Supporting Information (S1)

Synthetic Studies on Maitotoxin. 3. Stereoselective Synthesis of the BCDE-Ring System

Masanori Satoh, ${ }^{\dagger}$ Hiroyuki Koshino, ${ }^{\ddagger}$ and Tadashi Nakata*, ${ }^{\dagger}$
Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and RIKEN (The Institute of Physical and Chemical Research), 1-2 Hirosawa, Wako-shi, Saitama 351-0198, Japan

nakata@rs.kagu.tus.ac.jp

General: All melting points were measured by Yanaco MP-500 and are uncorrected. Optical rotations were measured with JASCO P-1010 polarimeter. IR spectra were recorded on JASCO FT/IR-460 Plus spectrophotometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on JEOL JNM-AL300, JEOL JNM-LA500, and JEOL JNM- α-spectrometer. MASS spectra were recorded on BRUKER DALTONICS micrOTOF-NR and JEOL JMS-SX102A spectrometer. Flash column chromatography was performed on Silica Gel 60N (spherical, neutral; Kanto).

Dibenzyl ether 3

To a solution of $2(5.12 \mathrm{~g}, 18.3 \mathrm{mmol})$ in THF $(65 \mathrm{~mL})$ were added $\mathrm{NaH}(60 \%$ in oil, 2.44 g , $61.0 \mathrm{mmol})$, $\mathrm{BnBr}(6.50 \mathrm{~mL}, 54.7 \mathrm{mmol})$, and $n-\mathrm{Bu}_{4} \mathrm{NI}(0.517 \mathrm{~g}, 1.40 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at rt for 13 h , sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) was added at $0{ }^{\circ} \mathrm{C}$ and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography ($\mathrm{SiO}_{2} ; n$-hexane: $\mathrm{EtOAc}=7: 1 \rightarrow 6: 1 \rightarrow 3: 1$) to give benzyl ether ($8.13 \mathrm{~g}, 96 \%$ yield).

To a solution of the benzyl ether ($291 \mathrm{mg}, 0.632 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})-\mathrm{MeOH}(3.5 \mathrm{~mL})$ was added CSA ($35.3 \mathrm{mg}, 0.152 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at rt for 15 h , additional CSA (19.9 mg) was added. After stirring for additional $24 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}$ was added at $0{ }^{\circ} \mathrm{C}$ and the mixture was concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane $\left.: \mathrm{EtOAc}=1: 3 \rightarrow \mathrm{EtOAc}\right)$ to give diol $(218.5 \mathrm{mg}, 93 \%$ yield $)$.

To a solution of the diol $(0.853 \mathrm{~g}, 2.29 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ were added 2,6-lutidine $(1.35 \mathrm{~mL}, 11.6 \mathrm{mmol})$ and TBSOTf $(1.35 \mathrm{~mL}, 5.88 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min , sat. NaHCO_{3} solution was added and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\mathrm{EtOAc}=$
$8: 1$) to give di-TBS ether (1.49 g).
To a solution of the di-TBS ether $(1.49 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})-\mathrm{MeOH}(4 \mathrm{~mL})$ was added CSA $(109.1 \mathrm{mg}, 0.470 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at $0{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}$ was added and the mixture was concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\left.\mathrm{EtOAc}=6: 1 \rightarrow 3: 1 \rightarrow 2: 1\right)$ to give alcohol $\mathbf{3}(1.08 \mathrm{~g}$, 97\% yield, 2 steps).
3: $[\alpha]^{21}{ }_{\mathrm{D}}+13.3\left(c 1.08, \mathrm{CHCl}_{3}\right)$; IR (neat) $3448,3030,2928,2857,1497,1454,1362,1251$, $1090,863,837,777,736,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.24(\mathrm{~m}, 10 \mathrm{H}), 4.58(\mathrm{~d}$, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{dd}, J=11.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=11.6,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.54-3.49 (m, 1H), $3.53(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.15$ (ddd, $J=11.9,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=11.9,11.9,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}$, $9 \mathrm{H}), 0.049(\mathrm{~s}, 3 \mathrm{H}), 0.043(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.5,138.3,128.34$ (2C), 128.28 (2C), 127.68 (2C), 127.59, 127.54 (2C), 77.1, 74.8, 74.6, 73.52, 73.49, 71.4, 66.8, 62.7, 34.3, 25.7 (3C), 17.9, 13.7, -4.2, -4.9 ; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{SiNa} 509.2694$, found 509.2694 .

