
CONSTRAINED RECURSIVE PARAMETER
ESTIMATION FOR ADAPTIVE CONTROL

Angadh Singh, Abhijit S. Badwe, Sachin C. Patwardhan*

Department of Chemical Engineering, Indian Institute of
Technology, Bombay, Powai, Mumbai, 400076, India.

*Email:sachinp@che.iitb.ac.in

Abstract: In adaptive control of systems with poles close to the unit circle,
application of recursive estimation techniques can lead to excursions of poles
outside the unit circle even when the process has no unstable poles. In this
work, we propose a novel constrained formulation for recursive estimation of
parameters using pseudo linear regression approach. The Jury�s stability criterion
is used to impose constraints in the parameter space. The proposed strategy
has considerable computational advantage when compared to moving window
constrained estimation . We demonstrate the e¢ cacy of the proposed method
using experimental data collected from a laboratory heater-mixer setup.
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1. INTRODUCTION

The �eld of adaptive control with on-line recursive
parameter estimation has received considerable
attention in the past three decades. The ease of
implementation of on-line parameter estimation
algorithms developed over the years has made
adaptive model based control a competent al-
ternative to nonlinear process control. Parameter
estimation is of paramount importance in context
of an adaptive control system and the need to
generate consistent parameter estimates cannot
be ignored. The recursive least square (RLS) esti-
mation of linear in parameter models (ARX/FIR)
and its extensions to nonlinear in parameter mod-
els (pseudo-linear regression or PLS) have been
extensively employed for this purpose and the
convergence results of such schemes have been
discussed by Ljung (1999). These methods belong
to the class of prediction error methods, which
fail to generate meaningful estimates when the
predictors are unstable.

Parameter estimation scheme based on recursive
least squares can be regarded as a form of the
Kalman �lter (Astrom and Wittenmark, 2001).
It is a well acknowledged fact that the Kalman
�lter or its extensions do not handle bounds or
constraints that may exist on the state or para-
meter estimates. When identifying stable systems
which are close to being unstable, it may hap-
pen at any step that the parameter values make
the predictor unstable (Forssell and Ljung, 1998).
They proposed an alternate structure for the OE
and Box-Jenkins model structures to overcome
this problem when identifying stable systems close
to instability. Our objective would be to address
the former issue and propose an algorithm which
takes into account the bounds on the stability of
models recursively identi�ed for such systems in
the context of adaptive control.

An alternative to the Kalman �lter based meth-
ods is the moving-horizon estimation technique.
The Moving-Horizon estimation (MHE) tech-
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niques were introduced to include the knowledge
of inequality and equality constraints on states,
parameters and disturbances. In the case of lin-
ear time-invariant systems, the resulting optimiza-
tion problem reduces to quadratic programming.
To extend this approach to processes described
by nonlinear dynamics, Liebman et al., (1992)
proposed non-linear dynamic data reconciliation
(NDDR) scheme, which can also account for non-
linear algebraic constraints and bounds on the es-
timates. In the case of nonlinear constraints (non-
linear process dynamics) or a non-quadratic ob-
jective function, the solution is obtained by solv-
ing a constrained non-linear optimization problem
(NLP) over a moving window. However, the com-
putational burden of numerically solving a nonlin-
ear optimization problem over a window of data
at every sampling instant renders it unsuitable
for real time applications like adaptive control.
Recently, Vachhani et al. (2005) have proposed
a Recursive NDDR technique which combines the
computational bene�ts of the extended Kalman
�lter and the constraint handling properties of
NDDR. The a priori knowledge of states and
parameters is included in a nonlinear optimization
problem to be solved numerically at the current
instant. The computation time for RNDDR is
similar to that of the Kalman �lter based methods
and hence provides the motivation for the inclu-
sion of constraints in online recursive parameter
identi�cation.

