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Supporting Information:

Modeling Electrohydrodynamic Flows.  The completely rigorous treatment of electrohydrodynamics 
in the IDS device requires the simultaneous solution of the Poisson, Nernst-Planck, Navier-Stokes, and 
(thermal) energy conservation equations.  To mitigate the computational constraints imposed by the full 
model, we pursue a simplified version predicated on two primary assumptions.  The first assumption is 
that the frequency is sufficiently high that we may use time-averaged quantities for the polarization 
force and Joule heating, both of which depend on the square of the electric field, and that polarization at 
the electrode interface is negligible.  Electrode polarization relaxation occurs on a time scale that 
depends upon both the solvent and the geometry of the electrodes.  For electrodes with characteristic 
dimensions on the order of 10 µm in a typical electrolyte with a conductivity of ~0.1 S/m, frequencies 
greater than a few 10’s of kilohertz are sufficiently high that the screening of the electric field and 
induced charge electroosmosis associated with electrode polarization may be safely neglected.

The second assumption is that the conductivity varies over distances considerably larger than the 
applied electric field.  This motivates us to formulate the problem using regular perturbation, in which 
the small parameter is taken as the fractional change in conductivity over the region of large electric 
field.  For the case of the imposed conductivity gradient, this parameter is of order h/w ~ 10-2 (h = 
channel height, w = channel width), and is thus universally valid.  For thermally induced gradients in 
conductivity and permittivity, validity of the perturbation analysis is contingent on the temperature rise 
being reasonably modest (∆T < 10 K, typically).

The 0th order term in the perturbation series corresponds to the behavior of the different physical 
domains in the absence of any coupling.  The fluid velocity, u0, is Poiseuille, the electric field, E0, is 
solenoidal, and the conductivity and permittivity are, to 0th order, uniform.  After scaling the governing 
system of equations (Table SI 1) and eliminating inessential terms, the first correction for the fluid 
velocity, u1, is governed by:  
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in addition to continuity ( 1 0∇⋅ =% %u ).  The 1st order conductivity and permittivity are assumed to be 

known from imposed conditions and from the 0th order temperature (i.e. 1 1 0σ ε∇ ∝∇ ∝∇% % % %%% T , where the 

constants of proportionality are taken from the linearized temperature coefficients of conductivity and 
permittivity), so that u1 is fully determined.

To analyze induced flows in the IDS device, we consider the case of imposed and thermally induced 
conductivity gradients separately.  Figure SI 1 depicts the flow fields and scaling typical for the two 
different cases.  For conductivities of ~0.1 S/m and voltages of 20 Vpp, we predict intrinsic and thermal 
EHD to be comparable in magnitude (~10-4 m/s), or about one tenth the velocity of the imposed flow.
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Variable Scale Description

[ ]0 0= =E E E% %E V d Applied field

/∇ =∇% h Chamber height

[ ]( )U Q wh= =% %u u u Imposed velocity

[ ]0e e E h= %ρ ρ ε  
Charge scale from 

Gauss’s Law

2 2
0 0T T E h =  

% σ κ
Joule heating balanced 

with thermal conduction

[ ]P P U h= % µ Viscous pressure scale

Table SI 1: Parameter scales used in the electrohydrodynamic model.
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Figure SI 1:  Streamlines and scaling for EHD flows due to the two dominant mechanisms. (A) 
Coupling to the imposed conductivity gradient (color plot), creating a single counter-clockwise vortex. 
(B) Coupling to conductivity and permittivity gradients induced by localized heating, creating two 
primary and two secondary flow vortices. (C) Plot showing the predicted scaling and magnitude of EHD 
velocities with the applied (zero-to-peak) voltage.


