Supporting Information

Facile and Efficient Synthesis of Carbohybrids as Stereodivergent Drug-like Small Molecules

Ram Sagar and Seung Bum Park*
Department of Chemistry, Seoul National University, Seoul 151-747 Korea

Email: sbpark@snu.ac.kr
S. No. Content Page No.1. Material and methodsS2
2. General experimental procedures S2-S5
3. Physiochemical and Spectral data of all compounds S6-S16
4. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all compounds S17-S38
5. Crude NOE Spectra of $\mathbf{6}$ S39
6. Crude LCMS data of $\mathbf{6}, \mathbf{1 6}-\mathbf{2 0}$ compounds S40-S45

1. Material and methods:

All reactions were performed either in oven-dried glassware or microwave vessel. All reactions were monitored by thin-layer chromatography (TLC) using pre-coated glassbacked plates (silica gel $60 \mathrm{~F}_{254} 0.25 \mathrm{~mm}$), and components were visualized by observation under UV light (254 and 365 nm) or by treating the plates with $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}(1 \%$ in $2 \mathrm{~N}_{2} \mathrm{SO}_{4}$) solution, followed by heating. Solvents used for reactions were dried by standard drying methods. Solvent used for chromatography and organic reagents were purchased from commercial venders and used without further purification unless otherwise mentioned. Optical rotations were determined on automated polarimeter using 1 dm cells at $28{ }^{\circ} \mathrm{C}$ in CHCl_{3}. Concentrations were in $\mathrm{g} / 100 \mathrm{~mL}$. NMR spectra were recorded on 500 MHz FT-NMR spectrophotometer at $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ respectively. Chemical shifts were reported in ppm relative to the reference peak TMS, $0.00 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$ and $\mathrm{CDCl}_{3}, 77.2 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$ unless otherwise stated. Multiplicity was indicated as follows: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet); dd (doublets of doublet); ddd (doublet of doublet of doublet); dt (doublets of triplet); td (triplets of doublet); brs (broad singlet), etc. Coupling constants were reported in Hz. The high resolution mass spectrometric analyses were conducted at the Mass Spectrometry Laboratory by direct injection for fast atomic bombardment (FAB). Microwave reactions were performed using automated CEM Discover Benchmate and temperature was maintained by controlled air cooling. Microwave reaction condition is given in experimental procedure section. The products were purified by column chromatography on silica gel (230-400 mesh).

2. General experimental procedures:

a) Synthesis of 5 under thermal condition in EtOH:

To a stirred solution of 2-C-formyl glucal $\mathbf{1}(110 \mathrm{mg}, 0.250 \mathrm{mmol})$ in anhydrous ethanol, 3-aminopyrazole $3 \mathbf{a}$ ($31.1 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5$ equiv.) was added and resulting mixture was refluxed for 6 h (TLC). Resulting product mixture was concentrated in vacuum and purified by flash column chromatography to obtained pure product $5(79 \mathrm{mg})$ in 62% yield.

b) Synthesis of 5 and 6 using base $\mathrm{K}_{2} \mathrm{CO}_{3}$ in EtOH:THF (1:1):

To a stirred suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(172.5 \mathrm{mg}, 1.25 \mathrm{mmol}, 5.0$ equiv.) in $\mathrm{EtOH}(2.0 \mathrm{~mL})$, 2-C-formyl glucal $1(110 \mathrm{mg}, 0.250 \mathrm{mmol}$) and 3-aminopyrazole 3a ($31.1 \mathrm{mg}, 0.375$ $\mathrm{mmol}, 1.5$ equiv.) in THF (2.0 mL) was added and resulting mixture was heated at $80^{\circ} \mathrm{C}$ for 8 h (TLC). Resulting reaction mixture was concentrated in vacuum and subjected to flash column chromatography purification to obtained pure product $5(79 \mathrm{mg})$ in 62% yield. When the similar reaction condition was applied using 2-C-formyl glucal 1 (110 $\mathrm{mg}, 0.250 \mathrm{mmol}$) and 3-amino-1,2,4-triazole $\mathbf{4 a}(31.5 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5$ equiv.), the reaction was completed in 12 h (TLC) and desired compound $\mathbf{6}(82.5 \mathrm{mg})$ was isolated in 65% yield.