In the context of adaptive control of systems with
poles close to the unit circle, application of recur-
sive estimation techniques can lead to excursions
of poles outside the unit circle due to variance er-
rors even when the process has no unstable poles.
These excursions can have detrimental e¤ects on
the resulting closed loop behavior. Taking moti-
vation from the RNDDR formulation, we propose
a constrained formulation for recursive estimation
of parameters. The proposed constrained recursive
parameter algorithm consists of recursively iden-
tifying the model parameters using the recursive
output error (ROE) and extended least squares
(ELS) for OE and ARMAX models, respectively.
A check on the model stability is done by inves-
tigating the zeros of the denominator polynomial
of the predictor and the constrained optimization
is invoked only when the parameters violate the
stability criteria. The Jury�s stability criterion is
used to formulate the constraints in the nonlin-
ear optimization problem. We then proceed to
demonstrate the e¢ cacy of the proposed method
on experimental data collected from a laboratory
scale heater-mixer setup.

The paper is organized in 3 sections. We be-
gin by discussing about the motivation for con-
strained parameter estimation in Section 2 and
present the proposed constrained recursive esti-

mation method. The results of constrained and
unconstrained parameter estimation are presented
in Section 3. Finally, we present the conclusions
based on the analysis of the obtained results.

2. CONSTRAINED RECURSIVE
PARAMETER ESTIMATION

All RPLR algorithms belong to the class of pre-
diction error methods (PEM) in which one step-
ahead errors are minimized sequentially. An im-
portant requirement of the PEM is that the one
step ahead predictor should be stable. (Ljung,
1999). Consider the popularly used ARMAX
model structure,

A(q�1)y(t) = B(q�1)u(t) + C(q�1)e(t) (1)

The one step ahead predictor for ARMAX model
is given as follows

by(t) = B(q�1)

C(q�1)
u(t) +

�
C(q�1)�A(q�1)

C(q�1)

�
y(t)

(2)
A su¢ cient condition for the above predictor to
be stable is that the C(q�1) polynomial is stable,
which does not impose any stability constraint on
the deterministic dynamics. The ARMAX model
structure can thus be used to identify a system
provided the stability of the noise model polyno-
mial can be guaranteed. In the case of output error
(OE) structure

y(t) =
B(q�1)

A(q�1)
u(t) + e(t) (3)

the stability of the predictor is ensured if the
roots of the A(q�1) polynomial lie inside the unit
circle. In the following sub-sections, we �rst brie�y
review moving window constrained parameter es-
timation and pseudo linear regression scheme with
reference to OE structure. We then proceed to
formulate the constrained recursive parameter es-
timation algorithm.

2.1 Constrained Parameter Estimation

The coe¢ cients of polynomial A(q�1); B(q�1) in
equation (3) can be estimated by using prediction
error method, which minimizes variance of resid-
ual signal bv(t) de�ned asbv(t) = y(t)�'(t)T� (4)

'(t) = [�by(t� 1)::� by(t� na)
u(t� 1)::u(t� nb)]T (5)

� =
�
a1 ::: ana b1 ::: bnb

�
(6)

In the present work we assume that the dynamics
of the process under consideration can be ade-
quately represented by a set of local linear models
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with poles strictly inside the unit circle. Thus,
while performing on-line parameter estimation, it
is necessary to ensure that local models do not
become unstable due to variance errors caused by
low signal to noise ratios. Following Ydstie (1997),
the problem of on-line parameter estimation can
be posed as a constrained optimization problem
over a time window [t�N; t] as follows

b�(t) = min
�(t)

"

+

tX
i=t�N

�(i) (bv(i))2#

 = (��(t))

T
P(t�N)�1 (��(t))

��(t) = �(t)� b�(t�N)
Subject to �(t) 2 �

where � represents constraint set for parame-
ter estimates, �(i) represents discount factor and
Pd(t�N) � "I > 0 represents a positive de�nite
covariance matrix, which de�nes a trade-o¤ be-
tween emphasis placed on new measurements and
old estimate. The constraints on the estimated
parameters can be derived using the Jury�s sta-
bility criteria. It may be noted that the resulting
formulation is qualitatively similar to nonlinear
dynamic data reconciliation (NDDR) task (Lieb-
man et al., 1992), which is employed on-line for
improving the quality of operating data. The main
di¢ culty with this formulation is that it results
in a highly nonlinear constrained optimization
problem and solving it on-line in real-time may
not be feasible.