Nitrile 4

To a solution of $3(36.9 \mathrm{mg}, 0.0758 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(31.0 \mu \mathrm{~L}$, $0.222 \mathrm{mmol})$ and $\mathrm{MsCl}(9.0 \mu \mathrm{~L}, 0.116 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at $0{ }^{\circ} \mathrm{C}$ for 40 min , sat. NaHCO_{3} solution was added and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo to give crude methanesulfonyl ester (43.6 mg), which was used for the next reaction without purification.

To a solution of the above residue in DMSO $(2 \mathrm{~mL})$ were added powdered MS 4A (18.8 $\mathrm{mg})$ and $\mathrm{NaCN}(63.9 \mathrm{mg}, 1.30 \mathrm{mmol})$ at rt . After stirring at $80^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ was added at 0 ${ }^{\circ} \mathrm{C}$ and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane $\left.: \mathrm{EtOAc}=6: 1\right)$ to give nitrile $4(36.0 \mathrm{mg}, 96 \%$ yield, 2 steps $)$ as a colorless oil.
4: $[\alpha]^{25}{ }_{\mathrm{D}}+20.9\left(c 1.00, \mathrm{CHCl}_{3}\right.$); IR (neat) 3030, 2951, 2252, 1605, 1496, 1455, 1361, 1254, 1091, 1027, 837, 778, 736, 698, $673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.24(\mathrm{~m}, 10 \mathrm{H})$, $4.67(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.9$

Hz, 1H), 3.73 (dd, $J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (ddd, $J=9.8,6.4,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, ~ J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{ddd}, J=11.3,9.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=16.5,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=16.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=12.2,4.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{ddd}, J=$ $12.2,12.2,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.6,138.4,128.29$ (2C), 128.27 (2C), 127.62 (2C), 127.57 (3C), 127.4, 117.5, $78.3,74.2,73.6,73.2,71.7,70.9,69.5,34.3,25.6$ (3C), 21.4, 17.8, 13.3, -4.1, -4.9; HRMS (EI) calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{NSi} 495.2805$, found 495.2804.

Ketone 5

To a solution of $4(2.81 \mathrm{~g}, 5.66 \mathrm{mmol})$ in toluene $(50 \mathrm{~mL})$ was added DIBALH $(0.94 \mathrm{M}$ in n-hexane, $12.0 \mathrm{~mL}, 11.2 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at 0 ${ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, i-\mathrm{PrOH}$ and $\mathrm{H}_{2} \mathrm{O}$ were added and the mixture was warmed to rt. After addition of SiO_{2} and EtOAc , the mixture was stirred at rt for $1 \mathrm{~h} . \mathrm{MgSO}_{4}$ was added and the mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\left.\mathrm{EtOAc}=5: 1\right)$ to give aldehyde $(2.68$ g, 95% yield).

To a solution of the aldehyde ($1.84 \mathrm{~g}, 3.69 \mathrm{mmol}$) in THF $(30 \mathrm{~mL})$ was added MeMgBr (0.84 M in THF, $6.6 \mathrm{~mL}, 5.54 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at $0^{\circ} \mathrm{C}$ for 1.25 h , sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\left.\mathrm{EtOAc}=5: 1 \rightarrow 4: 1\right)$ to give alcohol ($1.76 \mathrm{~g}, 93 \%$ yield).

To a solution of the alcohol ($2.67 \mathrm{~g}, 5.18 \mathrm{mmol}$) and powdered MS 4A(777.2 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ was added $\mathrm{NMO}(945.8 \mathrm{mg}, 7.83 \mathrm{mmol})$ at rt under argon atmosphere and stirred for 40 min . After addition of TPAP ($94.0 \mathrm{mg}, 0.267 \mathrm{mmol}$), the mixture was stirred at rt for 1 h and directly purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\left.\mathrm{EtOAc}=5: 1\right)$ to give ketone $5(2.58 \mathrm{~g}, 97 \%$ yield) as a colorless oil.
5: $[\alpha]^{23}{ }_{\mathrm{D}}+32.5\left(c 1.09, \mathrm{CHCl}_{3}\right.$); IR (neat) 3063, 3030, 2951, 2857, 1717, 1605, 1496, 1455, $1359,1307,1253,1207,1185,1089,1028,1004,862,837,777,736,698,673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.23(\mathrm{~m}, 10 \mathrm{H}), 4.57(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{ddd}, J=9.5,9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (dd, $J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{ddd}, J=$
$11.0,9.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=15.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}$, $3 \mathrm{H}), 2.15(\mathrm{ddd}, J=11.9,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=11.9,11.9,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H})$, $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.8,138.5(2 \mathrm{C}), 128.2$ (4C), 127.57 (3C), 127.52 (2C), 127.4, 77.35, 74.3, 73.44, 73.41, 71.9, 71.4, 70.4, 46.6, 34.7, 30.7, 25.7 (3C), 17.8, 13.4, -4.1, -4.7; HRMS (EI) calcd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si} 512.2958$, found 512.2961.