c) Synthesis of 5 and $\mathbf{6}$ using glacial AcOH as solvent at room temperature:

To a stirred solution of 2-C-formyl glucal $1(110 \mathrm{mg}, 0.250 \mathrm{mmol})$ in glacial acetic acid (3 mL), 3-aminopyrazole $\mathbf{3 a}$ ($31.1 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5$ equiv.) was added and resulting mixture was stirred at room temperature for 1 h (TLC). Resulting product mixture was diluted with EtOAc (20 mL) then neutralized by saturated aqueous NaHCO_{3}. The organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic layer washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product obtained after evaporation of solvent was chromatographed to yield pure compound 5 (91.5 mg) in 72% yield. Similar procedure was applied using 2 - C-formyl glucal $1(110 \mathrm{mg}, 0.250 \mathrm{mmol})$ and 3-amino-1,2,4-triazole $\mathbf{4 a}(31.5 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5$ equiv.), reaction was completed in 24 h (TLC) and provided desired compound 6 (29.2 mg) in 23 \% isolable yield with some highly polar mass.

d) Synthesis of $\mathbf{5}$ under microwave irradiation in Toluene:

A mixture of 2-C-formyl glucal $1(110 \mathrm{mg}, 0.250 \mathrm{mmol})$ and 3-aminopyrazole 3a (31.1 $\mathrm{mg}, 0.375 \mathrm{mmol}, 1.5$ equiv.) dissolved in dry toluene (2.0 mL) was heated in capped microwave vessel under microwave irradiation ($250 \mathrm{~W}, 110^{\circ} \mathrm{C}$) for 20 min . Controlled air cooling was applied to maintain the temperature. Resulting yellow mixture was concentrated in vacuo and subjected to flash column chromatography to obtain desired compound 5 (108 mg) in 85% isolable yield. When toluene: AcOH (10:1) solvent system used in the same reaction, it was completed in 10 min and given almost same isolable yield of 5 ($110.5 \mathrm{mg}, 87 \%$).

e) Synthesis of 5 and 6 under microwave irradiation in glacial AcOH:

A mixture of 2-C-formyl glucal $\mathbf{1}(110 \mathrm{mg}, 0.250 \mathrm{mmol})$ and 3-aminopyrazole 3a (31.1 $\mathrm{mg}, 0.375 \mathrm{mmol}, 1.5$ equiv.) dissolved in glacial $\mathrm{AcOH}(1.5 \mathrm{~mL})$ was heated in capped microwave vessel under microwave irradiation $\left(200 \mathrm{~W}, 110^{\circ} \mathrm{C}\right)$ for 5 min . Controlled air cooling was applied to maintain the temperature. Resulting product mixture was diluted with EtOAc (15 mL) and neutralized by saturated aqueous NaHCO_{3}. The organic layer was separated and the aqueous layer extracted with $\operatorname{EtOAc}(3 \times 5 \mathrm{~mL})$. The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated in vacuo and purified by flash column chromatography to yield desired compound $\mathbf{5}(118 \mathrm{mg})$ in 93% yield. All other compounds $\mathbf{7 - 1 5}$ were synthesized by the condensation of 2-C-formyl glycals $\mathbf{1 - 2}$ with respective 3 -aminopyrazole $\mathbf{3 b} \mathbf{-}$ under same reaction procedure.
Similar reaction protocol was applied when 2-C-formyl glycals 1-2 were reacted with 3-amino-1,2,4-triazoles 4a-c. The desired products 6, 16-20 were obtained in good isolable yield (76~90\%) after $15-20 \mathrm{~min}$ of microwave irradiation ($200 \mathrm{~W}, 110^{\circ} \mathrm{C}$). Traces of respective acetylated product were observed in crude ${ }^{1} \mathrm{H}$ NMR spectra as well as in LC/MS spectra of crude products. We observed greater than 99% regioselectivity in all the cases for the synthesis of triazolo[1,5-a]pyrimidines from their crude ${ }^{1} \mathrm{H}$ NMR spectra and LC/MS of crude product.

f) Glycosidation: synthesis of 21 and 22:

2,3,4,6-Tetra- O-acetyl-glucopyranosyl bromide ($158 \mathrm{mg}, 0.384 \mathrm{mmol}, 1.5$ equiv.) and glycosyl acceptor $7(150 \mathrm{mg}, 0.256 \mathrm{mmol})$ were placed in a aluminium foil covered RB flask in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ along with 100 mg of $4 \AA$ molecular sieves under nitrogen atmosphere and cooled to $0^{\circ} \mathrm{C}$. AgOTf ($98.6 \mathrm{mg}, 0.384 \mathrm{mmol}, 1.5$ equiv.) in dry toluene $(1.5 \mathrm{~mL})$ was added dropwise within 10 min . After 4 h of stirring at $0^{\circ} \mathrm{C}$, the reaction was quenched by the addition of $\operatorname{iPr}_{2} \mathrm{NEt}(1 \mathrm{~mL})$ and stirred for additional 10 min . The reaction mixture was filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated in vacuo. The crude mixture was chromatographed to obtain β-glycosidated product $21(173 \mathrm{mg})$ in 74% yield as major product along with some minor undesired product. Similarly β glycosidated product $\mathbf{2 2}$ was obtained from $\mathbf{1 2}$ in $\mathbf{7 3 \%}$ of isolable yield.
To a stirred solution of compound $21(235 \mathrm{mg}, 0.256 \mathrm{mmol})$ in ethanol (4 mL) at $70^{\circ} \mathrm{C}$, 1,4-cyclohexadiene ($0.57 \mathrm{~mL}, 6.144 \mathrm{mmol}, 24.0$ equiv.) and $\mathrm{Pd}(\mathrm{OH})_{2}(140 \mathrm{mg}, 0.6$ equiv./weight) was added in 3-4 installment on every 4 h . After 24 h , the reaction mixture was filtered through Celite ${ }^{\circledR}$. The filtrate was concentrated to obtain crude product. The crude product was chromatographed in short column using $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$
solvent system to obtain debenzylated product $23(98 \mathrm{mg})$ in 59% yield. Similarly, debenzylated product $\mathbf{2 4}$ was obtained in 60% yield starting from compound $\mathbf{2 2}$.

3. Physiochemical and Spectral data of all compounds

5
Compound 5. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-37.73\left(c 0.343, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.27$ ($1: 1$, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.42 (d, $J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.06-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{dd}, J$ $=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53$ (brs, 2H), 4.42 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (d, $J=11.0$ Hz, 1H), 4.06 (m, 1H), 3.68-3.67 (m, 2H), 3.62 (dd, $J=8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (brd, $J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,148.3,145.2,137.6,137.0,136.8$, 134.0, 128.8, 128.7, 128.5, 128.3, 128.2, 119.5, 97.0, 80.9, 76.0, 74.5, 73.7, 72.0, 70.7, 70.0; FAB HRMS m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 510.2393$; Found: 510.2393.

6
Compound 6. Amorphous solid, $[\alpha]_{D}{ }^{28}-50.56\left(c 0.396, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.33$ (4:1, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{dd}, J=7.5,1.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.88(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.54(\mathrm{~m}, 3 \mathrm{H}), 4.47(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{dd}, J$ $=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{brd}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.3$, 155.0, 137.6, 136.7, 136.5, 134.9, 128.9, 128.8, 128.6, 128.5, 128.37, 128.3, 128.1, 122.9, 104.9, 80.6, 75.8, 74.4, 73.8, 72.5, 70.6, 70.0; FAB HRMS m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 511.2345$; Found: 511.2350.

Compound 7. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-44.06\left(c 0.413, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.37(1: 1$, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55$ (brs, 1 H), 8.39 (d, $J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01(\mathrm{dd}, J=9.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.07-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{dd}, J=7.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 4.77$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{brs}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 2 \mathrm{H})$, $3.64(\mathrm{dd}, J=8.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.6$, $149.8,149.6,137.8,137.1,137.0,133.8,133.0,129.1,128.7,128.6,128.4,128.3,128.2$, 128.0, 126.7, 119.5, 93.7, 81.1, 76.2, 74.6, 73.8, 71.9, 70.8, 70.1; FAB HRMS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 586.2706$; Found: 586.2712.