2.2 Unconstrained Pseudo-Linear Regression

In adaptive control, recursive solution to the
unconstrained version of the above optimization
problem is popularly employed for on-line compu-
tations mainly due to its computational simplicity.
Even the unconstrained problem is a nonlinear
optimization problem, which can be solved on-line
using a recursive pseudo-linear regression (RPLS)
method called recursive output error (ROE) as
follows (Ljung, 1999)b�(t+ 1) = b�(t) +K(t) hy(t+ 1)�'(t+ 1)T b�(t)i
where gain K(t) is computed as follows

K(t) =
P(t� 1)'(t+ 1)

�+'(t+ 1)TP(t� 1)'(t+ 1) (7)

P(t) =
1

�

�
P(t� 1)�K(t)'(t+ 1)TP(t� 1)

�
(8)

Here P(t � 1) represents the covariance matrix
of model parameters and � is an exponential
forgetting factor.

Though the recursive estimation procedure out-
lined above is computationally attractive, the pa-
rameter estimates are always subject to uncer-
tainty due to various reasons. As a result, it could

so happen that the parameters identi�ed from the
data provide us with an unstable model despite
the fact that the process is open loop stable.
This is not an uncommon occurrence during the
identi�cation of stable systems which are close to
being unstable (Forssell and Ljung, 1998) or if the
signal to noise ratio is not su¢ ciently high (Soder-
strom and Stoica, 1981). Also, when the forgetting
factor is used, the window of data in the past also
known as the asymptotic sample length (ASL),
that in�uences the current parameter estimates is
de�ned as

ASL =
1

1� �
where � is the forgetting factor. For small values
of ASL, variance errors are expected to be large,
which can again cause excursions of poles into the
unstable region.

2.3 Constrained Recursive Parameter Estimation

Taking motivation from RNDDR formulation
(Vachhani et al, 2005), we propose a novel con-
strained recursive formulation for on-line parame-
ter estimation. By this approach, let us assume
that parameter estimates b�(t) 2 � are available at
instant (t+1):We �rst compute e�(t+1) using un-
constrained recursive estimation scheme discussed
above. If estimated e�(t + 1) 2 � (i.e. roots of
A(q�1) polynomial are inside unit circle), then we
set b�(t+1) = e�(t+1) and proceed with the control
law calculation. However, if e�(t + 1) =2 �; then
we formulate a constrained optimization problem
over one sampling period as follows

b�(t+ 1) = min
�(t+ 1)


(t+ 1) + [bv(t+ 1)]2

(t+ 1) = (��(t+ 1))

T
P(t)�1 (��(t+ 1))

��(t+ 1) = �(t+ 1)� b�(t)
Subject to �(t+ 1) 2 �

In particular, when polynomial A(q�1) is of �rst
or second order the above constrained optimiza-
tion problem can be reduced to a QP problem.
For example, for second order OE model given by

y(t) =

�
b1q

�1 + b2q
�2

1 + a1q�1 + a2q�2

�
u(t) + v(t) (9)

the constrained optimization problem can be
stated as follows

b�(t+ 1) = min
�(t+ 1)

�
�(t+ 1)TH(t+ 1)�(t+ 1)

+f(t+ 1)T�(t+ 1)

�
H(t+ 1) =

�
P(t)�1 +'(t+ 1)'(t+ 1)T

�
f(t+ 1) =�2

h�
P(t)�1

�T b�(t) + y(k + 1)'(t+ 1)i
�(t) =

�
a1(t) a2(t) b1(t) b2(t)

�
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Subject to�
�1 �1 0 0
1 �1 0 0

�
�(t+ 1) �

�
1� "
1� "

�
A small number " has been introduced in the
above constraint equation to convert the inequal-
ity constraints arising from Jury�s criteria into
equality constraints. It may be noted that, for
higher order models, the objective function re-
mains identical but the constraints become non-
linear functions of model parameters. This formu-
lation ensures that the poles of A(q�1) remain
within the unit circle at signi�cantly less computa-
tional cost when compared to the moving window
formulation.

Though the proposed constrained optimization
approach ensures the stability of the estimated
model, the procedure is computationally cumber-
some when compared to the recursive estima-
tion techniques. Thus, we propose to combine the
two approaches to make the parameter estimation
computationally e¢ cient.