α, β-Unsaturated ester 6.

To a solution of $5(1.57 \mathrm{~g}, 3.06 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added TBAF (1.0 M in THF, $4.6 \mathrm{~mL}, 4.60 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at rt for $1 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo to give crude alcohol, which was used for the next reaction without purification.

To a solution of the crude alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added N-methylmorpholine $(1.35 \mathrm{~mL}, 12.2 \mathrm{mmol})$ and methyl propiolate $(0.515 \mathrm{~mL}, 6.13 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at rt for $1.5 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\left.\mathrm{EtOAc}=3: 1 \rightarrow 2: 1\right)$ to give β-alkoxyacrylate $6(1.47 \mathrm{~g}, 100 \%$ yield, 2 steps $)$.
6: $[\alpha]^{19}{ }_{\mathrm{D}}+28.0\left(c 0.86, \mathrm{CHCl}_{3}\right)$; IR (neat) 2949, 1716, 1644, 1497, 1455, 1360, 1202, 1139, 1028, 835, 739, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.22$ $(\mathrm{m}, 10 \mathrm{H}), 5.29(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{ddd}, J=9.2,9.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ $(\mathrm{s}, 3 \mathrm{H}), 3.69-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=$ $15.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{ddd}, J=11.9,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (s, $3 \mathrm{H}), 1.69(\mathrm{ddd}, J=11.9,11.9,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.1$, $167.9,160.8,138.3,138.1,128.30$ (2C), 128.27 (2C), $127.63,127.55$ (2C), 127.50, 127.46 (2C), $98.3,79.2,77.7,74.0,73.4,72.9,71.4,68.7,51.1,45.6,31.1,30.6,13.3$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{Na} 505.2197$, found 505.2244.

CD-ring 7

To a solution of $6(306.4 \mathrm{mg}, 0.635 \mathrm{mmol})$ in THF (6.3 mL) $-\mathrm{MeOH}(0.1 \mathrm{~mL}, 2.47 \mathrm{mmol})$ was added $\mathrm{SmI}_{2}(0.1 \mathrm{M}$ in THF, $21.6 \mathrm{~mL}, 2.16 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at $0{ }^{\circ} \mathrm{C}$ for 10 min , sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added, and the mixture was extracted with EtOAc. The organic layer was washed with sat. NaHCO_{3} solution and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ;\right.$ n-hexane:EtOAc $=2: 1 \rightarrow 1: 1$) to give CD-ring $7(324.8 \mathrm{mg}, 100 \%$ yield) as a colorless oil. 7: $[\alpha]^{24}{ }_{\mathrm{D}}+0.301\left(c 1.04, \mathrm{CHCl}_{3}\right.$); IR (neat) $3450,3029,2946,1740,1604,1496,1454,1366$, 1298, 1201, 1092, 1046, 737, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.19(\mathrm{~m}, 10 \mathrm{H}), 4.59$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.73-3.68$ (m, 2H), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (ddd, $J=11.6,9.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (ddd, $J=11.9,9.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=15.6,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=15.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.61$ (dd, $J=11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.57 (ddd, $J=11.9,11.9,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.21$ (s, 3H), 1.17 (s, 3H); ${ }^{13} \mathrm{C}^{\text {NMR }}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,138.36,138.31,128.2$ (4C), 127.65 (2C), 127.44 (2C), 127.37 (2C), 81.1, 77.78, 77.73, 74.37, 74.21, 73.4, 70.97, 70.51, 68.9, 51.8, 45.9, 34.5, 30.4, 21.4, 13.8; HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{7} 484.2461$, found 484.2460.

Diol 8.

A solution of $7(1.02 \mathrm{~g}, 2.10 \mathrm{mmol})$ and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(225.6 \mathrm{mg})$ in EtOAc $(20 \mathrm{~mL})$ was stirred under H_{2} atmosphere at rt for 3 h . The mixture was filtrated through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated in vacuo to give crude triol (632 mg).

To a solution of the crude triol ($203.3 \mathrm{mg}, 0.668 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ were added 2,6-lutidine ($0.465 \mathrm{~mL}, 4.01 \mathrm{mmol}$) and $\operatorname{TBSOTf}(0.430 \mathrm{~mL}, 1.87 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at the same temperature for 20 min , sat. NaHCO_{3} solution was added and the mixture was extracted with EtOAc. The organic layer was washed with sat. NaHCO_{3} solution and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane:EtOAc $\left.=7: 1 \rightarrow 13: 2\right)$ to give di-TBS ether 47
($286.1 \mathrm{mg}, 80 \%$ yield, 2 steps).
To a solution of the TBS ether ($75.8 \mathrm{mg}, 0.142 \mathrm{mmol}$) in $\mathrm{MeOH}(1.4 \mathrm{~mL})$ was added CSA $(8.7 \mathrm{mg}, 0.0375 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at $0{ }^{\circ} \mathrm{C}$ for $3.5 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}$ was added and the mixture was concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\left.\mathrm{EtOAc}=1: 1 \rightarrow 1: 2\right)$ to give diol 8 ($57.7 \mathrm{mg}, 97 \%$ yield) as colorless crystals.

