## Supporting Information

# Enantioselective Synthesis of Iridal, the Parent Molecule of the Iridal Triterpenoid Class 

Andrei Corbu, Maurizio Aquino, T. V. Pratap, Pascal Retailleau and Siméon Arseniyadis*

Institut de Chimie des Substances Naturelles, CNRS, F-91198 Gif-sur-Yvette (France)
simeon.arseniyadis@icsn.cnrs-gif.fr

Table of Contents:

## Experimental Procedures

| S 4 | General Experimental Section |
| :--- | :--- |
| S 4 | Preparation of TBS-protected aldol $\mathbf{1 4}$ |
| S 7 | The C6 epimerization |
| S 9 | Elaboration of the south part: the two carbon homologation and <br> formylolefination |
| S 13 | The Dauben-Michno rearrangement of the allylic alcohol $\mathbf{2 1}$ |
| S 18 | Synthesis of the alkyliodide $\mathbf{7 Z}$ |
| S 21 | Segment linking: Synthesis of iridal's core structure |
| S 24 | Route to the geometrical isomer of Iridal |

## NMR Spectra

| S 31-S 33 | ${ }^{1}$ H-NMR ( 500 MHz ), ${ }^{13} \mathrm{C}$-NMR ( 125 MHz ), Dept-135 NMR (125 |
| :---: | :---: |
|  | $\mathrm{MHz})$ of benzyl ether |
| S 34-S 36 | ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 500 MHz ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of compund $\mathbf{1 3}$ |
| S 37-S 43 | ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz), Dept-135-NMR (125 |
|  | MHz ), COSY ( 500 MHz ), HMQC ( 500 MHz ), HMBC ( 500 MHz ), |
|  | NOESY ( 500 MHz ) of compound 14 |
| S 44-S 46 | ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 500 MHz ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz), Dept-135-NMR (125 |
|  | MHz ) of compound $\mathbf{1 5}$ |
| S 47-S 49 | ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz), Dept-135-NMR (125 |
|  | MHz ) of aldol 16 |
| S 50-S 52 | ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of aldol 17 |
| S 54-S 61 | ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}),{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$, Dept-135-NMR (125 |
|  | MHz ), COSY ( 500 MHz ), HMQC ( 500 MHz ), HMBC ( 500 MHz ), |
|  | NOESY ( 500 MHz ) of compound $\mathbf{1 8}$ |
| S 62-S 65 | ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz), Dept-135-NMR (125 |
|  | MHz ) of compound 19 |
| S 66-S 69 | ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz), Dept-135-NMR (125 |
|  | MHz ) of aldehyde $\mathbf{2 0}$ |
| S 70-S 72 | ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 500 MHz ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of compound 21 |
| S 74-S 76 | ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of aldehyde $\mathbf{2 2 E Z}$ |
| S 77-S 83 | ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ), COSY ( 500 MHz ), HMQC ( 500 MHz ), HMBC ( 500 MHz ), |
|  | NOESY ( 500 MHz ) of allyic alcohol resulting from 22EZ |
| S 84-S 86 | ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of silyl ether $\mathbf{2 3 E Z}$ |
| S 87-S 89 | ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 500 MHz ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of saturated ester resulting from $22 E Z$ |
| S 90-S 92 | ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz), Dept-135-NMR (125 |


|  | MHz ) of the unprotected $\mathbf{2 4 Z}$ |
| :---: | :---: |
| S 93-S 95 | ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of compound $\mathbf{2 4 Z}$ |
| S 96-S 98 | ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 500 MHz ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of 3-OMOM, 13-unprotected alcohol |
| S 99-S 101 | ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 500 MHz ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of iodide 7 Z |
| S 103-S 109 | ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | $\mathrm{MHz})$, COSY ( 500 MHz ), HMQC ( 500 MHz ), HMBC ( 500 MHz ), |
|  | NOESY ( 500 MHz ) of the coupled product $\mathbf{2 5 Z}$ |
| S 110-S 112 | ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 500 MHz ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of the triol precursor to Iridal |
| S 113-S 119 | ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (75 |
|  | $\mathrm{MHz})$, COSY ( 500 MHz ), HMQC ( 500 MHz ), HMBC ( 500 MHz ), |
|  | NOESY ( 500 MHz ) of Iridal 1 |
| S 121-S 127 | ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | $\mathrm{MHz}), \mathrm{COSY}(500 \mathrm{MHz})$, HMQC ( 500 MHz ), HMBC ( 500 MHz ), |
|  | NOESY ( 500 MHz ) of the ester $23 E E$ |
| S 128-S 130 | ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 500 MHz ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of the saturated ester resulting from $23 E E$ |
| S 131-S 133 | ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of the 1-unprotected compound $24 E$ |
| S 134-S 136 | ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ ), ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$ ), Dept-135-NMR (125 |
|  | MHz ) of compound $24 E$ |
| S 137-S 139 | ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ) of the 13-unprotected alcohol $24 E$ |
| S 140-S 142 | ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 500 MHz ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ), of compound $\mathbf{2 5}$ E |
| S 144-S 150 | ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ ), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( 125 MHz ), Dept-135-NMR (125 |
|  | MHz ), COSY ( 500 MHz ), HMQC ( 500 MHz ), HMBC ( 500 MHz ) |
|  | NOESY ( 500 MHz ) of compound 26 |
| S 151-S 152 | ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}),{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz})$ of Iridal (E geometrical isomer) |
| S 153 | ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$ ) of Iridal (spent 8 days in the NMR tube, $\mathrm{CDCl}_{3}$ ) |

## Experimental Section

General Experimental Section: "Usual work up" means washing of the organic layer with brine, drying over anhydrous $\mathrm{MgSO}_{4}$, and evaporating in vacuo with a rotary evaporator at aspirator pressure. Melting points (uncorrected) were determined with the aid of a Büchi B540 apparatus. IR spectra were recorded on a Perkin-Elmer Spectrum BX instrument with an FT-IR system. Absorptions are given in $\mathrm{cm}^{-1}$. Optical Rotations were measured on a JASCO810 polarimeter using a cell of 1 dm-path length. NMR spectra were run in $\mathrm{CDCl}_{3}$ unless otherwise noted. Experimental evidence favoring the structures investigated came from a comprehensive range of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (500/125 and 300/75 MHz respectively, 1D and 2 D experiments). ${ }^{1} \mathrm{H}$ chemical shifts are expressed in ppm downfield from TMS using the residual nondeuterated solvent as internal standard $\left(\mathrm{CDCl}_{3}{ }^{1} \mathrm{H}, 7.26 \mathrm{ppm}\right) .{ }^{13} \mathrm{C}$ chemical shifts are reported relative to $\mathrm{CDCl}_{3}$ triplet centered at 77.0 ppm . Mass spectra acquired in the positive ion mode under electron spray ionization (ES ${ }^{+}$) using a mobile phase of methanol, will be abbreviated as ESIMS (MeOH). HR will be added for the high resolution mass measurements (HRESIMS).

## Preparation of TBS-protected aldol 14



## Benzyl protection

Sodium hydride ( $60 \% \mathrm{w} / \mathrm{w}$ in mineral oil; $6.0 \mathrm{~g}, 115.0 \mathrm{mmol}$ ) was washed twice with dry hexane under argon atmosphere and the remainder of the hexane removed via syringe and the flask vacuumed then filled with argon. $N, N$-dimethylformamide ( 80 mL ) and the known ${ }^{1}$ isopropylidene alcohol $12(7.0 \mathrm{~g}, 23.1 \mathrm{mmol})$ were added. After stirring for 0.5 h the reaction mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{BnBr}(11.9 \mathrm{~g}, 69.3 \mathrm{mmol})$ and $N, N$-dimethylformamide ( 20 mL ) were added and the mixture was stirred for 20 h . Water and ether were added, the two phases separated and the organic phase was worked up as usual. Chromatography of the residue (hexane-EtOAc, 3:1) gave the corresponding benzyl ether ( $8.5 \mathrm{~g}, 94 \%$ ).

[^0]
## Acetonide deprotection

A mixture of acetic acid and water ( $120 \mathrm{~mL}, 3: 1$ ) was added to benzyl ether thus obtained $(8.5 \mathrm{~g}, 21.7 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $4{ }^{\circ} \mathrm{C}$ for 14 h . The media was diluted with EtOAc, washed with a saturated solution of $\mathrm{NaHCO}_{3}$ (until $\mathrm{pH}=7$ ) and brine. The organic layer was dried over $\mathrm{MgSO}_{4}$, and the solvent was evaporated under reduced pressure. A flash chromatography (heptane-EtOAc, 1:1) gave 7.6 g ( $99 \%$ ) of diol 13.


Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{5}$
Exact Mass: 392,26
Colorless oil; $[\alpha]_{D}^{20}=61$ (c 1.6, $\mathrm{CHCl}_{3}$ ); IR (film): $v=3547,1454,1365,1198,1115,1094$, 1027, 962, 917, 735, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.00(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$, $1.40(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{bt}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{ddd}, J=6.1$, $9.1,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.76$ (ddd, $J=5.5,8.9,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.6$ (dt, $J=6.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.80(\mathrm{dt}, J=5.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{bd}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J$ $=4.1,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dt}, J=2.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=16.8,19.0,20.5,26.5,26.7,29.7,32.9,38.4,42.2,55.3,61.2,67.2$, 68.9, 72.8, 80.7, 90.4, 98.2, 127.2, 127.6 (2C), 128.2 (2C), 138.9; ESIMS (MeOH): 415.2 $\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Na} m / z 415.2460$, found 415.2451; Analysis calcd. for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{5}$ (392.26): C 70.38, H 9.24; found C 70.59, H 9.26.


Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}$
Exact Mass: 352,22
White crystals; $\mathrm{Mp}: 98.2-99.1^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=31\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (film): $v=3354,1456,1373$, 1142, 1103, 1030, 938, $916 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.09(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$, $1.55(\mathrm{ttd}, J=3.4,6.6,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{ddd}, J=3.9$, $9.0,14.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.91 ( td, $J=3.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.31 (bs, 1H), 3.32 (s, 3H), 3.56-3.62 (m, $2 \mathrm{H}), 3.77(\mathrm{dd}, J=2.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=6.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{td}, J=3.8,6.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.47$ and 4.50 (ABquartet, $J=11.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.62 and 4.66 (ABquartet, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.27-7.33 (m, 5H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=19.0,20.2,28.3$ (2C), 33.2, 43.0, 48.6, $55.2,61.8,68.1,69.2,73.2,79.9,90.3,127.6,127.7$ (2C), 128.3 (2C), 137.8; ESIMS $(\mathrm{MeOH}): 375.2\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na} m / z$ 375.2147, found 375.2153.


Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}$
Exact Mass: 352.2250
Elemental Analysis: $\mathrm{C}, 68.15 ; \mathrm{H}, 9.15 ; \mathrm{O}, 22.70$


Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}$
Exact Mass: 464.2958
Elemental Analysis: C, 67.20; H, 9.54; O, 17.21; Si, 6.04

## Selective primary hydroxyl group protection and Dess-Martin oxidation

A solution of diol 13 ( $5.7 \mathrm{~g}, 14.3 \mathrm{mmol}, 1.0$ equiv), DMAP ( $6.2 \mathrm{~g}, 45.8 \mathrm{mmol}, 3.2$ equiv), and tert-butyldimethylsilyl chloride ( 3.9 g , 22.9 mmol , 1.6 equiv), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL}$ ), was stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature for 1 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 1 N HCl , then saturated aq. $\mathrm{NaHCO}_{3}$ and worked up as usual to give the corresponding silyl ether that was filtered on silica and taken as such to the next step. To a solution of the silyl ether thus obtained ( $7.5 \mathrm{~g}, 14.3 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and pyridine $(12 \mathrm{~mL})$ were added $19.0 \mathrm{~g}(45.0 \mathrm{mmol})$ of Dess-Martin periodinane and stirring continued at room temperature for 4 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, quenched with a saturated aqueous solution of sodium bicarbonate and washed with brine. Usual work up and chromatography (heptane-EtOAc, 3:1) afforded 5.3 g ( $80 \%$ over two steps) of the TBSprotected aldol 14:


Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}$
Exact Mass: 464,30
Colorless oil; $[\alpha]_{D}^{20}=3\left(c 0.8, \mathrm{CHCl}_{3}\right)$; IR (film): $v=1714,1462,1253,1154,1092,1020$, 919, 836, 777, 735, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.04(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.9$ (ddd, $J=5.6,13.1,14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=7.2,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=5.5,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=7.3$, $12.8,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dd}, J=3.9,10.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.13(\mathrm{dd}, J=6.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{bs}, 2 \mathrm{H}), 4.79$ and 4.84 (ABquartet, $J=7.6 \mathrm{~Hz}$, 2H), 7.27-7.32 (m, 5H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.4,-5.3,17.8,18.2,19.4,25.9$
(3C), $32.8,33.5,38.2,48.5,55.8,57.9,58.6,67.5,73.0,79.8,90.9,127.5$ (3C), 128.3 (2C), 138.2, 211.2; ESIMS (MeOH): $487.3\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{SiNa}$ $m / z$ 487.2856, found 487.2874; Analysis calcd. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}$ (464.7): C 67.2, H 9.54; found C 66.91, H 9.77.

## The C6 epimerization



To a magnetically stirred solution ( 15 mL of THF) of TBS-protected aldol $\mathbf{1 4}(3.0 \mathrm{~g}$, 6.5 mmol ) was added tetrabutylammonium fluoride (TBAF, $7.7 \mathrm{mmol}, 7.7 \mathrm{~mL}, 1 \mathrm{M}$ in THF). The reaction was stirred at $0^{\circ} \mathrm{C}$ for 2 h before an additional 0.6 equiv of tetrabutylammonium fluoride ( $3.9 \mathrm{mmol}, 3.9 \mathrm{~mL}$ ) were added. After another 2 h , an extra 0.6 equiv of TBAF ( 3.9 $\mathrm{mmol}, 3.9 \mathrm{~mL}$ ) were added, and the reaction was stopped following a 2 h stirring (TLC monitoring) by dilution with EtOAc, washed with brine and worked up as usual. Silica gel column chromatography (heptane-EtOAc, $4: 1$ to $1: 2$ ) afforded the enone 15 ( $252 \mathrm{mg}, 12 \%$ ), the $\mathrm{C} 6(S)$ aldol $16(1.17 \mathrm{~g}, 52 \%)$ along with the desired $\mathrm{C} 6(R)$ aldol $17(570 \mathrm{mg}, 25 \%)$.

To a solution of $\mathrm{C} 6(S)$ aldol $16(300 \mathrm{mg}, 0.86 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 35 $\mathrm{mg}, 0.26 \mathrm{mmol}$ ) and the reaction mixture was stirred for 1 h at $25^{\circ} \mathrm{C}$, then diluted with brine and the methanol was evaporated in vacuo. The aqueous layer was extracted five times with ethyl acetate. The organic layer was dried over $\mathrm{MgSO}_{4}$ and evaporated, yielding 280 mg of crude product that was subjected to flash-chromatography (heptane-EtOAc, 3:1 to 1:2) yielding the enone 15 ( $48 \mathrm{mg}, 16 \%$ ), the C6 $(S)$ aldol 16 ( $130 \mathrm{mg}, 43 \%$ ) and the desired $\mathrm{C} 6(R)$ aldol 17 ( $90 \mathrm{mg}, 30 \%$ ).


Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}$
Exact Mass: 332,20
Enone 15: Yellow oil; $[\alpha]_{D}^{20}=-3\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (film): $v=1692,1453,1380,1148$, 1100, 1029, 915, 737, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.18(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$, $1.60-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{ddd}, J=6.2,9.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{ddd}, J=$ $3.8,6.2,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{ddd}, J=8.4,10.4,18.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (s, 3H), 3.36-3.48 (m, 2H), 4.38 and 4.45 (ABquartet, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.69 and 4.75 (ABquartet, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 5.14 $(\mathrm{s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=17.2,19.7,29.5$, $34.9,35.6,47.5,55.7,66.8,73.2,79.5,90.8,118.9,127.6,127.7$ (2C), 128.4 (2C), 138.1, 151.2, 202.9; ESIMS (MeOH): 355.2 ([M+Na] ${ }^{+}$100); HRESIMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}$ $m / z 355.1885$, found 355.1878 .


Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5}$
Exact Mass: 350,21
Aldol 16: Colorless oil; $[\alpha]_{D}^{20}=30\left(c 1.0, \mathrm{CHCl}_{3}\right.$ ); IR (film): $v=3445,1698,1455,1152$, 1094, 1028, 917, 736, $668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right): \delta=1.03(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$, $1.47-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.65(\mathrm{ddd}, J=1.3,7.4,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=2.0,5.4,14.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.42 (ddd, $J=7.4,13.3,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{bs}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.38(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{bt}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.39(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 125 \mathrm{MHz}\right): \delta=17.3,19.2,31.8,33.9$, $38.0,47.7,55.6,57.6,59.2,67.7,73.0,79.5,90.9,127.7$ (2C), 128.3, 128.5 (2C), 139.0, 213.7; ESIMS (MeOH): 373.2 ( $[M+\mathrm{Na}]^{+}, 100$ ); HRESIMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na} \mathrm{m} / \mathrm{z}$ 373.1991, found 373.2008; Analysis calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5}$ (350.4): C 68.54 , H 8.63 ; found C 68.26, H 8.52.


Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5}$
Exact Mass: 350,21
Aldol 17: Colorless oil; $[\alpha]_{D}^{20}=1$ (c 1.0, $\mathrm{CHCl}_{3}$ ); IR (film): $v=3433,1702,1453,1150$, 1098, 1027, 917, 738, $698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.99(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$, 1.70 (ddd, $J=5.3,9.1,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87$ (ddd, $J=6.2,9.4,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-2.06(\mathrm{~m}, 2 \mathrm{H})$, 2.31 (td, $J=7.7,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.54(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.72$ (dd, $J$ $=3.6,11.5 \mathrm{~Hz}, 1 \mathrm{H}) 4.01(\mathrm{dd}, J=8.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.69$ and 4.77 (ABquartet, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=16.5,18.9,32.3,36.9$, 37.1, 46.3, 55.9, 59.2, 60.4, 67.2, 73.1, 79.1, 90.7, 127.6, 127.7 (2C), 128.4 (2C), 138.2, 213.6; ESIMS (MeOH): $373.2\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na} \mathrm{m} / \mathrm{z}$ 373.1991, found 373.1987; Analysis calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5}$ (350.4): C 68.54, H 8.63; found C 68.26, H 8.52.

Elaboration of the south part: the two carbon homologation and formylolefination


To a flame dried flask purged with Ar was added 2-bromopropene $(1.8 \mathrm{~mL}, 16.30 \mathrm{mmol})$ dissolved in THF ( 20 mL ). The flask was cooled to $-78^{\circ} \mathrm{C}$ and $t$ - $\mathrm{BuLi}(19.1 \mathrm{~mL}, 32.60 \mathrm{mmol}$, 1.7 M in pentane) was added slowly. The mixture was allowed to stir for 20 min . Aldol $\mathbf{1 7}$ ( $570 \mathrm{mg}, 1.63 \mathrm{mmol}$ ) in THF ( 10 mL ) (dried over 4 $\AA$ molecular sieves) was slowly added to the (2-propenyl)lithium by syringe. The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78^{\circ} \mathrm{C}$ after 20 min . The mixture was allowed to warm to room temperature. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried over $\mathrm{MgSO}_{4}$, filtered and concentrated under reduced pressure. Flash chromatography (heptaneEtOAc, 1:2) gave 160 mg of the diol $\mathbf{1 9}$ (25\%), 340 mg of the starting aldol 17 ( $60 \%$ ) and 43 mg of enone 15 (7\%).


Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{5}$
Exact Mass: 392,26
Carbinol 18: Colorless oil; $[\alpha]_{D}^{20}=-42\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (film): $v=3390,1452,1375$, 1143, 1090, 1033, 902, 736, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.27(\mathrm{~s}, 3 \mathrm{H}), 1.34-$ $1.37(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{ddd}, J=3.2,4.4,12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.73-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.86(\mathrm{ddd}, J=4.9,9.7,13.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.19 (ddd, $J=4.0,12.9,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{bs}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{bs}, 1 \mathrm{H}), 3.67$ (ddd, $J$ $=5.0,9.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dt}, J=5.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=3.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (bd, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ and 4.52 (ABquartet, $J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.68$ and 4.71 (ABquartet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right):$ $\delta=17.1,19.6,19.7,29.2,34.2,38.1,43.7,47.6,55.4,61.2,68.2,72.9,78.4,80.0,90.2$, 111.0, 127.5, 127.6 (2C), 128.3(2C), 138.6, 151.5; ESIMS (MeOH): 415.2 ( $[M+\mathrm{Na}]^{+}, 100$ ); HRESIMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Na} m / z 415.2460$, found 415.2442; Analysis calcd. for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{5}$ (392.4): C 70.38, H 9.24; found C 69.96, H 9.12.

## Preparation of the X-ray sample 19



To a stirred solution of carbinol $\mathbf{1 8}(29 \mathrm{mg}, 0.074 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $p$-nitro benzoic acid ( $32 \mathrm{mg}, 0.192 \mathrm{mmol}$ ) and the mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{DCC}(39 \mathrm{mg}$, 0.192 mmol ) was added. The reaction mixture was then left to stir at $25^{\circ} \mathrm{C}$ overnight. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered on a celite pad. The filtrate was washed with $5 \% \mathrm{AcOH}$ solution, worked up as usual and the crude purified by chromatography (heptane-EtOAc, 3:1) yielding the p-nitro benzoate $19(40 \mathrm{mg}, 99 \%)$. The white solid was crystallized from hexane-chloroform (10:1) at $25^{\circ} \mathrm{C}$.


Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{NO}_{8}$
Exact Mass: 541,27
p-nitrobenzoyl ester 19: White crystals; Mp: 104-106 ${ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=-10\left(c 0.8, \mathrm{CHCl}_{3}\right)$; IR (film): $v=1722,1527,1351,1280,1109,1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.33$ (s, 3H), $1.40(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{dt}, J=3.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.90-$ $1.95(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{dd}, J=3.8,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.2(\mathrm{ddd}, J=4.1,12.9$, $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dt}, J=5.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dt}, J=6.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ $(\mathrm{dd}, J=3.5,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ and 4.51 (ABquartet, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.70$ and 4.72 (ABquartet, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.33(\mathrm{~m}$, $5 \mathrm{H}), 8.14(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=$ $16.0,19.8,19.9,29.0,34.6,38.5,43.6,46.6,55.5,64.6,67.8,72.8,79.8,90.3,111.0,123.5$ (2C), 127.5 (2C), 128.3 (2C), 130.5 (2C), 135.7, 138.6, 150.4, 150.5, 164.5; ESIMS (MeOH): $564.2\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{NO}_{8} \mathrm{Na} m / z 564.2573$, found 564.2561.

## X-Ray Structure Analysis of 19

The following crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 680572.

Stick-type crystal with dimensions of $0.40 \times 0.25 \times 0.15 \mathrm{~mm}$ was used for data collection on a Nonius Kappa-CCD diffractometer, $\lambda\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)=0.7107 \AA$, at 293(2)K. Empirical formula $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N} \mathrm{O}_{8}, \mathrm{M}=541.62$. Orthorhombic system, space group $\mathrm{P} 2_{1} 2_{1} 2_{1}, \mathrm{Z}=4, \mathrm{a}=7.302$ (2), $\mathrm{b}=11.179$ (3), $\mathrm{c}=35.809$ (6) $\AA, \mathrm{V}=2923.1$ (12) $\AA^{3}, \rho_{\text {calc }}=1.231 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=1160$, $\mu=0.089 \mathrm{~mm}^{-1}$. A total of 7781 intensity data was integrated using HKL2000 package up to $\theta$ $=18.9^{\circ}$, reduced to 1915 unique reflections (Friedel pairs averaged). The structure was solved by direct methods using SHELXS-97 and refined by full-matrix least-squares on $F^{2}$ (SHELXL-97), using $\mathrm{w}=1 /\left[2 \sigma\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0548 \mathrm{P})^{2}+0.05929 \mathrm{P}\right]$, where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$. All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were positioned geometrically and treated as riding on their parent atoms with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}$ (parent atom) (or 1.5 for methyl group and hydroxyl group). Final $\mathrm{R}_{1}=0.041$, $\mathrm{wR}_{2}=0.094$ for 357 parameters versus 1503 reflections with $I>2 \sigma(I)$ and $0.41<\theta<19.9^{\circ}$ (corresponding R values based on
all (1912) reflections are 0.059 and 0.106 , respectively). Goodness of fit $=1.027$. Largest difference peak and hole are 0.218 and -0.159 .

