Supporting Information

Rhodium-Catalyzed Borylative Cyclization of 2-Alkynylaryl Isocyanates with Bis(pinacolato)diboron

Tomoya Miura, Yusuke Takahashi, and Masahiro Murakami*
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
Katsura, Kyoto 615-8510 (Japan)
General. All reactions were carried out with standard Schlenk techniques under an argon atmosphere. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Gemini $2000\left({ }^{1} \mathrm{H}\right.$ at 300.07 MHz and ${ }^{13} \mathrm{C}$ at 75.46 MHz) spectrometer. All NMR data were obtained in CDCl_{3}. Proton chemical shifts were referenced to the residual proton signal of the solvent at 7.26 ppm . Carbon chemical shifts were referenced to the carbon signal of the solvent at 77.0 ppm . High-resolution mass spectra were recorded on a JEOL JMS-SX102A spectrometer. Infrared spectra were recorded on a Shimadzu FTIR-8100 spectrometer. Column chromatography was performed with Florisil ${ }^{\circledR}$ (60-100 mesh) (Wako). Preparative thin-layer chromatography was performed with silica $60 \mathrm{PF}_{254}$ (Merck).

Materials. Anhydrous 1,2-dichloroethane was freshly distilled from calcium hydride. Bis(pinacolato)diboron (2) was purchased from Wako Pure Chemical Industries, Ltd and used as received. All other commercially available resources were used without further purification. $[\mathrm{Rh}(\mathrm{OH})(\operatorname{cod})]_{2}{ }^{1}$ and $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{SbF}_{6}{ }^{2}$ were prepared according to the reported procedure. 2(Alkynyl)anilines were prepared by Sonogashira reaction ${ }^{3}$ of the corresponding 2-iodoaniline derivatives ${ }^{4}$ with alkyne. 2-(Alkynyl)aryl isocyanates were synthesized from the corresponding 2(alkynyl)aniline according to the reported procedure. ${ }^{5}$ The analytical data of compounds $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 c}$, $\mathbf{1 d}, \mathbf{1 e}, \mathbf{1 f}, \mathbf{1 j}, \mathbf{1 k}, \mathbf{1 l}$, and $\mathbf{5}$ have been already reported. ${ }^{6}$

1g: IR (KBr): 2267, 1607, 1514, 1250, $1030 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta=3.83(\mathrm{~s}, 3 \mathrm{H}), 6.87-6.94(\mathrm{~m}, 2 \mathrm{H}), 7.06$ (dd, $J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (td, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25 (td, $J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (dd, $J=7.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.61(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR: $\delta=55.1,83.6,97.6,113.9,114.3,121.2,123.3,125.2$, 127.2, 128.7, 131.8, 132.8, 134.3, 159.9; HRMS (EI ${ }^{+}$): Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{2}, \mathrm{M}^{+}$249.0790. Found m/z 249.0789.

1h: IR (KBr): 2251, 1595, 1509, 1487, $1071 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.07$ (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18 (td, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.54(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=85.8,96.3$, 120.6, 121.3, 123.2, 123.6, 125.5, 127.1, 129.5, 131.6, 132.2, 132.8, 134.7; HRMS (EI ${ }^{+}$): Calcd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{BrNO}, \mathrm{M}^{+}$296.9789. Found m/z 296.9785.

1i: IR (KBr): 2276, 1595, 1503, 1418, $1080 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.06$ (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.17(\mathrm{td}$, $J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR: $\delta=84.4,92.9,120.7,121.2,123.3,125.2,125.3,127.2,128.9,129.3,129.4,131.7,134.5 ;$ HRMS (EI^{+}): Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{NOS}, \mathrm{M}^{+}$225.0248. Found m / z 225.0247.