8: mp 117-118 ${ }^{\circ} \mathrm{C}$ (n-hexane); $[\alpha]^{22}{ }_{\mathrm{D}}+15.4\left(c 1.06, \mathrm{CHCl}_{3}\right)$; IR (KBr); 3523, 2952, 1747, 1373, 1095, 836, 774, $679 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.88(\mathrm{dd}, J=11.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 3.69(\mathrm{dd}, J=9.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=11.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=11.3,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.27$ (ddd, $J=11.6,9.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{ddd}, J=11.9,9.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=$ $15.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=15.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{ddd}, J$ $=11.9,11.9,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{dd}, J=11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}$, 9H), 0.07 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,81.1,78.2,77.8,70.5,68.7,67.0,66.9$, $51.9,45.8,34.51,34.47,25.6$ (3C), 21.4, 17.7, 13.4, -4.2, -5.2; HRMS (FAB) calcd for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{O}_{7} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 419.2465$, found 419.2464 .

α, β-Unsaturated ester 9 .

To a solution of $\mathbf{8}(572.4 \mathrm{mg}, 1.37 \mathrm{mmol})$ and powdered MS $4 \mathrm{~A}(229.1 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8$ $\mathrm{mL})$ was added $\mathrm{NMO}(250.7 \mathrm{mg}, 2.07 \mathrm{mmol})$ at rt under argon atmosphere. After stirring for 30 \min, TPAP ($26 \mathrm{mg}, 0.0739 \mathrm{mmol}$) was added and the mixture was stirred at rt for 30 min . The mixture was directly purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\left.\mathrm{EtOAc}=1: 1\right)$ to give aldehyde (569.8 mg).

To a solution of the aldehyde ($569.8 \mathrm{mg}, 1.37 \mathrm{mmol}$) in toluene (13 mL) was added (carbethoxymethylene)triphenylphosphorane ($666.4 \mathrm{mg}, 1.81 \mathrm{mmol}$). After stirring at $100{ }^{\circ} \mathrm{C}$ for 1 h , the mixture was evaporated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane $\left.: \mathrm{EtOAc}=2: 1\right)$ to give α, β-unsaturated ester $9(628.2 \mathrm{mg}, 94 \%$ yield, 2 steps).
9: $[\alpha]^{20}{ }_{\mathrm{D}}+26.5\left(c 1.08, \mathrm{CHCl}_{3}\right.$); IR (neat) 3480, 2953, 1717, 1660, 1463, 1367, 1281, 1095, $1043,867,838,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.03(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{dd}, J=9.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=11.3$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (ddd, $J=11.3,9.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (ddd, $J=11.9,9.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dd, $J=15.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=15.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=11.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (ddd, $J=11.9,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{ddd}, J=11.6,11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{dd}$,
$J=11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.046(\mathrm{~s}$, $3 \mathrm{H}), 0.039(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 172.5,166.7,151.7,119.0,81.1,77.7,72.1$, $70.6,68.7,60.2,51.9,45.9,34.8,34.6,25.6$ (3C), 21.5, 17.8, 15.1, 14.2, -4.3, -5.1; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{8} \mathrm{SiNa} 509.2541$, found 509.2527.

Diester 10.

A solution of $9(628.2 \mathrm{mg}, 1.29 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(135.8 \mathrm{mg})$ in EtOAc $(10 \mathrm{~mL})$ was stirred under H_{2} atmosphere at rt for 19 h . The mixture was filtrated through Celite ${ }^{\circledR}$ pad and the filtrate was concentrated in vacuo to give crude ester (659 mg).