A check for stability is performed every time the
parameters are estimated using the unconstrained
recursive estimation procedures outlined above.
We de�ne the spectral radius of A(q�1) as

� = max jpij (10)

where p0is are zeros of A(q
�1). The constrained

optimization procedure is invoked only when

� � 1 (11)

Similar to RNDDR approach, the covariance ma-
trix P(t + 1) is updated using equations (7)-(8)
irrespective of the method being used to estimate
the parameters.

While developing ARMAX model by extended
least square (ELS) algorithm, it is required that
the poles of polynomial C(q�1) should remain
within unit circle to meet the requirement of sta-
ble predictor. If poles of C(q�1) are found to move
outside unit circle, then a constrained optimiza-
tion problem can be formulated and solved in a
similar manner.

3. ILLUSTRATIVE EXAMPLE

In this section, the stability of the model obtained
at every sampling instant using the ordinary re-
cursive estimation techniques is compared to the
proposed scheme by open-loop identi�cation from
experimental data. The problem of poles of the
estimated model at a particular instant violating
stability requirements due to parameter estima-
tion is discussed using the Experimental Two-
Tank Heater mixer setup.

Fig. 1. Schematic of heater-mixer experimental
setup

3.1 Heater Mixer Setup

A schematic of the setup is shown in Figure (1).
The heater-mixer setup consists of two tanks. The
�ow to Tank-1 is maintained constant and heating
is provided in this tank. The constant over�ow
from this tank is fed to Tank-2. Cold water can
be fed to Tank-2 through control valve CV-2.
Temperature measurements are available in both
tanks and level in Tank-2 can also be measured.
The heat supplied to both the tanks can be varied
by the thyristor power controllers. The input to
the thyristor power controller is in the range 4 - 20
mA i.e. 4 mA corresponds to zero heat input while
20 mA corresponds to maximum heat input. Also,
the �ow to Tank-2 can be varied using control
valve CV-2.

Identi�cation of this system is carried out by con-
sidering three output variables and three input
variables. The output variables of interest are the
temperatures in both the tanks (T1 and T2) and
the level in Tank-2 (L2). The inlet �ow to Tank
2 (F2) and inputs to the thyristor control units
(U1 and U2) are treated as the manipulated in-
puts. Fluctuations in the inlet cold water �ow to
Tank-1 is treated as an unmeasured disturbance
in the identi�cation exercise. A sampling time of
1 second is used while collecting data. The in-
puts to the setup were designed using the idinput
function in System Identi�cation toolbox in MAT-
LAB. The manipulated inputs are random binary
signals in the frequency range of

�
0 0:01�

�
. Also,

while generating data for identi�cation, a random
Gaussian signal (RGS) in the frequency range of�
0 0:005�

�
is introduced in the inlet cold water

�ow. The output and input data used for the
recursive identi�cation exercise is presented in
Figures (2) and (3), respectively. We recursively
identify following models using this data

� second order OE model given by 9
� second order ARMAX model of the form
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Fig. 2. Output data
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Fig. 3. Input data

Table 1. Input-Ouput selection for
model development

Output Inputs Model Type
T1 U1 SISO
T2 U1; U2; F2 MISO
L2 F2 SISO

y(t) =
b1q

�1 + b2q
�2

1 + a1q�1 + a2q�2
u(t)

+
1 + c1q

�1 + c2q
�2

1 + a1q�1 + a2q�2
e(t) (12)

The inputs in�uencing a particular output are
mentioned in Table 1. The recursive identi�cation
for both OE and ARMAX models is carried out
using (a) unconstrained RPLR methods (b) pro-
posed constrained RPLR method. The forgetting
factors were chosen to be constant at 0.99 and 0.98
for OE and ARMAX models, respectively.