## Swern Oxidation

To a solution of DMSO ( $1.1 \mathrm{ml}, 15.0 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ under argon was added $(\mathrm{COCl})_{2}\left(3.7 \mathrm{~mL}, 7.4 \mathrm{mmol}, 2 \mathrm{M}\right.$ solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and the reaction mixture was stirred for half an hour before adding the solution of $\mathbf{1 8}(980 \mathrm{mg}, 2.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for one hour and was quenched by the addition of $\mathrm{Et}_{3} \mathrm{~N}(3.3 \mathrm{~mL}$, 25.0 mmol ) at the same temperature. After allowing the reaction mixture to attain the room temperature, it was diluted by adding $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 1 N HCl followed by saturated aqueous solution of $\mathrm{NaHCO}_{3}$ and worked up as usual. The crude was purified by chromatography (heptane-EtOAc, 3:1) affording 965 mg of the expected aldehyde 20 ( $99 \%$ ).


Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5}$
Exact Mass: 390,24
Aldehyde 20: Colorless oil; $[\alpha]_{D}^{20}=-32\left(c 1.0, \mathrm{CHCl}_{3}\right.$ ); IR (film): $v=1712,1453,1377$, 1110, 1034, $915 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.33(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.54$ $(\mathrm{m}, 1 \mathrm{H}), 1.61-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{dt}, J=$ $4.0,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{ddd}, J=4.8,9.3,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{dt}, J=5.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ and 4.49 (ABquartet, $J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.69$ and 4.72 (ABquartet, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 5 \mathrm{H}), 9.96(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=16.9,19.5,19.7,29.3,34.2,38.4,44.4,55.5,58.9$, $67.3,73.0,76.0,79.3,90.4,111.4,127.6,127.7$ (2C), 128.4 (2C), 138.4, 150.3, 207.3; ESIMS $(\mathrm{MeOH}): 413.2\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na} m / z 413.2304$, found 413.2296.

## The two-carbon homologation

To a stirred solution of the aldehyde $\mathbf{2 0}(600 \mathrm{mg}, 1.5 \mathrm{mmol})$ in ethanol $(35 \mathrm{~mL})$ was added at $0{ }^{\circ} \mathrm{C}$ (carbethoxymethylene)triphenylphosphorane $(1.33 \mathrm{~g}, 3.8 \mathrm{mmol})$ and the reaction was stirred for 14 h at $25^{\circ} \mathrm{C}$. The suspension was evaporated to dryness and the residue directly passed to chromatography (heptane-EtOAc, 3:1) yielding 700 mg of the conjugated ester 21 (99\%):


Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{6}$
Exact Mass: 460,28
Colorless oil; $[\alpha]_{D}^{20}=-75$ (c 1.4, $\mathrm{CHCl}_{3}$ ); IR (film): $v=1714,1644,1452,1371,1263,1033$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$, $1.40-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{ddd}, J=4.3,11.1,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, 1.88 (dt, $J=4.6,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.23(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.53$ (ddd, $J=4.3,9.6,11.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72$ (ddd, $J=5.9,9.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.44$ and 4.49 (ABquartet, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.65$ and 4.72 (ABquartet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 5.71$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=10.6,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 125 MHz ): $\delta=14.2,15.8,19.5,29.2,29.7,34.4,39.3,43.4,52.4,55.5,60.2,67.7,72.9,79.5$, 90.2, 111.0, 124.8, 127.4, 127.6, 127.7 (2C), 128.3 (2C), 138.7, 145.5, 149.9, 165.9; ESIMS $(\mathrm{MeOH}): 483.2\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{Na} \mathrm{m/z} 483.2723$, found 483.2724; Analysis calcd. for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{6}$ (460.3): C 70.40, H 8.75; found C 69.64, H 8.82.

The Dauben-Michno-Babler rearrangement of the allylic alcohol 21


21
Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{6}$
Exact Mass: 460,28
Elemental Analysis: C, 70.41 ; H, 8.75; O, 20.84


22EZ
Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{6}$
Exact Mass: 458,27
Elemental Analysis: C, 70.71; H, 8.35; O, 20.93

To a stirring solution of $\mathbf{2 1}(500 \mathrm{mg}, 1.08 \mathrm{mmol})$, in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, were added 400 mg of MS $4 \AA$ and PCC ( $704 \mathrm{mg}, 3.26 \mathrm{mmol}$ ). The reaction mixture was stirred at room temperature for $24 \mathrm{~h}, \mathrm{Et}_{2} \mathrm{O}$ was added and the supernatant was decanted. The operation was repeated five times and the combined organic phases were washed with $\mathrm{NaOH}(5 \%), \mathrm{HCl} 1 \mathrm{~N}$, $\mathrm{NaHCO}_{3}$ solution and worked up as usual to give 420 mg of an inseparable (6.4:1) mixture of $\mathbf{2 2 E Z}-22 E \boldsymbol{E}$ and 21. The crude was passed directly to the next step, a Luche reduction, allowing for chromatographic separation of the geometrical isomers. $22 E Z$ was prepared by re-oxidation only for characterization purposes.


## Luche reduction

$\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(440 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added to a solution of 22EZ-22EE ( 420 mg ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6 \mathrm{~mL})$ and $\mathrm{EtOH}(6 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After $5 \mathrm{~min}, \mathrm{NaBH}_{4}(152 \mathrm{mg}, 4.0 \mathrm{mmol})$ was added, the mixture was stirred for 15 min at $-25^{\circ} \mathrm{C}$ and then quenched by careful addition of brine followed by dilution with $\mathrm{Et}_{2} \mathrm{O}$. After being allowed to warm to room temperature, the organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic fractions were worked up as usual to afford after chromatography (heptaneEtOAc, $3: 1$ to $1: 1$ ) the allylic tertiary alcohol $21(66 \mathrm{mg}, 13 \%$ over two steps), the primary allylic alcohol $E Z$ ( $200 \mathrm{mg}, 40 \%$ over 2 steps) along with its geometrical isomer $E E(34 \mathrm{mg}$, $7 \%$ over 2 steps).


Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{6}$
Exact Mass: 460,28
Colorless oil; $[\alpha]_{D}^{20}=103$ (c 1.0, $\mathrm{CHCl}_{3}$ ); IR (film): $\mathbf{v}=1713,1637,1368,1273,1153,1104$, 1028, 918, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.02(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.37 (td, $J=5.2,14.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.49 (ddd, $J=5.1,13.9,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70$ (ddd, $J=2.3,4.4,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{ddd}, J=6.2,8.3,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=2.5$, $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (bd, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.36 (s, 3H), 3.54-3.56 (m, 2H), 3.59 (d, $J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.47$ and 4.50 (ABquartet, $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.63 and 4.68 (ABquartet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 5.48 (dd, $J=1.7$, $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{dd}, J=6.7,15.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta=14.3,17.1,17.4,19.9,21.8,31.3,34.0,45.2,48.7,56.0,59.9,62.7,67.6,73.6$,
$79.8,90.2,117.6,128.1,128.4$ (2C), 128.5 (2C), 131.4, 132.7, 137.2, 152.2, 167.4; ESIMS $(\mathrm{MeOH}): 483.2\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{Na} m / z 483.2723$, found 483.2708.


Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}$
Exact Mass: 574,37
Silylether $\mathbf{2 3 E Z}$ was obtained after chromatography (heptane-EtOAc, 8:1) in $93 \%$ yield (470 $\mathrm{mg}, 0.82 \mathrm{mmol}$ ) under standard conditions (TBSCl-DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) as a colorless oil; $[\alpha]_{D}^{20}$ $=90\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (film): $v=1716,1252,1153,1030,836,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta=0.00(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.25$ (m, 2H), 1.45-1.52 (m, 1H), $1.56(\mathrm{dd}, J=4.8,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$, 1.79 (ddd, $J=7.1,10.1,153.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{tt}, J=3.4,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=4.5,14.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.21$ (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.45$ (s, 2H), 3.47-3.50 (m, 2H), 4.00 (bs, 2H), $4.13(\mathrm{dq}, J=1.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 4.62$ and 4.67 (ABquartet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.50$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.39(\mathrm{dd}, J=6.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta=-5.4,14.3,15.315 .7,18.2,18.3,19.9,21.9,25.9,31.3,35.2,44.7,48.3,56.0$, $59.8,62.7,67.3,73.2,79.9,90.2,118.0,127.6$ (3C), 128.4 (2C), 130.5, 130.6, 138.3, 151.9, 167.4; ESIMS (MeOH): 597.3 ( $[M+\mathrm{Na}]^{+}, 100$ ); HRESIMS: calcd. for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{SiNa} \mathrm{m} / \mathrm{z}$ 597.3587, found 597.3610; Analysis calcd. for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}$ (574.9): C 68.95, H 9.47; found C 68.87, H 9.52.