To a solution of the crude ester $(659 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added 2,6-lutidine $(0.613$ $\mathrm{mL}, 5.15 \mathrm{mmol})$ and TMSOTf $(0.365 \mathrm{~mL}, 1.94 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at the same temperature for 15 min , sat. NaHCO_{3} solution was added and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$; n-hexane: $\mathrm{EtOAc}=10: 1)$ to give diester $10(694.3 \mathrm{mg}, 96 \%$ yield, 2 steps) as a colorless oil. 10: $[\alpha]^{24}{ }_{\mathrm{D}}+12.1$ (c 1.02, CHCl_{3}); IR (neat) 2953, 2892, 2857, 1741, 1463, 1437, 1376, 1307, $1252,1142,1097,1059,932,898,862,839,776,674,626 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.11(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=9.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=11.3,4.9, \mathrm{~Hz}$, 1 H), 3.13 (ddd, $J=11.6,9.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (ddd, $J=11.9,9.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (dd, $J=$ $15.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=7.9,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{dd}, J=15.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.01(\mathrm{~m}$, $1 \mathrm{H}), 2.02(\mathrm{dd}, J=11.6,4.3, \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{ddd}, J=14.3,7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{ddd}, J=14.3$, $7.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=11.6,11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{dd}, J=11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.25$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.0,172.6,81.3,77.8,76.7,73.2,71.8,68.3,60.1,51.7,45.7,34.8,34.3$, 28.2, 25.6 (3C), 22.5, 17.8, 15.6, 14.2, 2.5 (3C), $-4.0,-5.0$; HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{Si}_{2}$ 560.3201 , found 560.3203 .

Bis(thioacetal) 11

To a solution of $\mathbf{1 0}(161.6 \mathrm{mg}, 0.288 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added DIBALH $(0.94 \mathrm{M}$ in n-hexane, $0.680 \mathrm{~mL}, 0.639 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at the same temperature for $50 \mathrm{~min}, i-\mathrm{PrOH}$ and $\mathrm{H}_{2} \mathrm{O}$ were added the mixture was warmed to rt. After addition of SiO_{2} and EtOAc , the mixture was stirred at rt for 50 min . After addition of MgSO_{4}, the mixture was filtered through Celite ${ }^{\circledR}$ pad and the filtrate was concentrated in vacuo to give crude aldehyde (149 mg), which was used for the next reaction without purification.

To a solution of the crude aldehyde $(149 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL})$ were added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(40$ $\mu \mathrm{L}, 0.301 \mathrm{mmol})$ and 1,3 -propanedithiol $(140 \mu \mathrm{~L}, 1.32 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at rt for 13 h , the mixture was diluted with EtOAc. The organic layer was washed with 3 N NaOH solution, sat. $\mathrm{NaS}_{2} \mathrm{O}_{3}$ solution, sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ;\right.$ n-hexane: $\mathrm{EtOAc}=1: 1)$ to give bis(thioacetal) $\mathbf{1 1}(94.9 \mathrm{mg}, 67 \%$ yield, 2 steps) as colorless oil. 11: $[\alpha]^{23}{ }_{\mathrm{D}}+27.4\left(c 1.05, \mathrm{CHCl}_{3}\right.$); IR (neat) 3433, 2941, 2898, 1724, 1630, 1461, 1422, 1377, $1276,1243,1109,1066,1021,946,924,908,895,868,753,665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.20(\mathrm{dd}, J=10.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=7.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=11.6,4.6$ Hz, 1H), 3.44 (dd, $J=10.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15 (ddd, $J=11.6,9.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ (ddd, $J=$ $11.6,9.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.78(\mathrm{~m}, 8 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 4 \mathrm{H}), 2.02(\mathrm{dd}, J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.95-1.82(\mathrm{~m}, 5 \mathrm{H}), 1.77(\mathrm{ddd}, J=14.3,10.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.62$ (ddd, $J=11.6$, $11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{dd}, J=11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 80.8,77.9,76.6,71.2,70.7,68.6,48.0,46.0,43.8,36.8,34.65,34.22,30.33$, $30.28,29.87,29.31,28.6,25.9,21.4,15.4$; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~S}_{4} 480.1496$, found 480.1498.

bis(β-alkoxyacryltate) $\mathbf{1 2}$

To a solution of $\mathbf{1 1}(321.3 \mathrm{mg}, 0.668 \mathrm{mmol})$ in toluene (7 mL) were added methyl 3-methoxyacrylate $(0.435 \mathrm{~mL}, 4.01 \mathrm{mmol})$ and PPTS $(11.8 \mathrm{mg}, 0.0460 \mathrm{mmol})$ at rt under argon atmosphere. After stirring at $140{ }^{\circ} \mathrm{C}$ for 29 h , the mixture was concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\left.\mathrm{EtOAc}=3: 1 \rightarrow 2: 1\right)$ to give bis(β-alkoxyacryltate) 12 ($249.2 \mathrm{mg}, 58 \%$ yield).
12: $[\alpha]^{20}{ }_{\mathrm{D}}+37.2\left(c 0.97, \mathrm{CHCl}_{3}\right)$; IR (neat) 2950, 2359, 1712, 1640, 1436, 1290, 1139, 910, 838, $731,647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.38(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=10.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$
(dd, $J=6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=11.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~m}$. $1 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.81(\mathrm{~m}, 8 \mathrm{H}), 2.36(\mathrm{ddd}, J=11.9,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ $(\mathrm{dd}, J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.72(\mathrm{~m}, 6 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.36(\mathrm{~s}$, $3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.98,167.91,161.0,155.8,100.4,98.3$, $81.4,79.6,78.6,77.2,75.6,68.4,51.2,51.0,47.6,43.5,41.9,36.9,34.4,30.8,30.2,30.0,29.4$, 28.6, 25.94, 25.89, 19.2, 16.0; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{~S}_{4} \mathrm{Na} 671.1811$, found 671.1816.