8
Compound 8. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-54.10\left(c 0.356, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.38$ (1:1, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{brd}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.23$ $(\mathrm{m}, 11 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{dd}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{brs}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=7.5,2.5 \mathrm{~Hz}$, 1 H), 2.58 (brs, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.7$, 144.7, 142.9, 137.7, 137.0, 136.9, 134.3, 132.1, 129.0, 128.8, 128.7, 128.6, 128.4, 128.3, 128.2, 128.0, 126.5, 119.9, $111.0,81.0,76.1,74.5,73.8,72.0,70.8,70.1$; FAB HRMS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 586.2706$; Found: 586.2712.

9
Compound 9. Amorphous solid, $[\alpha]_{D}{ }^{28}-61.72\left(c 0.366, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.42$ (4:1, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~m}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{brd}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dt}, J=8.0,1.5$
$\mathrm{Hz}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.14(\mathrm{ddd}, J=7.0 \mathrm{~Hz}, J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.99(\mathrm{~m}$, $3 \mathrm{H}), 6.95(\mathrm{dd}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{brs}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=7.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.66,150.4,149.6,145.2,144.7,137.7,137.0,136.7,134.5$, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 121.3, 121.1, 120.1, 111.2, 81.0, 76.0, 74.5, 73.8, 72.1, 70.8, 70.0; FAB HRMS m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 587.2658$; Found: 587.2662.

10
Compound 10. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-62.88\left(c 0.390, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.42(1: 1$, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=3.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 11 \mathrm{H}), 7.13(\mathrm{dd}$, $J=5.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{dd}, J=7.0,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{brs}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=$ $8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56 (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,144.0,142.3$, 137.7, 136.9, 136.8, 134.1, 133.6, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.0, 127.7, 123.6, 123.3, 120.1, 106.6, 81.0, 76.1, 74.6, 73.8, 72.1, 70.8, 70.1; FAB HRMS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 592.2270$; Found: 592.2275.

11
Compound 11. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-14.08\left(c 0.333, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.14(1: 1$, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{dd}, J$ $=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{brd}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H})$,
$4.18(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=9.5$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 150.0,148.4,145.3,137.8,137.0,136.6,134.0,128.8,128.7,128.6,128.5$, 128.4, 128.3, 128.2, 120.1, 97.0, 80.7, 76.7, 74.8, 73.7, 71.7, 71.0, 69.4; FAB HRMS m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 510.2393; Found: 510.2388.

12

Compound 12. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-15.90\left(c 0.423, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.43$ (1:1, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.23$ $(\mathrm{m}, 10 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76$ (dd, $J=8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=9.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=9.5,7.0$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,150.1,149.6,137.9,137.1,136.8,133.9$, $132.9,129.2,129.0,128.8,128.7,128.6,128.5,128.4,128.3,128.2,128.1,126.7,120.1$, $93.8,81.0,76.8,75.0,73.8,71.8,71.1,69.5$; FAB HRMS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 586.2706$; Found: 586.2704.

13
Compound 13. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-15.90\left(c 0.416, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.42(1: 1$, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.41$ $(\mathrm{s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-$ $7.23(\mathrm{~m}, 11 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.56(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J$ $=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dt}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=9.5$,
$6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,144.7,143.0,137.8,137.0,136.7$, 134.3, 132.0, 129.0, 128.8, 128.7, 128.6, 128.4, 128.3, 128.2, 128.1, 126.8, 126.5, 120.4, $111.0,80.8,76.8,74.9,73.8,71.8,71.1,69.5$; FAB HRMS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 586.2706$; Found: 586.2700.

14
Compound 14. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-15.63\left(c 0.446, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.72$ (4:1, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.66$ (brd, $J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{brd}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (dt, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{dd}$, $J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21(\mathrm{dt}, J=6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.63 (dd, $J=9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 151.6,150.8,149.7,145.3,144.9,137.9,137.0,136.8,136.7,134.7,128.8$, 128.7, 128.6, 128.4, 128.3, 128.2, 121.4, 121.3, 120.7, 111.3, 80.8, 76.8, 75.0, 73.8, 71.9, 71.1, 69.5; FAB HRMS m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 587.2658; Found: 587.2647.