## Geometrically pure $22 E Z$

Following Luche reduction, the chromatographically separated $E Z$ allylic alcohol ( 10 mg , 0.116 mmol ) was re-oxidized with Dess-Martin periodinane ( $150 \mathrm{mg}, 0.348 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ and pyridine ( 0.1 mL ) proceeding as above, to afford after silica gel column chromatography (heptane-EtOAc, 2:1) 8 mg (80\%) of pure 22EZ.


Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{6}$
Exact Mass: 458,27
22EZ: Colorless oil; $[\alpha]_{D}^{20}=100$ (c 1.0, $\mathrm{CHCl}_{3}$ ); IR (film): $\boldsymbol{v}=1714,1665,1425,1380$, 1263, 1191, 1105, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.12(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H})$, $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{ddd}, J=5.3,6.2,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.78$ $(\mathrm{m}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{ddd}, J=2.6,5.1,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dt}, J=5.3,14.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.57(\mathrm{bd}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=6.2,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.14$ and 4.18 (ABquartet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.69$ and 4.73 (ABquartet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.47(\mathrm{dd}, J=6.6,15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $9.92(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=11.0,14.3,18.0,19.6,24.3,31.6,35.0,45.9$, $47.0,56.3,60.1,66.6,73.4,79.7,90.4,119.1,127.8,127.9$ (2C), 128.5 (2C), 133.7, 137.8, 150.7, 157.3, 166.8, 190.4; ESIMS (MeOH): 481.2 ( $[M+\mathrm{Na}]^{+}, 100$ ); HRESIMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Na} \mathrm{m} / \mathrm{z} 481.2566$, found 481.2562.

Selective reduction of the conjugated ester $23 E Z$ and further reduction of the saturated ester thus obtained


Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}$ Exact Mass: 574,37


Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Si}$ Exact Mass: 534,3741

Elemental Analysis: C, 68.95; H, 9.47; O, 16.70; Si, 4.89 Elemental Analysis: C, 69.62; H, 10.18; O, 14.96; Si, 5.25
In a 2-neck flask containing magnesium turnings ( $930 \mathrm{mg}, 38.70 \mathrm{mmol}, 60.0$ equiv) (activated, pre-dried in the oven for 6 h ) was added dry, freshly distilled methanol ( 16 mL ). To the mixture was then added iodine ( $49 \mathrm{mg}, 0.19 \mathrm{mmol}, 0.3$ equiv) and the brown colored mixture was stirred at room temperature for 30 minutes as the color disappears and the solution becomes white. To the heterogeneous mixture was added the solution of $\mathbf{2 3 E Z}$ ( 370 $\mathrm{mg}, 0.64 \mathrm{mmol}, 1.0$ equiv) in MeOH . The reaction mixture was then heated to $60^{\circ} \mathrm{C}$ for two hours. The methanol was removed from the reaction mixture and the residue was neutralized with 1 N HCl and the product was then extracted with ether. The organic layer was washed
with a saturated aqueous solution of $\mathrm{NaHCO}_{3}$, worked up as usual and the crude was purified by column chromatography (heptane-EtOAc, 8:1) affording the corresponding saturated ester in $93 \%$ yield ( 335 mg ) as a colorless oil.


Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}$
Exact Mass: 562,37
Saturated ester: $[\alpha]_{D}^{20}=37$ (c 1.0, $\mathrm{CHCl}_{3}$ ); IR (film): $v=1736,1453,1364,1252,1073$, $1030,836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=-0.01(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H})$, $1.03(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{dd}, J=4.6,14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.05(\mathrm{~m}$, $1 \mathrm{H}), 2.07-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{ddd}, J=2.9,4.2,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{bd}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.87$ and 4.02 (ABquartet, $J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.64$ and 4.67 (ABquartet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-2.29(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.3,-5.4,15.9,17.9,18.4,20.2,21.4,25.2,25.9$ (3C), $32.3,33.5,36.1,44.1,45.2,51.2,55.8,62.7,67.6,73.1,80.7,90.2,127.5,127.6$ (2C), 128.4 (2C), 128.9, 133.4, 138.5, 175.0; ESIMS (MeOH): 585.3 ([ $M+\mathrm{Na}]^{+}, 100$ ); HRESIMS: calcd. for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{SiNa} m / z 585.3587$, found 585.3590 .

## $\mathrm{LiAlH}_{4}$ reduction

To a magnetically stirred suspension of $\mathrm{LiAlH}_{4}(47 \mathrm{mg}, 1.25 \mathrm{mmol}, 2.0$ equiv) in anhydrous THF ( 10 mL ), cooled to $-10^{\circ} \mathrm{C}$, was added dropwise a solution of the ester ( $350 \mathrm{mg}, 0.62$ mmol, 1.0 equiv) in anhydrous THF. After stirring at this temperature for 15 min (TLC monitoring) the mixture was diluted with wet $\mathrm{Et}_{2} \mathrm{O}$ and treated with a small amount of saturated $\mathrm{NaHCO}_{3}$ solution. The organic layer was filtered over a sintered glass funnel, and after silica gel chromatography (heptane-EtOAc, 2:1) the corresponding primary alcohol was obtained as a colorless oil ( $305 \mathrm{mg}, 92 \%$ ).


Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Si}$
Exact Mass: 534,37

C3-free alcohol: $[\alpha]_{D}^{20}=55$ (c 1.5, $\mathrm{CHCl}_{3}$ ); IR (film): $v=1459,1367,1252,1033,836 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.05(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}$, $3 \mathrm{H}), 1.21-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{dd}, J=4.4,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.68(\mathrm{~m}$, $1 \mathrm{H}), 1.70-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{dt}, J=4.0,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{td}, J=3.2,14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37(\mathrm{bd}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.98 and 4.13 (ABquartet, $J=11.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.45 and 4.48 (ABquartet, $J=11.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.68 and 4.72 (ABquartet, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=$ $-5.3,15.7,18.0,18.4,20.2,21.4,26.0$ (3C), 26.1, 32.4, 32.7, 36.1, 44.1, 45.7, 55.6, 62.9, 63.6, 67.7, 73.1, 80.8, 90.2, 127.5, 127.6 (2C), 128.0 (2C), 128.3, 134.1, 138.5; ESIMS $(\mathrm{MeOH}): 557.3\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Na} m / z 557.3638$, found 557.3613.

## Synthesis of the alkyliodide 7



## MOM-protection

To an ice-cold solution of the alcohol thus obtained ( $310 \mathrm{mg}, 0.73 \mathrm{mmol}$ ) in 4 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, under argon, was added diisopropylethylamine ( $0.78 \mathrm{~mL}, 4.52 \mathrm{mmol}$ ) and chloromethyl methylether ( $0.33 \mathrm{~mL}, 4.37 \mathrm{mmol}$ ). The reaction mixture was allowed to warm and stirred at $25^{\circ} \mathrm{C}$ for 16 h (while TLC-monitored), then quenched with water. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with dilute HCl , a saturated aqueous solution of $\mathrm{NaHCO}_{3}$, worked up as usual and purified by column
chromatography (heptane-EtOAc, 9:1) to give 303 mg ( $89 \%$ ) of C3-OMOM protected derivative.


Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{Si}$
Exact Mass: 578,40
Colorless oil; $[\alpha]_{D}^{20}=53\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (film): $v=2927,1453,1367,1257,1149,1032$, 918, $835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.04(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.06$ (s, 3H), $1.10(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{dd}, J=4.1,14.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.63-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.81(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{dt}, J=4.8,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{bd}, J$ $=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{bd}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.52(\mathrm{~m}, 4 \mathrm{H}), 4.03$ and 4.08 (ABquartet, $J=11.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.45 and 4.48 (ABquartet, $J=11.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.59 (s, $3 \mathrm{H}), 4.67$ and 4.72 (ABquartet, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta=-5.3,15.7,18.0,18.4,20.2,21.4,26.0(3 \mathrm{C}), 26.7,29.5,32.4,36.2,44.1,45.8$, $55.0,55.7,62.8,67.7,68.5,73.1,80.8,90.2,96.3,127.5,127.6$ (2C), 128.1 (2C), 128.3, 133.9, 138.6; ESIMS (MeOH): 601.3 ( $[M+\mathrm{Na}]^{+}, 100$ ); HRESIMS: calcd. for $\mathrm{C}_{33} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{SiNa}$ $m / z 601.3900$, found 601.3914; Analysis calcd. for $\mathrm{C}_{33} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{Si}$ (488.3): C 68.47, H 10.10; found C 68.20, H 10.16.