It can be argued based on the underlying physics
of the system that the poles of the OE model
should be inside the unit circle. Thus, the model
identi�ed at every sampling instant using the
ROE method is expected to be stable. Also the
roots of the C(q�1) should lie inside unit circle
to insure the stability of the predictor. The open
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Fig. 4. Comparison of variation in identi�ed AR-
MAX model parameters with unconstrained
(....) and constrained (� ) estimation

loop process time constants in the neighborhood
of the chosen operating point are of the order of
150 sec. As a consequence, the poles of discrete
OE/ ARMAX model are expected to be close to
unit circle when sampling time is chosen as 1 sec.
Figure (4) summarizes the variation of the AR-
MAX model parameters with time and compares
the estimates obtained from the proposed method
to that of the unconstrained ELS. As can be seen
from this Figure, the constrained estimates follow
the trend in the unconstrained estimates except
at some instants. This is when the unconstrained
estimates result in poles of C(q�1) outside the
unit circle and the proposed estimation procedure
projects them inside the unit circle so as to ensure
stability of the predictor.

The spectral radii of the A polynomial for OE
model and C polynomial for ARMAX model are
shown in Figures (5) and (6), respectively. It is
observed that the spectral radii frequently exceed
1, verifying the excursions of the poles of esti-
mated models outside unit circle. However, the
proposed constrained estimation scheme ensures
that the spectral radii are less than 1, thus guar-
anteeing the stability of the identi�ed model.

The e¤ect of decreasing the forgetting factor was
also studied and has been demonstrated in Figure
(7). Decrease in the forgetting factor results in
smaller ASL and higher variance errors in para-
meter estimation. As can be expected, there are
more frequent excursions of the poles outside the
unit circle when forgetting factor is reduced.

4. SUMMARY AND CONCLUSIONS

In adaptive control of systems with poles close
to the unit circle, application of recursive esti-
mation techniques can lead to excursions of poles
outside the unit circle even when the process has
no unstable poles. Such excursion of poles of the
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Fig. 7. E¤ect of forgetting factor on the spectral
radii of identi�ed models

estimated model into the unstable region may
degrade the adaptive controller performance. In
this work, we propose a novel constrained formu-
lation for recursive estimation of parameters us-
ing pseudo linear regression approach. The Jury�s
stability criterion is used to impose constraints
in the parameter space. The proposed strategy
has considerable computational advantage when
compared to moving window constrained estima-
tion . We demonstrate the e¢ cacy of the proposed
method using experimental data collected from a
laboratory heater-mixer setup.

The analysis of the experimental results reveals
that the excursions of the poles outside the sta-
ble region in unconstrained RPLR can be mainly
attributed to the variance errors. The proposed
combination of RPLR and constrained estimation
is able to guarantee stability of the predictor even
when the ASL is small. Thus, the proposed con-
strained parameter estimation scheme provides
a systematic and computationally attractive ap-
proach to impose estimator stability constraints
in on-line parameter estimation .

5. REFERENCES

Astrom, K. J. and B. Wittenmark. (2001). Adap-
tive Control. Second Edition, Pearson Educa-
tion Asia.
Forssell, U. and L. Ljung (1998). Identi�cation of
Unstable systems using Output Error and Box-
jenkins Model Structures. Proceedings of the
37th IEEE conference on decisions & Control,
Tampa, Florida, USA.
Liebman, M. J., T. F. Edgar and L. S. Lasdon
(1992). E¢ cient Data reconciliation and Esti-
mation for Dynamic Processes using Nonlinear
Programming techniques. Computers Chem.
Engng. 16(10/11), 963-986.
Ljung, L. (1999). System Identi�cation: Theory
for the User. Second Edition, Prentice-Hall,
Inc., Eaglewood Cli¤s, New Jersey.
Soderstrom, T. and P. Stoica (1981). On the
stability of Dynamic Models Obtained by Least-
Squares Identi�cation. IEEE Trans Auto.Cont.
AC-26(2), 575-577
Vachhani, P., R. Rengaswamy, V. Gangwal and
S. Narasimhan (2005). Recursive Estimation
in Constrained Nonlinear Dynamical Systems.
AIChE J. 51(3), 946-959.
Ydstie, B. E. (1997). Certainty Equivalence
Adaptive Control: What�s New in the Gap.
Chemical Process Control - V., Tahoe City,
California, J. C. Kantor, C. E. Garcia and B.
Carnaham (Eds.), CACHE-AIChE, 9-23.

Proceedings of DYCOPS-2007, Cancun, Mexico, 6-8 June, 2007