15
Compound 15. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-15.64\left(c 0.380, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.42(1: 1$, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=3.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 11 \mathrm{H}), 7.13(\mathrm{dd}, J$ $=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{dd}, J=7.7,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ $(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dt}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=8.0 \mathrm{~Hz}$ and $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.54(\mathrm{dd}, J=9.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,144.0,142.4,137.8$, 137.0, 136.6, 134.2, 133.5, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 127.6, 123.7, 123.3, 120.6, 106.7, 80.7, 76.7, 74.9, 73.8, 71.8, 71.1, 69.4; FAB HRMS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 592.2270$; Found: 592.2266.

16

Compound 16. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-50.86\left(c 0.333, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.25(1: 1$, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{brd}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{brt}, \mathrm{J}=11.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.46(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{dd}, J=8.0$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5$, 155.7, 154.0, 137.6, 136.8, 136.7, 133.8, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.0, 121.7, 81.0, 75.7, 74.5, 73.8, 72.3, 70.7, 70.0, 14.1; FAB HRMS m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 557.2223$; Found: 557.2225.

17

Compound 17. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-42.82\left(c 0.403, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.37(4: 1$, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 10 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{dd}, J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.89$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.76-3.71 (m, 2H), 3.63 (dd, $J=8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.6,157.2,156.5,155.0,137.5,136.6,136.5,135.0,128.9,128.8$, 128.7, 128.6, 128.4, 128.3, 128.0, 125.1, 80.4, 75.7, 74.3, 73.8, 72.9, 70.5, 70.0, 53.5; FAB HRMS m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 569.2400$; Found: 569.2393.

18

Compound 18. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-13.39\left(c 0.393, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.36$ ($4: 1$, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.84$ (brd, $J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-$ $4.38(\mathrm{~m}, 3 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.66 (dd, $J=9.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (dd, $J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2,155.6,155.0,137.7,136.7,136.4,134.7,128.8$, 128.7, 128.6, 128.4, 128.3, 128.2 123.4, 80.5, 76.4, 74.8, 73.8, 72.2, 71.0, 69.3; FAB HRMS m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 511.2345$; Found: 511.2350.

19
Compound 19. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-20.39\left(c 0.366, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.26(1: 1$, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{brd}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=9.5$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6$, $155.7,154.6,137.7,136.8,136.5,133.4,128.8,128.7$, 128.6, 128.3, 128.2, 128.1, 122.3, 80.7, 76.3, 74.8, 73.8, 72.1, 71.0, 69.3, 14.1; FAB HRMS m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 557.2223 ;$ Found: 557.2224.

Compound 20. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-13.88\left(c 0.416, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.38$ (4:1, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.80(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.19(\mathrm{~m}, 10 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.70$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.43(\mathrm{~m}$, $3 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=8.5 \mathrm{~Hz}$ and $J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.5,157.2,155.0,137.6,136.5,136.2,134.8$, $128.7,128.6,128.5,128.2,128.1,125.5,80.3,76.2,74.8,73.8,72.5,70.8,69.2,53.4$; FAB HRMS m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 569.2400$; Found: 569.2405.

21
Compound 21. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-28.60\left(c 0.363, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.54(1: 1$, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ (t, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.47(\mathrm{~m}, 2 \mathrm{H})$, $4.45(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4 . .32(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=12.5,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=12.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.63 (dd, $J=11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55 (ddd, $J=10.0,4.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01,2.00,1.97$, $1.96(4 \mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,170.4,169.4,169.5,156.6,149.8$, $149.6,137.9,137.4,133.9,133.0,129.2,129.0,128.7$, 128.6, 128.3, 128.2, 128.1, 128.0, $127.9,127.6,119.8,99.6,93.7,81.9,77.8,77.1,75.0,73.7,72.9,72.1,71.8,71.7,69.3$, 68.4, 61.7, 20.9, 20.81, $20.80\left(4 \times \mathrm{OCOCH}_{3}\right) ;$ FAB HRMS m / z calcd for $\mathrm{C}_{51} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{13}$ $[\mathrm{M}+\mathrm{H}]^{+}: 916.3657$; Found: 916.3657.

