Supporting Information

A Convenient Route to *N*-[2-(Fmoc)-Aminoethyl]glycine Esters and PNA Oligomerization Using a bis-Boc Nucleobase Protecting Group Strategy

Filip Wojciechowski and Robert H.E. Hudson*

Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7

Table of Contents

General Remarks	
¹ H NMR of 1	
¹³ C NMR of 1	
¹ H NMR of 2	
¹³ C NMR of 2	
¹ H NMR of 3	S9
¹³ C NMR of 3	
¹ H NMR of 4	
¹³ C NMR of 4	
¹ H NMR of 5	
¹³ C NMR of 5	
¹ H NMR of 6	
¹³ C NMR of 6	
¹ H NMR of 7	
¹³ C NMR of 7	
¹ H NMR of 9	
¹³ C NMR of 9	
¹ H NMR of 10	
¹³ C NMR of 10	
¹ H NMR of 12	
¹³ C NMR of 12	
¹ H NMR of 13	
¹³ C NMR of 13	

¹ H NMR of 15	S27
¹³ C NMR of 15	S28
¹ H NMR of 16	S29
¹³ C NMR of 16	S30
¹ H NMR of 18	S31
¹³ C NMR of 18	
¹ H NMR of 19	S33
¹³ C NMR of 19	S34
¹ H NMR of 21	S35
¹³ C NMR of 21	S36
¹ H NMR of 22	S37
¹³ C NMR of 22	S38
¹ H NMR of 23	S39
¹³ C NMR of 23	
¹ H NMR of 24	S41
¹³ C NMR of 24	
¹ H NMR of 25	
¹³ C NMR of 25	S44
¹ H NMR of 26	S45
¹³ C NMR of 26	S46
¹ H NMR of 27	S47
¹³ C NMR of 27	
¹ H NMR of 28	S49
¹³ C NMR of 28	S50
Fig. S1. HPLC chromatogram	S51

General Remarks. All chemicals were obtained from commercial sources and were of ACS reagent grade or higher and were used without further purification. Solvents for solution-phase chemistry were dried by passing through activated alumina columns. Flash column chromatography (FCC) was performed on Merck Kieselgel 60, 230-400 mesh. Thin layer chromatography (TLC) was performed on Merck Kieselgel 60 TLC plates. Chemical shifts are reported in parts per million (δ), were measured from Tetramethylsilane (0 ppm) and are referenced to the solvent CDCl₃ (7.26 ppm), DMSO-*d*₆ (2.49 ppm), D₂O (4.79 ppm) for ¹H NMR and CDCl₃ (77.0 ppm), DMSO-*d*₆ (39.5 ppm) for ¹³C NMR. Multiplicities are described as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br s (broad singlet). Coupling constants (*J*) are reported in Hertz (Hz). Resonances due to restricted rotation around the amide bond (rotamers) are reported as major (ma.) and minor (mi.). High resolution mass spectra (HRMS) were obtained using electron impact (EI) or electrospray (ESI).

¹H NMR (400 MHz, DMSO-d₆) of $\mathbf{1}$, *N*-(2-Aminoethyl)glycine \cdot 2 TsOH

¹H NMR (400 MHz, D₂O) of **2**, Benzyl *N*-(2-aminoethyl)glycinate · 2 TsOH

 ^1H NMR (400 MHz, D₂O) of **3**, Allyl *N*-(2-aminoethyl)glycinate \cdot 2 TsOH

¹³C NMR (100 MHz, DMSO-d₆) of **4**, 4-Nitrobenzyl *N*-(2-aminoethyl)glycinate · 2 TsOH

¹³C NMR (100 MHz, DMSO-d₆) of **5**· HCl , Benzyl *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]glycinate hydrochloride

¹H NMR (400 MHz, DMSO-d₆) of **6**·HCl , Allyl *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]glycinate hydrochloride

¹³C NMR (100 MHz, DMSO-d₆) of **6**·HCl, Allyl *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]glycinate hydrochloride

¹³C NMR (100 MHz, DMSO-d₆) of **7**·HCl , 4-Nitrobenzyl *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]glycinate hydrochloride

¹H NMR (400 MHz, CDCl₃) of **9**, Ethyl $[N^4, N^4$ -bis(*tert*-butoxycarbonyl)cytosin-1-yl]acetate

¹³C NMR (100 MHz, CDCl₃) of **9**, Ethyl $[N^4, N^4$ -bis(*tert*-butoxycarbonyl)cytosin-1-yl]acetate

¹H NMR (400 MHz, CDCl₃) of **12**, Ethyl [N^6 , N^6 -bis(*tert*-butoxycarbonyl)adenin-9-yl]acetate

¹³C NMR (100 MHz, CDCl₃) of **12**, Ethyl [N^6 , N^6 -bis(*tert*-butoxycarbonyl)adenin-9-yl]acetate

¹H NMR (400 MHz, CDCl₃) of **13**, $[N^6, N^6$ -bis(*tert*-Butoxycarbonyl)adenin-9-yl]acetic acid

¹³C NMR (100 MHz, CDCl₃) of **13**, $[N^6, N^6$ -bis(*tert*-Butoxycarbonyl)adenin-9-yl]acetic acid