## Debenzylation

To a stirred solution of the benzyl ether ( $278 \mathrm{mg}, 0.48 \mathrm{mmol}$ ) in liquid ammonia ( 15 mL ) and THF ( 10 mL ) in the presence of $t-\mathrm{BuOH}(0.48 \mathrm{~mL})$ lithium metal ( $34 \mathrm{mg}, 4.8 \mathrm{mmol}, 10.0$ equiv) was added portionwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 10 min (blue color). Ammonia was evaporated while technical $\mathrm{Et}_{2} \mathrm{O}$ was added periodically along with solid $\mathrm{NH}_{4} \mathrm{Cl}$. Evaporation to dryness, dilution with ether and usual work up, afforded after chromatography (heptane-EtOAc, 3:1) the required debenzylated compound in $84 \%$ yield $(197 \mathrm{mg})$ as a colorless oil.


Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}$
Exact Mass: 488,35
C13-free alcohol: $[\alpha]_{D}^{20}=91$ ( c 1.0, $\mathrm{CHCl}_{3}$ ); IR (film): $\boldsymbol{v}=1470,1256,1151,1109,1033$, $918,836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.09(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.04$ $(\mathrm{s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{dt}, J=4.4,14.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.62-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.86(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{bt}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=$ $2.9,3.9,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{bd}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 3.61 (ddd, $J=5.8,8.0,10.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.70 (ddd, $J=6.5,8.4,10.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.82 (d, $J$ $=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.67$ and 4.71 (ABquartet, $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.3,-5.2,16.2,17.4,18.5,20.2,21.3,26.0$ (3C), $26.3,29.5,32.3,39.1,44.3,45.5,55.0,55.7,59.9,63.4,68.5,80.8,90.1,96.4,127.4,135.8$; ESIMS (MeOH): $511.3\left([M+N a]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{SiNa} m / z$ 511.3431, found 511.3442 .

## The right-half segment, Iodide $7 \mathbf{Z}$

To a solution of alcohol ( $87 \mathrm{mg}, 0.18 \mathrm{mmol}$ ), triphenylphosphine ( $186 \mathrm{mg}, 0.71 \mathrm{mmol}$ ), and imidazole ( $46 \mathrm{mg}, 0.71 \mathrm{mmol}$ ) in toluene $(2 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added iodine $(135 \mathrm{mg}, 0.53$ mmol ). After stirring for 1 h the solution was poured into a 1 M aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $(100 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The combined organic extracts were washed with brine $(100 \mathrm{~mL})$, dried, filtered, and concentrated. The material was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, silica gel was added to the solution, and the resulting slurry was concentrated to dryness. The product was passed through a short plug of silica (hexane-EtOAc, 95:5) to yield $97 \mathrm{mg}(92 \%)$ of $\mathbf{7 Z}$ as a colorless oil:


Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{51} \mathrm{IO}_{5} \mathrm{Si}$ Exact Mass: 598,26
$[\alpha]_{D}^{20}=21\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR (film): $v=1470,1552,1151,1110,1034,836,774 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.09(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}$, 3 H ), 1.20 (qdd, $J=6.0,12.3,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.41$ (dtdd, $J=4.9,6.5,11.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.51 (dt, $J=4.4,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{bs}, 1 \mathrm{H}), 1.62-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.81(\mathrm{~m}, 2 \mathrm{H})$, 2.06 (dd, $J=5.2,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=4.7,12.9,1 \mathrm{H}), 2.30(\mathrm{ddd}, J=2.7,4.0,14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{bd}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{ddd}, J=4.1,8.6,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (ddd, $J=5.5,8.6$, $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.98$ and 4.21 (ABquartet, $J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.66$ and 4.71 (ABquartet, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta=-5.3,-5.2,1.6,15.8,17.5,18.5,20.1,21.2,26.2(3 \mathrm{C}), 26.5,29.4,32.4,42.9$, 44.3, 47.6, 55.0, 55.7, 62.8, 68.4, 80.2, 90.1, 96.4, 128.5, 133.4; ESIMS (MeOH): 621.2 $\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{51} \mathrm{O}_{5} \mathrm{SiINa} m / z 621.2448$, found 621.2435.

Segment linking: Synthesis of iridal's core structure

$7 Z$
Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{51} \mathrm{O}_{5} \mathrm{Si}$
Exact Mass: 598,2550
Elemental Analysis: C, 52.16; H, 8.59;

Chemical Formula: $\mathrm{C}_{39} \mathrm{H}_{72} \mathrm{O}_{5} \mathrm{Si}$ Exact Mass: 648,5149
Elemental Analysis: C, 72.17; H, 11.18;

The Marshall protocol ${ }^{2}$ was used: To a stirring solution of alkyl iodide $\boldsymbol{7 Z}$ ( $90 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added $\beta-\mathrm{MeO}-9-\mathrm{BBN}(0.6 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in hexane, 4.0 equiv) and the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. To this solution was rapidly added tertbutyllithium ( $0.31 \mathrm{~mL}, 1.7 \mathrm{M}$ solution in pentane, 3.5 equiv). The mixture was stirred for 5 min , then THF ( 2.0 mL ) was added and the reaction mixture was warmed to $25^{\circ} \mathrm{C}$ for 1 h . In a separate flask, vinyl iodide $\mathbf{8 ( 3 8 \mathrm { mg } , 0 . 1 2 \mathrm { mmol } , 1 . 0 \text { equiv), prepared in two steps from }}$ geranyl acetone using standard Negishi conditions, was dissolved in DMF ( 2 mL ). To this solution was sequentially added $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\left(5 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.050\right.$ equiv), $\mathrm{AsPh}_{3}$ ( 5.5 $\mathrm{mg}, 0.018 \mathrm{mmol}, 0.150$ equiv), $\mathrm{CsCO}_{3}(156 \mathrm{mg}, 0.48 \mathrm{mmol}, 4.0$ equiv) and water ( 0.05 mL , $2.85 \mathrm{mmol}, 24$ equiv). The ethereal mixture of the alkylboronate was cannulated into the DMF solution and stirred overnight. The reaction mixture was then diluted with water and extracted

[^1]with $\mathrm{Et}_{2} \mathrm{O}$. The organic extracts were washed with brine, worked up as usual and the residue was purified by column chromatography on silica gel (heptane-EtOAc, $5: 1$ ) to give 75 mg of the desired product $\mathbf{2 5 Z}$ (94\%).


Exact Mass: 662,53
25Z: Colorless oil; $[\alpha]_{D}^{20}=26$ (c 1.5, $\mathrm{CHCl}_{3}$ ); IR (film): $v=1446,1381,1250,1150,1109$, 1033, 919, $835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.04(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $1.03(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{ddd}, J=5.8,11.9,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.49$ (m, 1H), $1.53(\mathrm{dd}, J=4.4,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{bs}$, $5 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.98(\mathrm{~m}, 4 \mathrm{H}), 2.03-2.08(\mathrm{~m}$, $4 \mathrm{H}), 2.13(\mathrm{dd}, J=3.2,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ $(\mathrm{s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.51(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.67$ and 4.72 (ABquartet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ $=-5.45,-5.4,15.6,16.0,17.7,18.1,18.4,20.2,21.5,22.6,25.7,26.0$ (3C), 26.7, 26.8, 29.6, $32.4,36.7,39.7$ (2C), 44.5, 44.6, 55.0, 55.6, 63.0, 68.6, 81.1, 90.1, 96.3, 124.3, 124.4, 125.3, 127.7, 128.6, 131.2, 133.7, 134.1, 134.4, 134.8; ESIMS (MeOH): 685.5 ( $[M+\mathrm{Na}]^{+}, 100$ ); HRESIMS: calcd. for $\mathrm{C}_{40} \mathrm{H}_{74} \mathrm{O}_{5} \mathrm{SiNa} m / z$ 685.5216, found 685.5203.

## Synthesis of the triol

To a solution of fully protected triol $\mathbf{2 5 Z}(24 \mathrm{mg}, 0.036 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added HCl ( 0.5 mL 6 M solution) and stirred at $25{ }^{\circ} \mathrm{C}$ for 36 h . The reaction was quenched with solid $\mathrm{NaHCO}_{3}$ and extracted five times with $\mathrm{Et}_{2} \mathrm{O}$. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated at reduced pressure and the residue purified by chromatography (heptane-EtOAc, $1: 2)$ to give $10 \mathrm{mg}(60 \%)$ of triol along with 8 mg of a less polar complex mixture of compounds.


Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{3}$
Exact Mass: 460,39
Colorless oil; $[\alpha]_{D}^{20}=27$ (c 0.75, $\mathrm{CHCl}_{3}$ ); IR (film): $v=3383,2969,1381,1260,1090,1025$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.01(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.33-$ $1.46(\mathrm{~m}, 2 \mathrm{H}), 1.51$ (ddd, $J=2.8,3.7,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}$, $6 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.98(\mathrm{~m}, 4 \mathrm{H})$, 2.03-2.08 (m, 4H), $2.26(\mathrm{dt}, J=3.8,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{bd}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{bd}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.13$ and 4.16 (ABquartet, $J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.0(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=15.9,16.0,16.1,17.7$, $17.8,21.3,22.6,25.7,25.9,26.5,26.6,26.8,31.2,32.6,36.9,39.7$ (2C), 43.9, 44.3, 63.2, $63.4,75.4,124.1,124.4,124.7,127.8,131.2,135.0,135.3,136.1$; ESIMS (MeOH): 483.3 $\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Na} m / z 483.3814$, found 483.3804 .

## Allylic oxidation

To a solution of triol ( $13 \mathrm{mg}, 0.028 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 3,5-dimethylpyrazole $(18 \mathrm{mg}, 0.186 \mathrm{mmol})$, the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and PCC ( $36 \mathrm{mg}, 0.168 \mathrm{mmol}$ ) was added. After 10 min the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with HCl 1 N twice and then three times with brine and water. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ the solvent evaporated and the crude subjected to column chromatography (heptane-EtOAc, 1:1) to give Iridal $\mathbf{1}(11 \mathrm{mg}, 88 \%)$ along with a small amount of the corresponding dialdehyde (1 mg, 7\%).


1: Colorless oil; $[\alpha]_{D}^{20}=33$ (c 0.7, $\mathrm{CHCl}_{3}$ ); IR (film): $v=3411,1650,1609,1445,1375$, 1093, 1053, $905 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.09(\mathrm{~s}, 3 \mathrm{H}), 1.06-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.16$ $(\mathrm{s}, 3 \mathrm{H}), 1.24-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.64-$ $1.69(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.97(\mathrm{~m}$, $4 \mathrm{H}), 2.01-2.06(\mathrm{~m}, 4 \mathrm{H}), 2.53(\mathrm{bd}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=5.3,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{bd}, J$ $=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dt}, J=6.5,7.8 \mathrm{~Hz}$,
$2 \mathrm{H}), 10.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=10.9,15.9,16.0 .17 .7,17.9,22.1,23.8$, $25.7,26.3,26.5,26.6,26.8,32.7,37.0,37.2,39.6,39.7,43.4,44.7,63.1,75.1,123.9,124.1$, 124.4, 131.2, 133.2, 135.0, 135.5, 162.7, 190.0; ESIMS (MeOH): $481.3\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{Na} \mathrm{m} / \mathrm{z} 481.3658$, found 481.3658 .

## Route to the geometrical isomer of Iridal



22EE
Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{6}$
Exact Mass: 458,27
Elemental Analysis: C, 70.71;
H, 8.35; O, 20.93


23EE
Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}$ Exact Mass: 574,37
Elemental Analysis: C, 68.95; H, 9.47; O, 16.70; Si, 4.89


Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Si}$ Exact Mass: 534,37
Elemental Analysis: C, 69.62; H, 10.18; O, 14.96; Si, 5.25

## TBS protection



Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}$
Exact Mass: 574,37
Proceedeing as above on a $220 \mathrm{mg}(0.48 \mathrm{mmol})$ scale, the silyl ether was obtained after chromatography (heptane-EtOAc, 8:1) in $90 \%$ yield ( $250 \mathrm{mg}, 0.43 \mathrm{mmol}$ ) as a yellow oil: $[\alpha]_{D}^{20}=112\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (film): $v=1715,1641,1432,1382,1256,1190,1030,837$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.05(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{ddd}, J=2.2,5.0,14.3 \mathrm{~Hz}, 1 \mathrm{H})$, 1.79 (ddd, $J=6.0,9.0,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14$ (bt, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (bd, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.54(\mathrm{~m}, 2 \mathrm{H}), 4.12$ and 4.22 (ABquartet, $J=11.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.46$ and 4.49 (ABquartet, $J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.66$ and 4.69 (ABquartet, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 5.53 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.27-2.34(\mathrm{~m}, 5 \mathrm{H}), 7.36$ (dd, $J=6.4$, $15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.2,14.3,15.4,18.2,18.3,19.9,21.3,25.9$, $31.6,35.2,44.8,48.9,56.0,59.8,63.2,67.5,73.2,79.9,90.2,117.9,127.6,127.7,128.4$, $130.8,130.9,138.2,151.1,167.3$; ESIMS (MeOH): 597.4 ([ $M+\mathrm{Na}]^{+}, 100$ ); HRESIMS: calcd. for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{SiNa} m / z$ 597.3587, found 597.3597.

## Selective reduction of the conjugated ester



Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}$
Exact Mass: 562,37
Proceedeing as above on a $157 \mathrm{mg}(0.27 \mathrm{mmol})$ scale, the saturated ester was obtained after chromatography (heptane-EtOAc, 5:1) in $95 \%$ yield ( $150 \mathrm{mg}, 0.26 \mathrm{mmol}$ ) as a colorless oil: $[\alpha]_{D}^{20}=54$ (c 1.0, $\mathrm{CHCl}_{3}$ ); IR (film): $v=1737,1456,1363,1253,1164,1075,1031,836,776$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H})$, $1.43-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.05(\mathrm{~m}, 1 \mathrm{H})$, 2.07-2.12 (m, 1H), 2.12-2.21 (m, 2H), 2.32-2.39 (m, 2H), $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.54(\mathrm{~m}, 2 \mathrm{H})$, $3.62(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 4.45$ and 4.49 (ABquartet, $J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.69$ and 4.72 (ABquartet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.2(2 \mathrm{C})$, $16.4,17.8,18.3,20.1,20.8,25.5,25.9$ (3C), 32.8, 33.1, 35.9, 44.2, 45.3, 51.3, 55.7, 63.4, 68.0, 73.2, 80.8, 90.2, 127.5, 127.7 (2C), 128.3 (2C), 129.6, 133.5, 138.4, 174.8; ESIMS $(\mathrm{MeOH}): 585.3\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{SiNa} m / z 585.3587$, found 585.3584.

## $\mathrm{LiAlH}_{4}$ reduction



Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Si}$
Exact Mass: 534,37
Proceedeing as above on a 140 mg scale ( 0.25 mmol ), the primary alcohol was obtained after chromatography (heptane-EtOAc, 2:1) in $92 \%$ yield ( $126 \mathrm{mg}, 0.23 \mathrm{mmol}$ ) as a colorless oil: $[\alpha]_{D}^{20}=59\left(c 0.85, \mathrm{CHCl}_{3}\right)$; IR (film): $v=1456,1392,1215,1032,836,775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.27$ (ddt, $J=$ $5.5,11.8,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.63(\mathrm{bs}, 3 \mathrm{H}), 1.64-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.76(\mathrm{~m}$, $2 \mathrm{H}), 1.82(\mathrm{dq}, J=4.1,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{bt}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.37(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~s}$, $3 \mathrm{H}), 3.51(\mathrm{dd}, J=6.8,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.15$ and 4.18 (ABquartet, $J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.45$ and $4.50(\mathrm{ABquartet}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.68$ and 4.71 (ABquartet,
$J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.2(2 \mathrm{C}), 16.6,18.0$, $18.3,20.2,20.9,25.9$ (3C), 26.4, 32.4, 32.8, 36.0, 44.2, 45.9, 55.6, 63.5, 63.6, 68.0, 73.2, 80.8, 90.2, 127.5, 127.7 (2C), 128.3 (2C), 128.7, 134.3, 138.5; ESIMS (MeOH): 557.3 $\left([M+\mathrm{Na}]^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{SiNa} m / z 557.3638$, found 557.3626.

