Supporting Information # Synthesis and Structures of Platinum(0) Alkyne Complexes with $Extended \ \pi\text{-}Conjugated \ Systems$ Kyohei Hayashi,[†] Mitsuharu Nakatani,[†] Akito Hayashi,[†] Masato Takano,[†] Masaaki Okazaki,[†] Kozo Toyota,[‡] Masaaki Yoshifuji,^{‡,§} and Fumiyuki Ozawa*,[†] International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-001, Japan, and Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan ### **Contents** | Experimental Section |
2 | |--|-------| | | | | | | | Table S2. Crystallographic Data for 1c |
4 | ## **Experimental Section** All manipulations were carried out under a dry nitrogen atmosphere using standard Schlenk techniques. NMR spectra were recorded on a Varian Mercury 300 spectrometer. Chemical shifts are reported in δ, referenced to ¹H (of residual protons) and ¹³C signals of deuterated solvents as internal standards or to the ³¹P signal of 85% H₃PO₄ as an external standard. Cyclic voltammetory was performed with a BAS ALS600C Electrochemical Analyzer. UV-vis absorption spectra were measured by a JASCO V560 spectrometer. Elemental analysis was performed by the ICR Analytical Laboratory, Kyoto University. DPCB-phen was prepared by a slightly modified literature method.¹ [Pt(dmad)(DPCB-phen)] (1a): mp 273 °C. ¹H NMR (CDCl₃, 20 °C): δ 1.50 (s, 18H), 1.66 (s, 36H), 3.74 (s, 6H), 5.30 (d, J_{HH} = 7.7 Hz, 2H), 7.12 (t, J_{HH} = 7.7 Hz, 4H), 7.48 (t, J_{HH} = 7.7 Hz, 2H), 7.62 (s, 4H), 8.44 (d, J_{HH} = 8.4 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 20 °C): δ 31.6 (s), 34.0 (s), 35.4 (s), 38.7 (s), 52.1 (s), 121.5 (t, J_{PC} = 432 Hz, J_{PC} = 45 Hz, C=C), 122.1 (s), 123.7 (s), 124.5 (s), 125.0 (s), 127.6 (s), 127.8 (s), 129.0 (t, J_{PC} = 4 Hz), 132.2 (s), 142.9 (t, J_{PC} = 8 Hz), 152.7 (s), 157.8 (s), 162.7 (t, J_{PC} = 19 Hz), 172.8 (t, J_{PC} = 37 Hz). ³¹P{¹H} NMR (CDCl₃, 20 °C): δ 150.7 (s, J_{PP} = 3913 Hz). IR (KBr): 2963, 1771, 1704, 1206, 754 cm⁻¹. FABMS: m/z 1090 (M⁺, 100), 945 (78). Anal. Calcd. for C₅₈H₇₂O₄P₂Pt: C, 63.90; H, 6.66. Found: C, 63.58; H, 6.84. [Pt(tolan-H)(DPCB-phen)] (1b): mp >290 °C. ¹H NMR (CDCl₃, 20 °C): δ 1.54 (s, 18H), 1.66 (s, 36H), 6.02 (d, J_{HH} = 8.1 Hz, 2H), 7.10-7.16 (m, 2H), 7.10-7.16 (m, 2H), 7.22 (t, J_{HH} = 7.3 Hz, 4H), 7.46 (t, J_{HH} = 8.1 Hz, 2H), 7.67 (s, 4H), 7.82 (d, 4H), 8.44 (d, J_{HH} = 8.4 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 20 °C): δ 31.6 (s), 33.8 (s), 35.4 (s), 38.9 (s), 122.3 (m, C=C), 122.3 (s), 123.7 (s), 124.9 (s), 125.1 (s), 126.7 (s), 127.1 (s), 127.4 (s), 127.9 (s), 130.8 (t, J_{PC} = 10 Hz), 131.3 (s), 131.7 (t, J_{PC} = 48 Hz, J_{PC} = 4 Hz), 131.8 (s), 143.0 (t, J_{PC} = 6 Hz), 152.2 (s), 157.0 (s), 173.0 (dd, J_{PC} = 35 Hz, J_{PC} = 33 Hz). ³¹P{¹H} NMR (CDCl₃, 20 °C): δ 155.7 (s, J_{PLP} = 3455 Hz). IR (KBr): 2963, 1593, 1477, 756 cm⁻¹. FABMS: m/z 1126 (M⁺, 100) 945 (60). Anal. Calcd. for C₆₆H₇₆P₂Pt: C, 70.38; H, 6.80. Found: C, 70.13; H, 6.83. [Pt(tolan-OMe)(DPCB-phen)] (1c): mp > 290 °C. ¹H NMR (CDCl₃, 20 °C): δ 1.55 (s, 18H), 1.67 (s, 36H), 3.80 (s, 6H), 6.03 (d, J_{HH} = 8.0 Hz, 2H), 6.75 (d, J_{HH} = 8.6 Hz, 4H), 7.12 (t, J_{HH} = 7.6 Hz, 2H), 7.46 (t, J_{HH} = 7.3 Hz, 2H), 7.68 (s, 4H), 7.75 (d, J_{HH} = 8.6 Hz, 4H), 8.43 (d, J_{HH} = 8.2 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 20 °C): δ 