[^0]Typical procedure for the rhodium-catalyzed borylative cyclization with $\mathbf{B}_{2} \mathbf{p i n}_{2}$: To an oven-dried, Ar-purged flask was added $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{SbF}_{6}(3.6 \mathrm{mg}, 6.5 \mu \mathrm{~mol}), 2(49.2 \mathrm{mg}, 0.193 \mathrm{mmol})$, and a solution of $\mathbf{1 a}(25.8 \mathrm{mg}, 0.129 \mathrm{mmol})$ in DCE $(1.5 \mathrm{~mL})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 6 h , and then quenched with NaOH aq. $(0.1 \mathrm{M}, 5 \mathrm{~mL})$. The aqueous layer was extracted with diethyl ether ($4 \times 15 \mathrm{~mL}$). The combined extracts were washed with NaOH aq. ($0.1 \mathrm{M}, 2 \times 10 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, and brine ($1 \times 10 \mathrm{~mL}$) and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was quickly purified by Florisil ${ }^{\circledR}$ column chromatography (dichloromethane to diethyl ether) to give $3 \mathrm{a}(30.1 \mathrm{mg}, 0.092 \mathrm{mmol}, 71 \%$) as a yellow solid: Recrystallization from hexane; IR (KBr): 3204, 1698, 1615, 1466, 1347, $1221 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=0.97$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 12 \mathrm{H}), 1.59-1.72(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.79(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.10(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=13.9,23.1,24.9,29.9,31.8,83.9,110.0,121.7,122.7,123.7,128.4,132.4,142.2$, 151.9 (br), 170.9; HRMS (CI^{+}): Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{BNO}_{3}, \mathrm{M}^{+} 327.2006$. Found m/z 327.2006.

3b: Recrystallization from hexane; IR (KBr): 3179, 1698, 1615, 1464, $1348,1221 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta=$ $1.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 12 \mathrm{H}), 2.78(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{td}, J=$ $7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=$ 12.1, 25.0, 25.3, 84.0, 109.9, 121.9, 122.8, 123.9, 128.5, 132.0, 142.0, 152.8 (br), 170.6; HRMS (EI ${ }^{+}$): Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BNO}_{3}, \mathrm{M}^{+}$299.1693. Found $\mathrm{m} / \mathrm{z} 299.1691$.

3c: Recrystallization from hexane; IR (KBr): 3187, 1698, 1613, 1464, 1344, $1223 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta=$ $1.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 12 \mathrm{H}), 1.63-1.79(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.76(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{td}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13}$ C NMR: $\delta=14.7,21.3,25.0,34.3,84.0,109.9,121.9,122.9,123.9,128.5,132.4,142.0,170.6$ (The boron-bound carbon was not detected due to the quadrupolar relaxation); HRMS (EI^{+}): Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{BNO}_{3}, \mathrm{M}^{+} 313.1849$. Found $\mathrm{m} / \mathrm{z} 313.1852$.

3d: Recrystallization from hexane; IR (KBr): 3179, 1698, 1615, 1464, 1354, $1223 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta=$ $1.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 12 \mathrm{H}), 3.52($ septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}$, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.4,25.5,31.0,84.1,109.9,121.8,122.6,124.2,128.5,131.1,142.0,158.2$ (br), 170.9; HRMS (EI^{+}): Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{BNO}_{3}, \mathrm{M}^{+} 313.1849$. Found m / z 313.1847.

3e: Recrystallization from hexane; IR (KBr): 3216, 1700, 1593, 1464, 1312, $1142 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=$ $1.39(\mathrm{~s}, 6 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 6.84(\mathrm{dd}, J=7.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{td}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16 (td, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.74$ (br s, 1 H$)$) ${ }^{13} \mathrm{C}$ NMR: $\delta=25.7,26.5,28.9$, 35.4, 83.7, 110.1, 121.2, 121.6, 127.8, 128.4, 132.0, 142.6, 164.9 (br), 171.7; HRMS (EI ${ }^{+}$): Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{BNO}_{3}, \mathrm{M}^{+} 327.2006$. Found m/z 327.2006.

