information－S34

\qquad
\qquad
日l： Er

く1．日
\qquad

96 吃 \qquad

Dounay et al.: Minfiensine Supporting Information - S36

$6 L^{\circ} \mathrm{El}$
59'81

00.6ε

6日'25
\qquad
L8'sc \qquad
\qquad
—
\qquad

0 O
$0 \mathrm{BL} \cdot \mathrm{BLt}$

$05 \cdot 825$
$65: 825$
$05 \cdot 825$
pa 0 Ot
' pe !

ぃ' E !
9ع' 55 ! \qquad

ट叩 $\varepsilon!$
51:81

$08 \cdot 25$

く9:925
625

픙

5p ${ }^{\prime}$ z 2
$50^{\circ} \mathrm{Ez}$ \qquad
56: вг \qquad

08 ' ε -
\qquad
$09 \cdot \varepsilon \varsigma$ \qquad

Dounay et al.: Minfiensine Supporting Information - S43

$560 L^{\prime} \mathrm{s}$
EG61/ 9

292s' 9

$81 \angle 66^{\circ} \angle$
6ЕЕ 10 ' 8

13C spectrum with 1 H decoupling

rac aminal

abd-III-270
t-bu Pfaltz ligand
$98: 2$ Hex/IPA, OD-H Column, $1.0 \mathrm{ml} / \mathrm{min}$
$===$

Acq. Method : D: \METHODS $\backslash A B D 1 . M$
Last changed : 10/2/03 7:09:28 PM by abd (modified after loading)
Analysis Method : C: \HPCHEM\1\METHODS\SK1.M
Last changed : 2/26/04 4:35:08 PM by AMY (modified after loading)
15\% IPA in Hexanes, OJ column
DAD1 B, Sig=254,100 Ref=360,100 (ABD1T10020302.D)


```
Area Percent Report
```

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 B, Sig=254,100 Ref=360,100

Results obtained with enhanced integrator!

$9519 \varepsilon^{\cdot l}$

$80 \mathrm{ctr8} 8^{\circ} \mathrm{I}=$

$95+58^{\circ} 1-$
S $5098^{\circ} 1$
$1818 L^{\circ} 7$

$6 t 99 \varepsilon$ ' ε
\square
$\angle 8 \varepsilon 0 L$ ' ε

 ع0६t9 9 +0859

StRSI L
$68 \mathrm{SSl}{ }^{\circ} L$

C $\angle 788$ ' 9
E968' 9
85016.9
25121 $\%$

6285E' L

8 2012 - 8

Dounay et al.: Minfiensine Supporting Information - S54

$\sigma^{\circ} 62=$
い

Dounay et al.: Minfiensine Supporting Information - S57

Dounay et al.: Minfiensine Supporting Information - S58

$6 L^{\prime}$ 㫜 \longrightarrow

S2.00:

02 rs

22
90
0

$90^{\circ} \mathrm{Es}=\square$
$\mathrm{sc} \cdot \mathrm{vs} \square$
20 . 99

4s.s9 -
-

${ }^{0} \cdot 6$
\qquad

1 H spectrum

E

OZ'IE \qquad

90 '90

00 .25
$8 \mathrm{~B} \cdot \mathrm{pg}$
$\varepsilon 9: 59$ \qquad

13C spectrum with $1 H$ decoupling

09.5
56.9
62. T\&

S9'२E
16.19 \qquad

E2•VL

62' 16 \qquad

E8. 915
$80 . \varepsilon 21$ $80 . \varepsilon 21$
25.521 0 0. 921 $6<\cdot \mathrm{L21}-$

9 ' bE -
LQ' ε V!
$06 \cdot 291$
9く, EG!
130. spectrum with 1 H decoupling

$1 \% 06 \cdot \varepsilon \square$
$65 \angle 00^{\circ}$

\qquad
$6 G^{\circ} \cdot \mathrm{ED}$
$E L \cdot$ IS \qquad

96 '29
$50^{\circ} \mathrm{G} \ell \square$ \qquad
$25 \cdot 26$

$80^{\circ} 96!-$
89

LG. ES -

0958． 0

898190	
82929	0

огve9 0－

$66589 \cdot$
2559

$26159 \cdot 0$

008 $\left.28^{\circ} 0\right]$
$\left.\begin{array}{l}\text { воє } 26.0 \\ 2 \xi \angle \square 6 \\ 0\end{array}\right]$
29 $29666^{\circ} 0$
299596°
B2E
E20 $05^{\circ}{ }^{\circ}$
526466°