bis(aldehyde) 13.
To a solution of $\mathbf{1 2}(111.3 \mathrm{mg}, 0.172 \mathrm{mmol})$ in $\mathrm{MeCN}(1.6 \mathrm{~mL})-\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(47.1 \mathrm{mg}, 0.555 \mathrm{mmol})$ and MeI $(0.53 \mathrm{~mL}, 8.47 \mathrm{mmol})$ at rt . After stirring at rt for 13 h, the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\left.\mathrm{EtOAc}=1: 1\right)$ to give bis(aldehyde) $\mathbf{1 3}$ ($71.2 \mathrm{mg}, 89 \%$ yield).
13: $[\alpha]^{20}{ }_{\mathrm{D}}+35.6\left(c 1.375, \mathrm{CHCl}_{3}\right.$); IR (neat) 2951, 1716, 1645, 1437, 1386, 1334, 1291, 1191, 1140, 956, 839, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.76$ (dd, $J=2.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 9.70 (dd, $J=1.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.32(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=9.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=11.6,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{ddd}, J=11.6,9.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{ddd}, J=11.9,9.5,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.64$ (ddd, $J=16.8,2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 3 \mathrm{H}), 2.34$ (ddd, $J=11.9,4.6,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29(\mathrm{dd}, J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{tt}, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{tt}, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 1.72-1.63 (m, 2H), $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.7,199.4$, $167.8,167.7,160.7,155.3,100.9,98.6,81.2,79.2,77.3,77.2,75.5,68.3,51.2,51.1,42.9,41.6$, 37.7, 32.3, 30.7, 19.2, 16.0; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{10} \mathrm{Na} 491.1888$, found 491.1912.

Lactone-ester 14.

Diester 15.

To a solution of $\mathbf{1 3}(33.1 \mathrm{mg}, 0.0707 \mathrm{mmol})$ in THF (1 mL$)-\mathrm{MeOH}(23 \mu \mathrm{~L}, 0.567 \mathrm{mmol})$ was added $\mathrm{SmI}_{2}(0.1 \mathrm{M}$ in THF, $8.5 \mathrm{~mL}, 0.85 \mathrm{mmol})$ at rt under argon atmosphere. After stirring
for 1 h , sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added at $0{ }^{\circ} \mathrm{C}$ and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: EtOAc $\left.=1: 2 \rightarrow 1: 3 \rightarrow 1: 6\right)$ to give lactone-ester 14 ($18.8 \mathrm{mg}, 60 \%$ yield) as a colorless solid and diester 15 ($9.8 \mathrm{mg}, \mathbf{2 9 \%}$ yield).
14: mp 226-227 ${ }^{\circ} \mathrm{C} ;[\alpha]^{24}{ }_{\mathrm{D}}+62.9\left(c 1.01, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3531, 2950, 1773, 1066, 869, 757 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.36(\mathrm{ddd}, J=8.8,8.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{ddd}, J=10.7,9.2$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{ddd}, J=9.5,7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{ddd}, J=$ $11.6,9.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=11.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (ddd, $J=11.9,9.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=16.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.6,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.65(\mathrm{dd}, J=16.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=15.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.14$ $(\mathrm{m}, 2 \mathrm{H}), 1.98-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{dd}, J=11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$, $1.23(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.66,172.48,84.53,82.0,79.62,79.20,78.8,77.7$, $73.2,70.84,70.54,68.7,51.8,43.1,38.2,36.58,36.23,33.7,32.2,24.2,16.0,15.3$; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{9} 440.2046$, found 440.2041 .
15: $[\alpha]^{19}{ }_{\mathrm{D}}+39.5\left(c 0.20, \mathrm{CHCl}_{3}\right)$; IR (neat) 3461, 2951, 1734, 1438, 1275, 1196, 1102, 1064, $756,667,444 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.96$ (ddd, $\left.J=7.0,7.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 3.89-3.83 (m, 2H), 3.69 ($\mathrm{s}, 3 \mathrm{H}$), $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{ddd}, J=11.6,9.8,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10(\mathrm{dd}, J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (ddd, $J=11.9,9.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (dd, $J=15.6$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.25(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{ddd}, J=11.6,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.06 (ddd, $J=11.6,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.53(\mathrm{~m}, 2 \mathrm{H})$, $1.39(\mathrm{dd}, J=11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,171.8,82.5,79.7,79.5,79.1,77.1,74.0,73.2,70.8,68.7,51.8,51.7,43.4,39.6,38.4$, $34.9,33.9,32.8,27.3,16.06,16.02$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{10} \mathrm{Na} 495.2201$, found 495.2201 .