3f: Recrystallization from toluene; IR (KBr): 3204, 1709, 1613, 1466, 1343, $1215 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta=$ $1.38(\mathrm{~s}, 12 \mathrm{H}), 6.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.54(\mathrm{~m}, 5 \mathrm{H}), 9.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR: $\delta=24.8,84.3,110.0,121.7,121.9,123.4$, 127.3, 128.3, 128.7, 129.4, 132.7, 137.7, 142.4, 147.9 (br), 170.8; HRMS (EI^{+}): Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BNO}_{3}$, M^{+}347.1693. Found m/z 347.1692.

3g: Recrystallization from toluene; IR (KBr): 3169, 1690, 1577, 1464, 1345, $1250 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta=$ $1.39(\mathrm{~s}, 12 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{td}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-7.01(\mathrm{~m}, 2 \mathrm{H})$, $7.13(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.52(\mathrm{~m}, 2 \mathrm{H}), 8.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=24.9,55.3,84.2,110.0,114.0,121.5,122.0,123.0,129.1,129.2,129.8,131.8,142.4,147.9$ (br), 159.8, 171.2; HRMS (EI ${ }^{+}$: Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BNO}_{4}, \mathrm{M}^{+} 377.1798$. Found m/z 377.1799.

3h: Recrystallization from toluene; IR (KBr): 3179, 1694, 1607, 1464, 1343, $1142 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=$ $1.37(\mathrm{~s}, 12 \mathrm{H}), 6.76(\mathrm{td}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{td}$, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.61(\mathrm{~m}, 2 \mathrm{H}), 8.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=24.8,84.4$, 110.2, 121.6, 121.8, 122.5, 123.4, 129.1, 129.8, 131.9, 133.0, 136.6, 142.5, 146.2 (br), 170.7; HRMS $\left(\mathrm{EI}^{+}\right)$: Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BBrNO}_{3}, \mathrm{M}^{+}$425.0798. Found m/z 425.0798.

3i: Recrystallization from toluene; IR (KBr): 3187, 1698, 1605, 1464, 1323, $1140 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}: \delta=$ $1.41(\mathrm{~s}, 12 \mathrm{H}), 6.77-6.85(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{td}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=5.4,1,4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=4.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=24.9,84.2,110.1,121.7,121.9,123.2,124.5,126.1,127.5,129.4,132.4,137.7,142.0$ (br), 142.4, 171.2; HRMS (EI'): Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BNO}_{3} \mathrm{~S}, \mathrm{M}^{+} 353.1257$. Found m/z 353.1262.
$\mathbf{3 j}$: Recrystallization from hexane/dichloromethane; IR (KBr): 3173, 1703, 1617, 1474, 1345, 1129 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 12 \mathrm{H}), 1.42-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.72(\mathrm{~m}, 2 \mathrm{H})$, $2.67-2.75(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 9.19 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR: $\delta=14.0,23.1,25.0,29.9,32.0,84.2,110.8,124.0,124.1,127.1,128.3$, $131.5,140.4,154.4$ (br), 170.5; HRMS (EI ${ }^{+}$: Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BClNO}_{3}, \mathrm{M}^{+} 361.1616$. Found m/z 361.1623 .

3k: Recrystallization from hexane/dichloromethane; IR (KBr): 3179, 1700, 1628, 1480, 1345, 1206 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H}), 1.41-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.71(\mathrm{~m}, 2 \mathrm{H})$, $2.67-2.75(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.68-6.77(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.17(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=$ $14.0,23.2,25.0,29.9,31.8,55.8,83.9,109.9,111.4,112.8,123.7,132.6,136.0,152.4$ (br), 155.0, 170.8; HRMS (EI ${ }^{+}$: Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BNO}_{4}, \mathrm{M}^{+} 357.2111$. Found m/z 357.2108.