LLS日E ！
96200%

$\left.\begin{array}{ll}295655 \cdot[\\ 256 / 9 . \%\end{array}\right]$
$50626 \cdot$

$98200^{\circ} \mathrm{C}-1$

091詚
E9905 $\circ=$

$6 \varepsilon \mathrm{G} \% \mathrm{~g}^{\prime} \mathrm{s}$
20659
$0 £ 799^{\circ} \mathrm{s}$

| $12 E \angle 8 \cdot 5$ |
| :--- | :--- |
| SERE 5 |

$99706^{\circ} \mathrm{S}$
E9916． G

$\checkmark 0296 \cdot 9$
00196.9
$169 \angle 6^{\circ} 9 —$
$988 \angle 6.9$
$18166^{\prime} 9$
18266 9
$8 \angle E 66 \cdot 9$

oعos！

EbIBL L－
$\angle 8095$
$58 E \angle 5^{\circ}<$

89！26

1H spectrum

19.5
20.1

tosi $\angle .0$
202e2 1
己гоге ！ $\stackrel{\square}{\square}$ BSC ！ $882 \angle 2$ ！ 90LL2 「－ 69062＇［ $1 / 7$
9511
0165
9688
\square
E050S ：－ 08615＇！
들
＂ 69028 ； $66 \triangleright \varepsilon 8^{\prime} ;$
 069 C8＇ 1 － $\rightarrow 2068^{\circ} \mathrm{T}-$ G2If6！

6ロ60e＇ C

己ロLEG 2

6299－2－
ZLELS＇2－
E9185＇ 2 －
ャ996L．2－
5vor8：5—／
$00628^{\prime} \mathrm{z}-\mathrm{C}$

158＇2－
976E ε－

gegro ε－
silct ε
GVOSp E ©
．

58096
$\angle 6^{\prime} L$

LO. 8 E —
$92 \cdot 9 \gamma$ \qquad ar 29 ———
50.69
96. 52 L
$\varepsilon \in \cdot \mathrm{Es}$ ————

CEVB——

S0' $\varsigma \varsigma-\square$

厄 spectrum with 1 H decoupling

$09^{\circ} \mathrm{CP}$ \qquad
E, 25 -

22. 08 \longrightarrow
${ }_{\text {E9 }} 06$

$78 \cdot 10$
$16^{\circ} \mathrm{C}$, \qquad暗に

C6:19

ह5! !

13 C spectrum with 1 H decoupling

$6 \varepsilon^{\prime} 92$
$56^{\prime} 92$
$\varepsilon \varepsilon^{\prime} .82$

$96 \cdot \varepsilon \varepsilon$ \qquad
DT SE
\qquad

2LIS
\qquad
ट६'pร \qquad
-

\qquad
$6 L \cdot \varepsilon!\longrightarrow$

น०. $\varepsilon ะ$
$6 \varepsilon \cdot 9 \mathrm{p}$
60. Is \qquad
$9 L^{\circ} 09$
$65^{\circ} \mathrm{Eg}$

Scy 97

2899\％$]$
stast 门］

$95968 \cdot \square$

TEES6 ！
$9 \angle C 96^{\prime}!$

99566 ＇
99100

99100° z
geglo
Esise 2
t9goe ve
6162ε ： $2-$
$60109^{\prime 2}$

60109 ＇2
80159
68229

L
$\left.\begin{array}{l}20190 \varepsilon \\ 861 / 20 \varepsilon \\ \varepsilon 2960 . \varepsilon\end{array}\right] /\left[\begin{array}{l}\text {－}\end{array}\right.$

elorg＇ε－

ટ己しE6＇ －

¢р898＇9－

हાzor：-

ฐร02：\angle

20LET－
$696 \mathrm{EP} \cdot$

696E1－
ggpge ：
$60<\varepsilon e^{\circ}<-$
60LE2＇
$\underset{\sim}{\angle 10052 \cdot 8 —}$


```
uod
```

 012 B

$8 \varepsilon^{\prime} \varepsilon!$
\qquad

809 \qquad
$18 \cdot 05$
$8 \varepsilon^{\prime} \cdot 29$ \qquad
4.09 \qquad
0E' 29