## Completion of the synthesis



## TBS protection at C-3



Chemical Formula: $\mathrm{C}_{37} \mathrm{H}_{68} \mathrm{O}_{5} \mathrm{Si}_{2}$
Exact Mass: 648,4605
Proceeding as above on a 151 mg scale ( 0.28 mmol ), the silyl ether was obtained after chromatography (heptane-EtOAc, 12:1) in $99 \%$ yield ( $183 \mathrm{mg}, 0.28 \mathrm{mmol}$ ) as a colorless oil: $[\alpha]_{D}^{20}=47\left(c 1.3, \mathrm{CHCl}_{3}\right)$; IR (film): $v=1468,1383,1249,1102,1037,835,772 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.03(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{qt}, J=5.8,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.51$ (m, 2H), 1.63 (bs, 3H), 1.64-1.68 (m, 1H), 1.68-1.83 (m, 3H), $2.10(b t, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ $(\mathrm{bd}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.56(\mathrm{~m}, 4 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 4.46$ and 4.50 (ABquartet, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.66 and 4.73 (ABquartet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.27-7.35(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.2$ (2C), -5.1 (2C), 16.6, 18.0, 18.3, 18.4, 20.2, 20.8, 25.9 (3C), 26.0 (3C), 26.8, 32.4, 32.9, 36.0, 44.2, 46.0, 55.6, 63.5, 63.9, 68.1, 73.2, 80.9, 90.1, 127.5, 127.7 (2C), 128.3 (2C), 128.5, 134.4, 138.5; ESIMS (MeOH): 671.4 ([ $M+\mathrm{Na}]^{+}, 100$ ); HRESIMS: calcd. for $\mathrm{C}_{37} \mathrm{H}_{68} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na} m / z 671.4503$, found 671.4487.

## Debenzylation



Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{62} \mathrm{O}_{5} \mathrm{Si}_{2}$
Exact Mass: 558,4136
Proceedeing as above on a 111 mg scale ( 0.17 mmol ), the C13-free alcohol (chromatography heptane-EtOAc 3:1) was obtained in $76 \%$ yield ( $72 \mathrm{mg}, 0.13 \mathrm{mmol}$ ) as a white solid: Mp: 62$64{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=58\left(c 0.7, \mathrm{CHCl}_{3}\right) ;$ IR (film) : $v=1470,1255,1104,1033,835,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.03(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.22$ (qt, $J=6.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.46$ (m, 2H), 1.48 (dd, $J$ $=4.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dddd}, J=4.3$, $11.2,12.2,13.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.11 (dd, $J=13.5,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.36(\mathrm{~m}, 2 \mathrm{H}), 3.38$ (s, 3H), 3.55 (dt, $J=2.7,6.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.69 (td, $J=5.8,9.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.15 and 4.20 (ABquartet, $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.67$ and 4.73 (ABquartet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ : $\delta=-5.3,-5.2(2 \mathrm{C}),-5.1,16.7,18.0,18.3,18.4,20.3,20.8,25.9(3 \mathrm{C}), 26.0(3 \mathrm{C}), 26.8,32.4$, $32.9,39.5,44.4,46.1,55.6,60.4,63.5,63.8,80.7,90.1,128.5,134.7$; ESIMS (MeOH): 581.4 ([M+Na] $\left.{ }^{+}, 100\right)$; HRESIMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{62} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na} m / z$ 581.4034, found 581.4036.

The corresponding iodide, to be used in the $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ coupling was prepared and immediately taken to the next step without characterization.
 Exact Mass: 732.5908

The Marshall protocol for the Suzuki-Miyaura coupling employed for the Iridal synthesis was applied on a 44 mg scale ( 0.066 mmol ), yielding the desired adduct $\mathbf{2 5 E}$ ( $40 \mathrm{mg}, 0.054 \mathrm{mmol}$, $82 \%$ ) as a yellow oil; $[\alpha]_{D}^{20}=15$ (c 1.5, $\mathrm{CHCl}_{3}$ ); IR (film): $v=1472,1381,1148,1100,1035$, $839,770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=0.03(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{bs}, 18 \mathrm{H})$, $1.03(\mathrm{~s}, 3 \mathrm{H}), 1.04-1.08(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.45$ $(\mathrm{m}, 1 \mathrm{H}), 1.46-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{bs}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.72$ $(\mathrm{s}, 3 \mathrm{H}), 1.78-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.98(\mathrm{~m}, 7 \mathrm{H}), 2.04-2.13(\mathrm{~m}, 5 \mathrm{H}), 2.33(\mathrm{bd}, J=13.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.48(\mathrm{bd}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.12$ and 4.23 (ABquartet, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.67 and 4.74 (ABquartet, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.07-5.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=-5.2(2 \mathrm{C}),-5.1(2 \mathrm{C}), 16.0,16.1$, $16.8,17.7,18.0,18.3,18.4,20.2,20.9,23.2,25.7,25.9$ (3C), 26.0 (3C), 26.7, 26.8, 26.9, 32.6, $32.9,36.5,39.7,39.8,44.8,44.9,55.6,63.5,64.0,81.2,90.1,124.3,124.4,125.1,128.2$, 131.2, 134.6, 134.8, 134.9; ESIMS (MeOH): 755.6 ([M + Na] ${ }^{+}$, 100); HRESIMS: calcd. for $\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na} m / z 755.5806$, found 755.5814.

Fluoride deprotection: Preparation of C3, C1-free diol


To a magnetically stirred solution of the fully protected alcohol $\mathbf{2 5 E}(25 \mathrm{mg}, 0.034 \mathrm{mmol})$ was added tetrabutylammonium fluoride $(0.15 \mathrm{~mL}, 1 \mathrm{M}$ in THF). The reaction was stirred at $25^{\circ} \mathrm{C}$ for 4 h . After dilution with EtOAc, usual work up and chromatography on $\mathrm{SiO}_{2}$ (heptane-EtOAc 1:2) gave the expected compound ( $10 \mathrm{mg}, 0.020 \mathrm{mmol}, 58 \%$ ) as a yellow oil; $[\alpha]_{D}^{20}=42\left(c 1.5, \mathrm{CHCl}_{3}\right)$; IR (film): $v=3339,1447,1379,1150,1104,1031,920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ( $\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=1.04(\mathrm{~s}, 3 \mathrm{H}), 1.07-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.37(\mathrm{~m}$, $2 \mathrm{H}), 1.44-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{dt}, J=3.0,14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.98(\mathrm{~m}, 5 \mathrm{H}), 2.03-2.08(\mathrm{~m}$, 4H), 2.19 (bt, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.40 (bd, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.52 (bd, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.39 $(\mathrm{s}, 3 \mathrm{H}), 3.6(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.11$ and 4.21 (ABquartet, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.70$ and 4.72 (ABquartet, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), $5.02(\mathrm{dd}, J=6.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=5.5,8.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta=16.0(3 \mathrm{C}), 17.6,17.9,20.1,21.1,23.2,25.7,26.6,26.6$, $26.8,32.5,33.1,36.6,39.7$ (2C), 44.8, 44.9, 55.7, 63.7, 63.8, 81.1, 90.2, 124.2, 124.4, 124.9, 128.1, 131.3, 134.8, 134.9, 137.7; ESIMS (MeOH): 527.4 ([M+Na] ${ }^{+}$100); HRESIMS: calcd. for $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Na} m / z$ 527.4076, found 527.4084.

## Geometrical isomer of Iridal 26



The C10-MOM protected diol thus obtained ( $3.5 \mathrm{mg}, 0.07 \mathrm{mmol}$ ) was subjected to $\mathrm{HCl}-$ $t \mathrm{BuOH}$ treatment at room temperature for 20 h (TLC monitoring) affording the desired triol, which was directly subjected to allylic oxidation as above to give the spectroscopically pure 26 ( $3 \mathrm{mg}, 0.006 \mathrm{mmol}, 88 \%$ two steps) as a colorless oil; IR (film): $v=3427,1651,1456$, $1379,1260,1091,1023,903,797 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=1.08(\mathrm{~s}, 3 \mathrm{H}), 1.13-$ $1.20(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H})$, $1.59(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.87(\mathrm{~m}, 5 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.99(\mathrm{~m}$, 6 H ), $2.02-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{bt}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{bd}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (bd, $J=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.11(\mathrm{~m}, 2 \mathrm{H}), 10.24(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=11.9,16.0,16.1,17.7,17.8,20.0,23.3,25.7,26.4,26.6$, $26.8,27.2,32.1,37.2,38.0,39.7$ (2C), 45.2, 47.3, 63.3, 75.2, 124.1, 124.2, 124.4, 131.2, 133.1, 135.0, 135.4, 163.5, 190.7; ESIMS (MeOH): 481.3 ( $[M+\mathrm{Na}]^{+}, 100$ ); HRESIMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{Na} m / z 481.3658$, found 481.3644 .


[^0]:    ${ }^{1}\left({ }^{1}\right)$ Corbu, A. , Gauron, G., Castro, J. M., Dakir, M., Arseniyadis, S. Org. Lett. 2007, 9, 4745-4748.

[^1]:    ${ }^{2}$ Marshall, J.; Schaaf, G. M. J. Org. Chem. 2003, 68, 7428-7432.

