Supporting Information

The Self-assembly of Resorcin[4] arene in the Presence of Small Alkylammonium Guests in Solution

Liat Avram and Yoram Cohen*

School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.

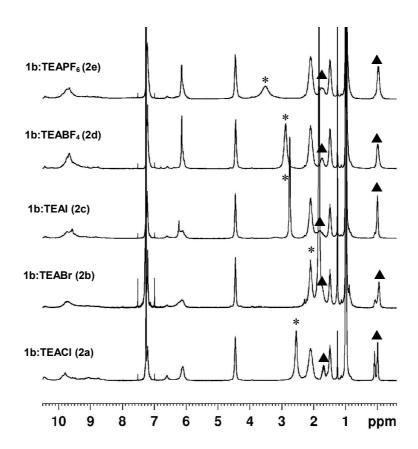
*Correspondence to: Yoram Cohen, School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.

Tel: 972-3-6407232. Fax: 972-3-6407469

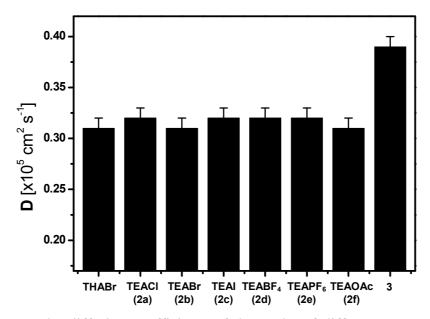
E-mail: ycohen@post.tau.ac.il

Experimental Section

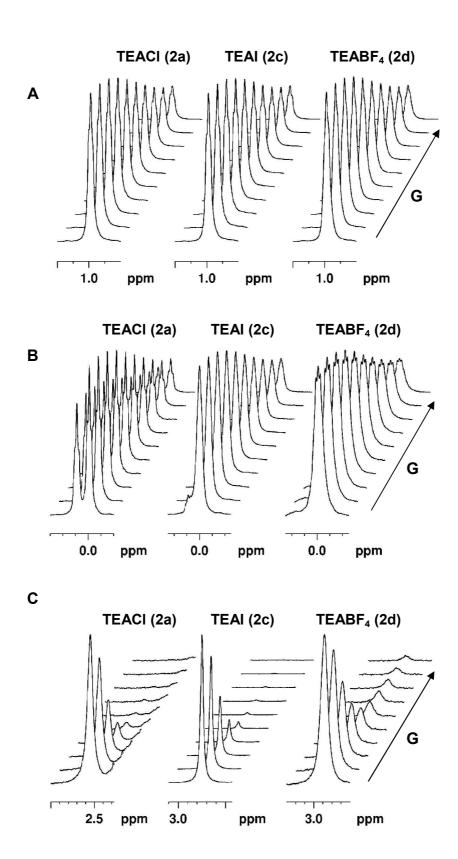
General: NMR diffusion measurements were performed on a 400 MHz Avance Bruker NMR spectrometer equipped with a Great1 gradient system capable of producing magnetic field pulse gradients in the z-direction of about 50 G cm⁻¹. All experiments were carried out using a 5mm inverse probe. All measurements were performed at least three times and the reported diffusion coefficients are the mean \pm standard deviation of three experiments. Only data where the correlation coefficients of $ln(I/I_0)$ versus $\gamma^2\delta^2g^2(\Delta-\delta/3)$ were higher than 0.999 are reported. The measurements were all preformed at 298.0 K. All diffusion measurements were performed in a 4 mm NMR tube inserted in a 5 mm NMR tube.

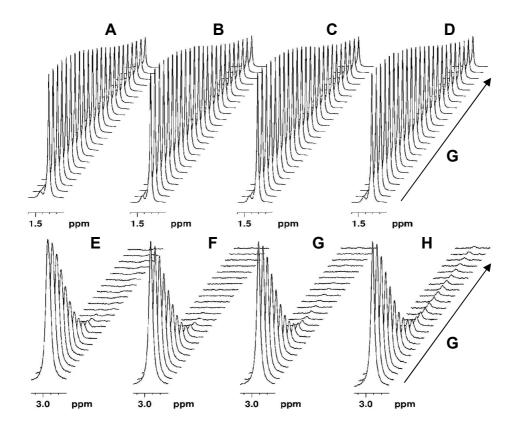

Materials: All starting materials, guest molecules, reagents and CDCl₃ were purchased from Aldrich (USA) and were used as supplied, without further purification. Compounds **1a** and **1b** were prepared according to the procedure previously published (Tunstad, L. M.; Tucker, J. A.; Dalcanale, E.; Weiser, J.; Bryant, J. A.; Sherman, J. C.; Helgeson, R. C.; Knobler, C. B.; Cram, D. J. J. Org. Chem. **1989**, *54*, 1305-1312.). See also Avram L.; Cohen Y. J. Am Chem. Soc. **2004**, *126*, 11556-11563. Compounds **1a** and **1b** were obtained as yellowish solids and the yields were typically between 70 to 80%.