81 CL \qquad
92×505
\qquad

\qquad
66 侽;

$50688 G \square$

Dounay et al.: Minfiensine Supporting Information - S82

205b : 8

$18 \cdot 52$
$62 \cdot<2$ \qquad

E9' \qquad
$87^{\circ} \mathrm{ps}$
$99 \cdot \mathrm{sc}$ ——
06. 09 \qquad

sbeL \qquad
$82.511-$
E1 $211=$
$25221-$
$88 \cdot 721-$
$25 \cdot 221-$
$88 \cdot$-21-
$88 . \quad 2!$
$6 L \angle 2 \vdots$
$06 \cdot \angle 25$
$06^{\circ} \mathrm{LL5}$
$66^{\circ} \mathrm{LL5}$
$60^{\circ} \mathrm{BL5}$
$60.821=$
$81-825-$
$82 \cdot 825-$
-00. $821-$
LL $9 \varepsilon 1$
εS^{\prime} VDI
$50 \cdot \mathrm{pst}$

ppm

Sc． 81

Eん $\angle 己$
$9 \varepsilon \cdot \varepsilon \varepsilon$
ob＇ 9ε —
ss＇2s
L．vs
T8＇GG
$\left.\begin{array}{l}60^{\prime} \angle L \\ 00^{\circ}<L \\ 09^{\circ}<L \\ 9\end{array}\right]$

SC＇E6

LS $98!$
いくもに

TW．Wg

13C spectrum with 1 H decoupling

$\left.\begin{array}{ll}18992 \\ \text { 日0082 ! } \\ 51968 \cdot\end{array}\right]$
$\left.\begin{array}{l}8008 ट \cdot 1] \\ \left.5 \angle 96 \varepsilon^{\prime} \cdot 1\right] \\ 36000 \cdot 1]\end{array}\right]$
『モロで! !

20808'5]

gelver r]
EVELS C-
$59 / 58 \cdot 9-$
$\angle 92 \angle 9.9-$
$\angle 9 \angle 88 \cdot 9$
L9688 9
56515

28825 \angle
と८もロに
ことEDに

Sever 2

51650
1650：日———

\qquad

$$
\angle 9 . \angle 9
$$

$\angle 9.82$ \qquad

2L $\angle E$
 －

\qquad

 E6'09
 日L 19
GO
GL'EG
SO

90 Es
$9<\cdot 65$ \qquad
$56 \cdot 16 \longrightarrow$

W゙EOT
\qquad

13 C spectrum with 1 H decoupling
$20 \cdot 121$
$00 \cdot 2 く 1$

$9966 \cdot 0$

```
L['SE't
OEgGG:!
2095:!
\222%'!
2г8&L!
65\angleDL:!
2969L%\
$9896:T=
80159.5-
orozs'3-3
```



```
&\mp@code{ves'?}
< E5vES 2-
2655;2
$98G5 %-
$98S %-
SSLSL'zD
80598':2—
8V558 z-
P5606.2-]
8616'子-
```



```
E260G'\varepsilon-
98218'\varepsilon-
```

$61152 \cdot \mathrm{r}$
8189s:
se9po
8650 ' 5

OBOD: 18

1H spectrum

$28 \cdot 68$
$09 \cdot 15$
02.15
00
00.75
16.95
$06!5 \longrightarrow$
$6 \angle .2 L$ \qquad
： 16 —

13 s spectrum with 1 H decoupling
「9 Eb：

\qquad

\qquad

69' 16

13 C spectrum with 1 H decoupling \qquad

OG280

60: $1 \varepsilon \square$

โ5: 8ε

ح6068 \&

LLLOL ' \downarrow -

87870 '9

H spectrum
tl295 ${ }^{\circ}$
$\angle Z 8 \angle 59$
$0110 \angle 9 \square$
$165 \angle 5.9$


```
N
```


$80^{\circ} 06$ \qquad

13C spectrum with 1 H decoupling

$02 \cdot 98$ \qquad
0r* \qquad
$09 \cdot 9 p$
$92 \cdot \theta \%$ \qquad
\qquad
45. 15
\qquad
8799
\qquad

\qquad

$0 \cdot \triangleright \subseteq!-$

\qquad

$8 \angle 616^{\circ} L \square$