22
Compound 22. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}+6.96\left(c 0.340, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.53(1: 1$, EtOAc:hexane, v/v); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{dd}, J=7.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H})$, $5.19(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.44-4.41(\mathrm{~m}, 3 \mathrm{H}), 4.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J$ $=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=12.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-$ $3.54(\mathrm{~m}, 3 \mathrm{H}), 2.01,2.00,1.95,1.94(4 \mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6$, $170.4,169.5,169.3,156.5,150.5,149.6,137.8,137.5,137.3,134.1,133.0,129.1,129.0$, 128.7, 128.6, 128.3, 128.2, 128.0, 127.9, 127.3, 126.6, 120.1, 100.4, 93.6, 81.0, 77.0, 76.3, 74.6, 73.8, 72.9, 72.1, 71.7, 70.0, 68.2, 61.6, 20.9, 20.84, $20.82\left(4 \times \mathrm{OCOCH}_{3}\right)$; FAB HRMS m / z calcd for $\mathrm{C}_{51} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{13}[\mathrm{M}+\mathrm{H}]^{+}: 916.3657$; Found: 916.3655.

23
Compound 23. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-76.28\left(c 0.400, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.40(1: 19$, $\left.\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=7.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 6.85$ $(\mathrm{s}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{brd}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ $(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=12.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (dd, $J=12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.87(\mathrm{~m}, 3 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 2 \mathrm{H})$, 2.09 (brs, 6 H), 2.05, $2.01(2 \mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,170.3,169.7$, $169.5,156.5,149.0,133.0,132.7,129.3,129.1,126.8,122.5,101.2,93.6,80.2,77.4,73.7$,
72.7, 72.4, 71.6, 68.5, 67.2, 63.4, 62.0, 20.9, 20.8, 20.7; FAB HRMS m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{13}[\mathrm{M}+\mathrm{H}]^{+}: 646.2248$; Found: 646.2242.

24
Compound 24. Amorphous solid, $[\alpha]_{\mathrm{D}}{ }^{28}-12.26\left(c 0.666, \mathrm{CHCl}_{3}\right)$; TLC: $R_{f}=0.40(1: 19$, $\left.\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{brd}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=9.5,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=8.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=12.5,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.85(\mathrm{~m}, 2 \mathrm{H})$, $3.76(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 2.07,2.05(2 \mathrm{~s}, 6 \mathrm{H}), 2.02(\mathrm{brs}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 170.9,170.3,170.0,169.5,156.5,150.0,133.1,132.7,129.3,129.0,126.7$, 123.0, 101.2, 93.5, 78.8, 75.2, 72.6, 72.4, 71.6, 69.1, 68.7, 63.0, 62.1, 20.9, 20.8, 20.7; FAB HRMS m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{13}[\mathrm{M}+\mathrm{H}]^{+}: 646.2248$; Found: 646.2245.

25
Compound 25. Amorphous solid, TLC: $R_{f}=0.52\left(1: 4, \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, \delta=2.54 \mathrm{ppm}\right) \delta 8.09(\mathrm{brs}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (brd, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.62(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 155.3,150.9,149.2,133.3,129.5,126.7,125.8,93.2,74.7,72.1,68.5,64.1$;
FAB HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 316.1297$; Found: 316.1293.

26
Compound 26. Amorphous solid, TLC: $R_{f}=0.40\left(1: 4, \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.81$ (brs, 1 H), 8.62 (brs, 1 H), $8.10(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}$) $\delta 147.5,144.5,124.0,96.0,74.1,70.1,69.5,63.7$; FAB HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 240.0984$; Found: 240.0976.

4. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all compounds:

6

		\%	\% \% \%
${ }^{\text {en }}$	\%	¢	\%

$$
\begin{aligned}
& 7
\end{aligned}
$$

8

9

11

12

13

14

$\stackrel{\circ}{\circ}$

\circ

18

品审熍

20

RSM_231_C
File: Carbon
pulse sequence: szput

22

$\stackrel{\overline{9}}{8}$

25

5. Crude NOE Spectra of $\mathbf{6}$:

6. Crude LCMS data of $\mathbf{6}, \mathbf{1 6} \mathbf{- 2 0}$ compounds:

LCMS data of crude sample of compound 6

LCMS data of crude sample of compound 18

LCMS data of crude sample of compound 19