31: Recrystallization from hexane/dichloromethane; IR (KBr): 3158, 1701, 1615, 1478, 1341, 1254 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 12 \mathrm{H}), 1.46-1.59(\mathrm{~m}, 2 \mathrm{H})$, $1.61-1.74(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.85(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=$ $8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 9.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=13.9,14.4,23.1,25.0,29.8,32.0,60.9$, 84.2, 109.4, 122.6, 124.3, 125.2, 130.9, 131.3, 145.7, 154.3 (br), 166.3, 171.0; HRMS (EI ${ }^{+}$): Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{BNO}_{5}, \mathrm{M}^{+}$399.2217. Found m/z 399.2212.

The Suzuki-Miyaura cross-coupling reaction with iodobenzene: To an oven-dried, N_{2}-purged flask was added $3 \mathbf{a}(18.0 \mathrm{mg}, 0.0550 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(22.8 \mathrm{mg}, 0.165 \mathrm{mmol}), 4(33.7 \mathrm{mg}, 0.165 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}$ $(0.1 \mathrm{~mL})$, and a solution of $\operatorname{Pd}\left[\mathrm{P}(t-\mathrm{Bu})_{3}\right]_{2}(1.4 \mathrm{mg}, 2.7 \mu \mathrm{~mol})$ in 1,4 -dioxane $(1.0 \mathrm{~mL})$. The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 2 h , and then quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ($4 \times 15 \mathrm{~mL}$). The combined extracts were washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by preparative thin-layer chromatography (chloroform/ethyl acetate $=10: 1$) to give $5(13.0 \mathrm{mg}, 0.0469$ mmol, 85%) as a yellow solid.

The bromination reaction with copper(II) bromide: To an oven-dried, N_{2}-purged flask was added $\mathbf{3 a}(16.1 \mathrm{mg}, 0.0492 \mathrm{mmol}), \mathrm{EtOH}(1.0 \mathrm{~mL})$, and a solution of $\mathrm{CuBr}_{2}(6,55.0 \mathrm{mg}, 0.246 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}$ $(1.0 \mathrm{~mL})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h , and then quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ($4 \times 15 \mathrm{~mL}$). The combined extracts were washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by preparative thin-layer chromatography (chloroform/ethyl acetate $=10: 1$) to give $7(13.2 \mathrm{mg}, 0.0471 \mathrm{mmol}, 96 \%, E / Z=1: 20)$ as a yellow solid: IR (KBr): 3335, 2959, 1709, 1684, $1605,1470,1192 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.44-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.85(\mathrm{~m}, 2 \mathrm{H})$, 3.14-3.23 (m, 2H), 6.89-6.95 (m, 1H), $7.01(\mathrm{td}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.45 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.76$ (br s, 1H); ${ }^{13} \mathrm{C}$ NMR: $\delta=14.0,22.4,29.7,42.3,109.9,122.0,122.4$, $123.3,125.2,129.1,138.8,141.1,167.2$; $\mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$: Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrNO}, \mathrm{M}^{+} 279.0259$. Found m/z 279.0251.

1 g

1 g

1h

1h

$6 \varepsilon \tau \cdot \angle \tau \tau$
$86 \sigma^{\circ} \cdot 6 \tau \tau$
$\varepsilon \tau g^{\circ} \tau \varepsilon \tau$

-악
LS.9L
$2000^{\circ} \mathrm{LL}$

- ®
∞
\qquad

$$
\because
$$

$$
8 \angle \tau \cdot \varepsilon \tau \tau
$$

3a

3b

$$
\mid \text { 㕆 }
$$

3b

\qquad

826.60τ
${ }_{08 L \cdot{ }^{206} \cdot \tau \tau \tau}$

국

$$
\begin{gathered}
08 L \cdot \tau \tau \tau \\
s \nabla 6 \cdot \varepsilon \tau \tau
\end{gathered}
$$

$$
985 \cdot 8 z \tau
$$

$$
\tau \tau 0 \cdot \tau \varepsilon \tau-\frac{\frac{1}{2}}{\substack{\frac{1}{2} \\ \frac{5}{4}}}
$$