Diol 16

(a) To a solution of $14(89.0 \mathrm{mg}, 0.202 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(42 \mathrm{mg}$, 1.02 mmol) at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , the mixture was warmed to rt and stirred for 4 h . After addition of $\mathrm{H}_{2} \mathrm{O}, 12 \% \mathrm{NaOH}$ solution, and $\mathrm{H}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$, the mixture was diluted with $\mathrm{EtOAc}, \mathrm{CHCl}_{3}$, and MeOH . After stirring at rt for $1 \mathrm{~h}, \mathrm{MgSO}_{4}$ was added, and the mixture was filtrated through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated in vacuo to give crude tetraol. To a solution of the crude tetraol in pyridine (2.5 mL) was added

TBSCl ($94.5 \mathrm{mg}, 0.614 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at rt for 3.5 h , $\operatorname{TBSCl}(103.6 \mathrm{mg})$ was added. After stirring at rt for $11 \mathrm{~h}, \mathrm{TBSCl}(98.3 \mathrm{mg})$ was added. After stirring for additional 6 h , the mixture was evaporated with toluene azeotropically. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\left.\mathrm{EtOAc}=2: 1 \rightarrow 1: 1 \rightarrow 1: 2\right)$ to give diol $\mathbf{1 6}$ ($102.1 \mathrm{mg}, 78 \%$ yield, 2 steps).
(b) To a solution of $\mathbf{1 5}(37.0 \mathrm{mg}, 0.0783 \mathrm{mmol})$ in THF $(3.5 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(17.6$ $\mathrm{mg}, 0.426 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min , the mixture was warmed to rt and stirred for 1 h . After addition of $\mathrm{H}_{2} \mathrm{O}, 12 \% \mathrm{NaOH}$ solution, and $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$, the mixture was diluted with EtOAc, CHCl_{3}, and MeOH . After stirring at rt for 1 h , MgSO_{4} was added, and the mixture was filtrated through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated in vacuo to give crude tetraol. To a solution of the crude tetraol in pyridine (1.5 $\mathrm{mL})$ was added $\mathrm{TBSCl}(40.2 \mathrm{mg}, 0.261 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at rt for $1.5 \mathrm{~h}, \mathrm{TBSCl}(38.7 \mathrm{mg})$ was added. After stirring for $16 \mathrm{~h}, \mathrm{TBSCl}(42.1 \mathrm{mg})$ was added. After stirring for additional 10.5 h , the mixture was evaporated with toluene azeotropically. The residue was purified by flash column chromatography ($\mathrm{SiO}_{2} ; n$-hexane: $\mathrm{EtOAc}=1: 2$) to give diol 16 ($39.4 \mathrm{mg}, 78 \%$ yield, 2 steps).
16: $[\alpha]^{19}{ }_{\mathrm{D}}+24.1\left(c 1.085, \mathrm{CHCl}_{3}\right)$; IR (neat) $3419,2953,1471,1256,1099,909,837,777,735$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.47(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.68(\mathrm{~m}$, $3 \mathrm{H}), 3.64(\mathrm{ddd}, J=6.4,6.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.39(\mathrm{~m}, 3 \mathrm{H})$, $3.12(\mathrm{dd}, J=12.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{ddd}, J=11.9,9.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.16(\mathrm{ddd}, J=11.6,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{ddd}, J=11.6,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 2 \mathrm{H})$, 1.84-1.79 (m, 4H), 1.69-1.65 (m, 2H), 1.63-1.56 (m, 3H), $1.40(\mathrm{dd}, J=11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26$ $(\mathrm{s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.099(\mathrm{~s}, 3 \mathrm{H}), 0.091(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 82.7,79.7,79.5,78.6,77.3,74.6,73.8,72.8,71.0,68.8,60.7,59.9$, $43.7,38.1,37.9,35.1,33.1,32.7,27.2,25.9$ (3C), 25.8 (3C), 18.3, 18.2, 16.3, 16.2, -5.36, -5.38, $-5.46,-5.54 ;$ HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na} 667.4032$, found 667.4030.