31.6 (s), 33.8 (s), 35.4 (s), 38.9 (s), 55.3 (s), 113.3 (s), 121.5 (t, J_{PC} = 38 Hz, C=C), 122.3 (s), 122.5 (t, J_{PC} = 11 Hz), 123.7 (s), 124.9 (s), 125.1 (s), 127.0 (s), 127.4 (s), 131.6 (s), 131.8 (s), 133.2 (t, J_{PC} = 56 Hz, J_{PC} = 4 Hz), 143.0 (t, J_{PC} = 6 Hz), 152.2 (s), 156.9 (s), 158.5 (s), 172.8 (t, J_{PC} = 35 Hz). ³¹P{¹H} NMR (CDCl₃, 20 °C): δ 156.6 (s, J_{PP} = 3436 Hz). IR (KBr): 2962, 1600, 1507, 1243, 1036, 830, 757 cm⁻¹. FABMS: m/z 1186 (M⁺, 100), 945 (23). Anal. Calcd. for C₆₈H₈₀O₂P₂Pt: C, 68.84; H, 6.80. Found: C, 68.97; H, 6.97. [Pt(tolan-NMe₂)(DPCB-phen)] (1d): mp > 290 °C. ¹H NMR (CDCl₃, 20 °C): δ 1.54 (s, 18H), 1.67 (s, 36H), 2.91 (s, 12H), 6.05 (d, J_{HH} = 7.9 Hz, 2H), 6.56 (d, J_{HH} = 8.7 Hz, 4H), 7.12 (t, J_{HH} = 7.5 Hz, 2H), 7.44 (t, J_{HH} = 7.5 Hz, 2H), 7.68 (s, 4H), 7.69 (d, J_{HH} = 8.7 Hz, 4H), 8.42 (d, J_{HH} = 8.3 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 20 °C): δ 31.7 (s), 33.9 (s), 35.6 (s), 39.0 (s), 40.6 (s), 111.9 (s), 119.5 (t, J_{PC} = 11 Hz), 121.4 (t, J_{PC} = 37 Hz, C=C), 122.2 (s), 123.6 (s), 125.0 (s), 125.1 (s), 126.7 (s), 127.3 (s), 132.3 (s), 132.2 (s), 133.2 (t, J_{PC} = 58 Hz, J_{PC} = 4 Hz), 142.9 (t, J_{PC} = 7 Hz), 149.2 (s), 151.9 (s), 156.9 (s), 172.2 (t, J_{PC} = 34 Hz). ³¹P{¹H} NMR (CDCl₃, 20 °C): δ 157.4 (s, J_{PP} = 3406 Hz). IR (KBr): 2961, 1602, 1516, 1362, 1124, 816, 755 cm⁻¹. FABMS: m/z 1212 (M⁺, 100), 945 (23). Anal. Calcd. for C₇₀H₈₆N₂P₂Pt: C, 69.34; H, 7.15; N, 2.31. Found: C, 69.42; H, 7.05; N, 2.27. **X-ray Crystal Structure Determination of 1c.** A single crystal of dimensions $0.21 \times 0.17 \times 0.10$ was grown by slow diffusion of a CH₂Cl₂ solution to MeOH at room temperature. The intensity data were collected on a Rigaku Mercury CCD diffractometer at 173 K using Mo K_{α} radiation ($\lambda = 0.71070$ Å). The data was corrected for Lorentz and polarization effects and absorption (REQAB). The structure was solved by direct methods (SHELXS-97) and refined on F^2 against all reflections (SHELXL-97). Further information has been deposited with the Cambridge Crystallographic Data Centre (CCDC-661220). Crystallographic data are summarized in Table S1. ### References - (1) Nakamura, A.; Kawasaki, S.; Toyota, K.; Yoshifuji, M. Chem. Lett. 2004, 33, 1570. - (2) Sheldrick, G. M. SHELXL-97; University of Gottingen: Germany, 1997. Table S1. Crystallographic Data for 1c | color | purple | |--|----------------------------------| | habit | block | | crystal size (mm) | $0.21 \times 0.17 \times 0.10$ | | formula | $C_{68}H_{80}O_{2}P_{2}Pt$ | | formula weight | 1186.35 | | crystal system | monoclinic | | a (Å) | 14.684(3) | | b (Å) | 22.008(4) | | c (Å) | 18.693(3) | | β (deg) | 107.720(2) | | $V(\mathring{A}^3)$ | 5754.3(18) | | space group | $P2_{1}/c$ (No. 14) | | Z | 4 | | $d_{\rm calcd}$ (g cm ⁻³) | 1.369 | | $\mu(\text{Mo }K\alpha) \text{ (mm}^{-1})$ | 2.538 | | transmission factor | 0.6177-0.7854 | | θ range (deg) | 3.00-27.48 | | no. of reflns collected | 45340 | | no. of independent reflns | 13140 [$R_{\rm int} = 0.0347$] | | no. of reflns with $I > 2\sigma(I)$ | 11936 | | no. of variables | 898 | | goodness-of-fit on F^2 | 1.085 | | final R indices $[I > 2\sigma(I)]$ | $R_1 = 0.0266, wR_2 = 0.0586$ | | R indices (all data) | $R_1 = 0.0319, wR_2 = 0.0610$ |