¹H NMR (400 MHz, CDCl₃) of **16**, Ethyl $[N^2, N^2$ -bis(*tert*-butoxycarbonyl)- O^6 -(*tert*-butoxycarbonyl)guanin-9-yl]acetate

 13 C NMR (100 MHz, CDCl₃) of **16**, Ethyl [N^2 , N^2 -bis(*tert*-butoxycarbonyl)- O^6 -(*tert*-butoxycarbonyl)guanin-9-yl]acetate

¹H NMR (400 MHz, CDCl₃) of **18**, Ethyl $[N^2, N^2$ -(bis(*tert*-butoxycarbonyl)amino)-6-chloropurin-9-yl]acetate

 13 C NMR (100 MHz, CDCl₃) of **18**, Ethyl [N^2 , N^2 -(bis(*tert*-butoxycarbonyl)amino)-6-chloropurin-9-yl]acetate

¹H NMR (400 MHz, DMSO-d₆) of **19**, [N²-(*tert*-butoxycarbonyl)guanin-9-yl]acetic acid

¹³C NMR (100 MHz, DMSO-d₆) of **19**, [N²-(*tert*-butoxycarbonyl)guanin-9-yl]acetic acid

¹H NMR (400 MHz, CDCl₃) of **21**, Ethyl [N^2 , N^2 -bis(*tert*-butoxycarbonyl)- O^6 -benzylguanin-9-yl]acetate

¹³C NMR (100 MHz, CDCl₃) of **21**, Ethyl $[N^2, N^2$ -bis(*tert*-butoxycarbonyl)- O^6 -benzylguanin-9-yl]acetate

¹H NMR (400 MHz, CDCl₃) of **22**, $[N^2, N^2$ -bis(*tert*-butoxycarbonyl)- O^6 -benzylguanin-9-yl]acetic acid

¹³C NMR (100 MHz, CDCl₃) of **22**, $[N^2, N^2$ -bis(*tert*-butoxycarbonyl)- O^6 -benzylguanin-9-yl]acetic acid

¹H NMR (400 MHz, DMSO-d₆) of **23**, Benzyl *N*-[2-(*N*-9-fluorenylmethoxycarbonyl)aminoethyl]-*N*-[(N^4 , N^4 -bis(*tert*-butoxycarbonyl)-cytosin-1-yl)acetyl]glycinate

¹³C NMR (100 MHz, CDCl₃) of **23**, Benzyl *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]-N-[(N^4 , N^4 -bis(*tert*-butoxycarbonyl)cytosin-1-yl)acetyl]glycinate

¹H NMR (400 MHz, DMSO-d₆) of **24**, Benzyl *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]-*N*-[(N^6 , N^6 -bis(*tert*-butoxycarbonyl)-adenin-9-yl)acetyl]glycinate

 13 C NMR (100 MHz, CDCl₃) of **24**, Benzyl *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]-*N*-[(N^6 , N^6 -bis(*tert*-butoxycarbonyl)adenin-9-yl)acetyl]glycinate

¹H NMR (400 MHz, DMSO-d₆) of **25**, Allyl *N*-[2-(fluorenylmethoxycarbonyl)-aminoethyl]-N-[N^2 , N^2 -bis(*tert*-butoxycarbonyl)- O^6 -benzylguanin-9-yl)acetyl]glycinate

¹³C NMR (100 MHz, CDCl₃) of **25**, Allyl *N*-[2-(fluorenylmethoxycarbonyl)-aminoethyl]-N-[N^2 , N^2 -bis(*tert*-butoxycarbonyl)- O^6 -benzylguanin-9-yl)acetyl]glycinate

¹H NMR (400 MHz, DMSO-d₆) of **26**, *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]-N-[(N^4 , N^4 -bis(*tert*-butoxycarbonyl)cytosin-1-yl)acetyl]glycine

¹³C NMR (100 MHz, CDCl₃) of **26**, *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]-*N*-[(N^4 , N^4 -bis(*tert*-butoxycarbonyl)cytosin-1-yl)acetyl]glycine

¹H NMR (400 MHz, DMSO-d₆) of **27**, *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]-*N*-[(N^6 , N^6 -bis(*tert*-butoxycarbonyl)adenin-9-yl)acetyl]glycine

¹³C NMR (100 MHz, CDCl₃) of **27**, *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]-*N*-[(*N*⁶,*N*⁶-bis(*tert*-butoxycarbonyl)adenin-9-yl)acetyl]glycine

¹H NMR (400 MHz, DMSO-d₆) of **28**, *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]-N-[N^2 , N^2 -bis(*tert*-butoxycarbonyl)- O^6 -benzylguanin-9-yl)acetyl]glycine

¹³C NMR (100 MHz, CDCl₃) of **28**, *N*-[2-(fluorenylmethoxycarbonyl)aminoethyl]-*N*-[N^2 , N^2 -bis(*tert*-butoxycarbonyl)- O^6 -benzylguanin-9-yl)acetyl]glycine

Fig. S1. HPLC chromatogram H-GTA GAT CAC T-Lys-NH₂