Diketone 17

To a solution of $\mathbf{1 6}(102.1 \mathrm{mg}, 0.102 \mathrm{mmol})$ and powdered $\mathrm{MS} 4 \mathrm{~A}(90.3 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5$ mL) was added NMO ($123.1 \mathrm{mg}, 1.02 \mathrm{mmol}$) at rt under argon atmosphere. After stirring for 45 \min, TPAP ($3.6 \mathrm{mg}, 0.0102 \mathrm{mmol}$) was added and the mixture was stirred at rt for 40 min . The mixture was directly purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\left.\mathrm{EtOAc}=6: 1\right)$ to
give diketone 17 ($69.3 \mathrm{mg}, 69 \%$ yield).
17: $[\alpha]^{19}{ }_{\mathrm{D}}-26.7$ (c $0.415, \mathrm{CHCl}_{3}$); IR (neat) 2953, 2857, 1719, 1472, 1380, 1256, 1096, 836 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.16(\mathrm{dd}, J=5.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=7.9,4.6 \mathrm{~Hz}$, 1 H), $3.78-3.65(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{dd}, J=12.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (ddd, $J=11.6,9.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dd, $J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.04$ (ddd, $J=11.9,9.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{ddd}, J=14.3,10.9$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, J=17.7,5.8,<1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=17.4,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (ddd, J $=12.5,6.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{ddd}, J=11.9,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.06-2.00 (m, 1H), 1.93-1.86 (m, 2H), 1.82-1.75 (m, 2H), $1.72(\mathrm{ddd}, J=11.6,11.6,11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.037(\mathrm{~s}, 12 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 216.2,208.0,84.3,81.8,78.8,77.6,73.8,72.4,68.6,58.35,58.33$, $43.2,40.8,38.3,36.7,36.1,34.3,32.8,25.93$ (3C), 25.88 (3C), 18.4, 18.3, 15.7, 15.1, -5.41 (2C), -5.47 (2C); HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{60} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na} 663.3719$, found 663.3741.

Bis(α-hydroxyketone) 19.

To a solution of $17(88.3 \mathrm{mg}, 0.138 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.764 \mathrm{~mL}$, $5.48 \mathrm{mmol})$, TMSCl ($0.706 \mathrm{~mL}, 5.48 \mathrm{mmol}$) and LiHMDS (1.0 M in THF, $1.37 \mathrm{~mL}, 1.37$ mmol) at $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at the same temperature for 30 min , phosphate pH buffer $(\mathrm{pH}=6.86)(4 \mathrm{~mL})$ was added. The mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo to give crude TMS enol ether 18, which was immediately used for the next reaction without purification.

To a solution of $\mathbf{1 8}$ in THF $(1.5 \mathrm{~mL})-\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ were added NMO $(170.9 \mathrm{mg}, 1.42$ $\mathrm{mmol})$ and $\mathrm{OsO}_{4}(2.5 \mathrm{wt} \%$ in t - $\mathrm{BuOH}, 86 \mu \mathrm{~L}, 6.85 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. After stirring at rt for 9.5 h , the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2} ; n\right.$-hexane: $\left.\mathrm{EtOAc}=4: 1 \rightarrow 3: 1 \rightarrow 2: 1\right)$ to give bis(hydroxyketone) 19 as a colorless oil ($38.8 \mathrm{mg}, 42 \%$ yield, 2 steps).
19: $[\alpha]^{26}{ }_{\mathrm{D}}+18.5$ (c 1.11, CHCl_{3}); IR (neat) 3480, 2954, 2857, 1725, 1471, 1383, 1361, 1323, $1255,1090,1015,949,836,777,665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.61$ (ddd, $J=13.1$, $5.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=8.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=11.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H})$, $3.72(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{ddd}, J=11.6,9.6,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=12.1,4.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.04(\mathrm{ddd}, J=12.1,9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=12.1,4.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.17$ (dd, $J=13.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=11.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{ddd}, J=12.1$, $12.1,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=13.6,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{dd}, J=11.6,11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 18 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 215.9,206.1,85.0,83.3,82.3,79.2,75.0,74.1,73.4,71.5,71.3,67.9,58.08,58.05$, $47.5,43.5,37.1,32.33,32.29,25.9$ (6C), 18.3 (2C), 16.5, 15.6, -5.4 (2C), -5.5 (2C); HRMS (EI) calcd for $\mathrm{C}_{33} \mathrm{H}_{60} \mathrm{O}_{10} \mathrm{Si}_{2} 672.3725$, found 672.3721 .

NMR analysis of 19.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

PFG-NOESY ($400 \mathrm{~ms}, 600 \mathrm{MHz}$)

PFG-HMBC ($62.5 \mathrm{~ms}, 600 \mathrm{MHz}$)