The ¹H and ¹³C NMR spectroscopic parameters of the obtained hexameric capsules in CDCl₃ solutions are given below.


¹H-NMR of [(**1a**)₆(H₂O)₈] (400 MHz, CDCl₃, 25°C, 65 mM): δ = 9.52 (OH, broad, 48H), 7.21 (s, 24H), 6.12 (s, 24H), 4.30 (t, J=7.0Hz, 24H), 2.22 (broad, 48H), 1.27 (m, 432H), 0.88 (t, J=6.7Hz, 72H).

¹³C {¹H}-NMR of [(**1a**)₆(H₂O)₈] (100 MHz, CDCl₃, 25°C, 65 mM): δ=151.3, 151.0, 125.5, 124.5, 103.5, 103.3, 34.0, 33.8, 32.6, 30.5, 30.4, 30.4, 30.4, 30.3, 30.1, 28.8, 23.4, 14.8 ppm. ¹H-NMR of [(**1b**)₆(H₂O)₈] (400 MHz, CDCl₃, 25°C, 20 mM): δ= 9.52 (OH, broad, 48H), 7.20 (s, 24H), 6.14 (s, 24H), 4.44 (t, J=7.4Hz, 24H), 2.09 (m, 48H), 1.49 (m, 24H), 0.98 (t, J=6.2Hz, 144H).


¹³C {¹H}-NMR of [(**1b**)₆(H₂O)₈] (100 MHz, CDCl₃, 25°C, 20 mM): δ=151.3, 151.0, 125.60, 125.5, 124.9, 103.6, 42.8, 31.6, 26.8, 23.6, 23.4 ppm.


Figure S-1: 1 H NMR spectra (400 MHz, 298 K) of **1b** in CDCl₃ in the presence of different tetraethylammonium salts (**2a-e**). The * symbol indicates the water peak and \triangle indicates the peaks of the encapsulated salts.

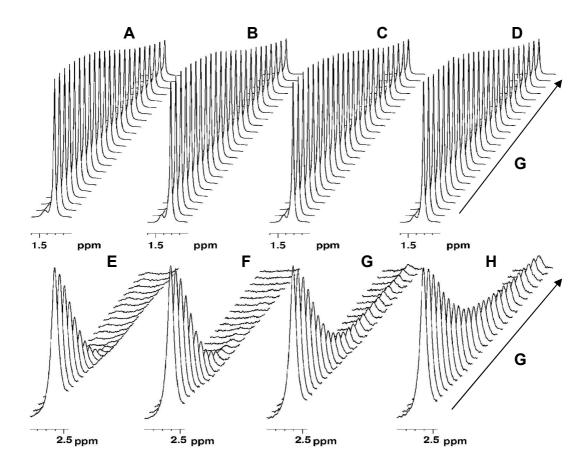

Figure S-2: The diffusion coefficients of the peaks of different encapsulated ammonium salts encapsulated in **1b** and biscalix[5]arene (**3**). Compound **3** has a molecular weight of 2398 g mol⁻¹, which is much higher than the molecular weight of the dimer of **1b** (1424 g mol⁻¹).

Figure S-3: ¹H NMR signal decay as a function of the gradient strength (G) (400 MHz, 298 K) of one of the peaks of **1b** (A), encapsulated salt (B) and water (C) in a CDCl₃ solution with the following salts: TEACl (**2a**), TEAI (**2c**) and TEABF₄ (**2d**), as extracted from the LED sequence with a t_e of 50 ms.

Figure S-4: ¹H NMR signal decay as a function of the gradient strength (G) (400 MHz, 298 K) of one of the peaks of **1a** (A-D) and of water (E-H) in a CDCl₃ solution of **1a** with TEACl (**2a**) as extracted from the (A and E) PGSTE diffusion sequence and the LED sequence with the following t_e s: (B and F) 5 ms, (C and G) 50 ms, and (D and H) 150 ms.

Figure S-5: ¹H NMR signal decay as a function of the gradient strength (G) (400 MHz, 298 K) of one of the peaks of **1a** (A-D) and of water (E-H) in a CDCl₃ solution of **1a** with TEABF₄ (**2d**) as extracted from the (A and E) PGSTE diffusion sequence and the LED sequence with the following t_e s: (B and F) 5 ms, (C and G) 50 ms, and (D and H) 150 ms.