-
OLS.0LT

3c

豆
-i

$852 \cdot \tau$
$282 \cdot \tau$
$88 \varepsilon \cdot \tau$

$88 \varepsilon \cdot \tau$
$\tau \varepsilon{ }^{\circ} \tau$

โED' τ

3c

Lzs'szi-

-
$070 \cdot 2 \nabla \tau$
$609 \cdot 0 \angle \tau$

> 3d

 3d

$$
\begin{array}{ll}
1 & 8 \\
\hline 1
\end{array}
$$

f

$$
0
$$

[
,

3e

Ls9.sz
$\xrightarrow{\angle \mathrm{LS} \cdot \mathrm{sz}} \mathrm{CB6} \cdot \mathrm{sz} \longrightarrow$
$8 \angle \cdot \angle Z \tau$
6จv•8zT
$98 \mathrm{~s} \cdot$ เzะ-
${ }^{802}$ 'TZT

ฉт๐ $ะ \varepsilon \tau$

zot.0тг $-\longrightarrow-$

ELS.9L
-OZ•LL
$\angle \tau \cdot \angle L$
$\angle z L \cdot \varepsilon 8-$

 $3 f$
 ,

 $3 f$

$$
\begin{gathered}
s L \tau \cdot 8 \tau \tau \\
\varepsilon \vDash 9 \cdot 8 \tau \tau
\end{gathered}
$$

$\varepsilon \angle \mathrm{s}^{\circ} 9 \mathrm{~L}$
$\angle \nabla^{\circ} \mathrm{OLL}$
Tsะ•8
\qquad
OTt
-

8ED•ZDT \square
$E \nabla \cdot z \nabla \pi$
$\stackrel{\rightharpoonup}{3}$
6.0LT

\qquad

息

$=\stackrel{\circ}{\dot{m}}$

$$
\varepsilon \angle \nabla \cdot \angle J
$$

$$
\begin{aligned}
& 88 \nabla^{2} \cdot L-L \\
& 567 \cdot L
\end{aligned}
$$

[^1]\[

$$
\begin{aligned}
& -\infty
\end{aligned}
$$
\]

(

885.94

0LT.0IT
$6 \varepsilon 8 \cdot \tau z$
$66 \% \cdot z \tau$
$\varepsilon 9 \varepsilon \cdot \varepsilon \tau \tau$
9LS.TZI
$6 \tau \tau$
$0 L L \cdot 6 \tau \tau$
$\nabla \varepsilon 6 \cdot \tau \varepsilon \tau$

 -

$3 i$

$3 i$
zez•p8-

MeO

 3k

086.จst

[^2]180

$\mathrm{EtO}_{2} \mathrm{C}$

$|$| \square |
| :---: | :---: |

ร $88 \cdot 9$

$\qquad$$\xrightarrow{2 \varepsilon 6^{\circ} \mathrm{L}}=$

$\mathrm{EtO}_{2} \mathrm{C}$

+

7

7

[^0]: ${ }^{1}$ Uson, R.; Oro, L. A.; Cabeza, J. A. Inorg. Synth. 1985, 23, 126.
 ${ }^{2}$ RajanBabu, T. V.; Ayers, T. A.; Halliday, G. A.; You, K. K.; Calabrese, J. C. J. Org. Chem. 1997, 62, 6012.
 ${ }^{3}$ Kamijo, S.; Yamamoto, Y. Angew. Chem. Int. Ed. 2002, 41, 3230.
 ${ }^{4}$ Trost, B. M.; McClory, A. Angew. Chem. Int. Ed. 2007, 46, 2074.
 ${ }^{5}$ Li, H.; Yang, H.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2004, 69, 4500.
 ${ }^{6}$ Miura, T.; Takahashi, Y.; Murakami, M. Org. Lett. 2007, 9, 5075.

[^1]:

[^2]:

