Supporting Information

Design of a 'New Motif' with $\boldsymbol{\beta}$-Amino Acids and $\boldsymbol{\alpha}$-Aminoxy Acids: Synthesis of Hybrid Peptides with 12/10-Helix**

Gangavaram V. M. Sharma,* Vennampalli Manohar, Samit K. Dutta, Velaparthi Subash and Ajit C. Kunwar*

Indian Institute of Chemical Technology, Hyderabad 500007 (India)

Table of Contents

2. Synthesis of peptides $\mathbf{3 b}$ and $\mathbf{4 b}$; 5a and $\mathbf{5 b}$ S 4
3. ${ }^{1}$ H NMR spectrum of peptide 3a S 6
4. TOCSY spectrum of peptide 3a S 7
5. ROESY spectrum of peptide 3a S 8
6. HSQC spectrum of peptide 3a S 9
7. HMBC spectrum of peptide 3a S 10
8. Solvent titration plot for peptide 3a S 11
9. Distance constraints used in MD calculations for peptide 3a S 11
10. ${ }^{1} \mathrm{H}$ NMR spectrum of peptide $\mathbf{4 a} \quad$ S 12
11. TOCSY spectrum of peptide 4a S 13
12. ROESY spectrum of peptide 4a S 14
13. HSQC spectrum of peptide 4a S 15
14. HMBC spectrum of peptide $\mathbf{4 a}$ S 16
15. Solvent titration plot for peptide $\mathbf{4 a}$ S 17
16. Distance constraints used in MD calculations for peptide 4a S 17
17. ${ }^{1}$ H NMR chemical shift table of peptide 5a S 18
18. ${ }^{1}$ H NMR spectrum of peptide 5a 519
19. TOCSY spectrum of peptide 5a S 20
20. ROESY spectrum of peptide $\mathbf{5 a}$ S 21
21. HSQC spectrum of peptide $\mathbf{5 a}$ S 22
22. HMBC spectrum of peptide $\mathbf{5 a}$ S 23
23. Solvent titration plot for peptide 5a S 24
24. Distance constraints used in MD calculations for peptide 5a S 24
25. Stereoview of twenty superimposed structures of 5a S 25
26. ${ }^{1}$ H NMR chemical shift table of peptide $\mathbf{5 b}$ S 26
27. ${ }^{1} \mathrm{H}$ NMR spectrum of peptide $\mathbf{5 b}$ S 27
28. TOCSY spectrum of peptide $\mathbf{5 b}$ S 28
29. ROESY spectrum of peptide $\mathbf{5 b}$ S 29
30. HSQC spectrum of peptide $\mathbf{5 b}$ S 30
31. HMBC spectrum of peptide $\mathbf{5 b}$ S 31
32. Solvent titration plot for peptide 5b S 32
33. ${ }^{1}$ H NMR chemical shift table of peptide 3b S 33
34. ${ }^{1} \mathrm{H}$ NMR spectrum of peptide $\mathbf{3 b}$ S 34
35. TOCSY spectrum of peptide $\mathbf{3 b}$ S 35
36. ROESY spectrum of peptide $\mathbf{3 b}$ S 36
37. HSQC spectrum of peptide 3b S 37
38. HMBC spectrum of peptide $\mathbf{3 b}$ S 38
39. Solvent titration plot for peptide 3b S 39
40. Distance constraints used in MD calculations for peptide 3b S 39
41. Stereoview of twenty superimposed structures of $\mathbf{3 b}$ S 40
42. ${ }^{1} \mathrm{H}$ NMR shift table of peptide of peptide $\mathbf{4 b}$ S 41
43. ${ }^{1} \mathrm{H}$ NMR spectrum of peptide $\mathbf{4 b}$ S 42
44. TOCSY spectrum of peptide $\mathbf{4 b}$ S 43
45. ROESY spectrum of peptide $\mathbf{4 b}$ S 44
46. HSQC spectrum of peptide 4b S 45
47. HMBC spectrum of peptide $\mathbf{4 b}$ S 46
48. Solvent titration plot for peptide 4b S 47
49. Distance constraints used in MD calculations for peptide $\mathbf{4 b}$ S 47
50. Stereoview of 20 superimposed structures of $\mathbf{4 b}$ S 48
51. CD spectra of peptides $\mathbf{3 a}, \mathbf{3} \mathbf{b}$ and $\mathbf{5 a}$ in MeOH S 49
52. CD spectra of peptides $\mathbf{3 a}, \mathbf{3 b}$ and $\mathbf{5 a}$ in TFE S 50
53. CD spectra of peptides $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{5 b}$ in MeOH S 51
54. CD spectra of peptides $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{5 b}$ in TFE S 52

General experimental: The monomer (R)- $\beta-\mathrm{Caa}$ was synthesized from D-glucose and the monomer (R)-Ama was synthesized from L-ethyl lactate. The monomers (S) - β-hAla and Ama were synthesized from L-Ala and ethyl glycolate respectively. Deprotection of Boc-group was achieved with $\mathrm{CF}_{3} \mathrm{COOH}(0.1 \mathrm{~mL}$ per 100 mg$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$, while, esters were hydrolyzed with aq. $4 \mathrm{~N} \mathrm{NaOH}(4 \mathrm{~mL} / 1 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$-room temperature. The synthesis of oligomers involved coupling of monomers in the requisite sequence using standard coupling reagents EDCI, HOBt and DIPEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The compounds reported were purified by column chromatography over silica gel (60-120 mesh).

Solvents were dried over standard drying agents and freshly distilled prior to use. Organic solutions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Melting points were determined in open capillaries and were not corrected. Optical rotations were measured in CHCl_{3} solutions on a Perkin-Elmer 343 polarimeter at room temperature using a cell of 1 dm of length and $\lambda=598 \mathrm{~nm}$. IR spectra were recorded with an FT-IR spectrometer between 400 and $4000 \mathrm{~cm}^{-1}$ in KBr pellets. Mass spectra were obtained under high resolution mass spectrometry (HRMS) on Q-STAR-XL (Applied Biosystems).

Synthesis of peptides 3b and 4b; 5a and 5b

The peptides 5a and 5b were prepared from monomers 1, and 2a. Accordingly, coupling of acid $\mathbf{8}$ with the amine $\mathbf{2 a}$ (prepared by the reaction of $\mathbf{7 b}$ with hydrazine hydrate in $\mathrm{CH}_{3} \mathrm{OH}$ at room temperature for 2 h) in the presence of EDCI and HOBt in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 5 h furnished the dipeptide 13 in 66.29% yield, $[\alpha]_{\mathrm{D}}=-$ $69.54\left(c 1.07, \mathrm{CHCl}_{3}\right)$. Base (aq. 4 N NaOH) hydrolysis of dipeptide $\mathbf{1 3}$ gave the acid $\mathbf{1 4}$,
while $\mathbf{1 3}$ was converted into the corresponding amine salt 15 on exposure to $\mathrm{CF}_{3} \mathrm{COOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 2 h . The thus derived acid $\mathbf{1 4}$ was then coupled with amine $\mathbf{1 5}$ in the presence of EDCI, HOBt and DIPEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 5 h to furnish the tetrapeptide 5a in 53.12% yield, $[\alpha]_{\mathrm{D}}=-19.89\left(c \quad 1.25, \mathrm{CHCl}_{3}\right)$. Base hydrolysis of the ester group in $\mathbf{5 a}$ with NaOH in $\mathrm{CH}_{3} \mathrm{OH}$ gave the corresponding acid 16 (90.27\%), which on coupling with the dipeptide amine TFA salt 15 under the above reaction conditions afforded the hexapeptide $\mathbf{5 b}$ in 35.4% yield, $[\alpha]_{\mathrm{D}}=-1.85\left(c 0.09, \mathrm{CHCl}_{3}\right)$.

The peptides $\mathbf{3 b}$ and $\mathbf{4 b}$ were prepared from monomers 1a and 2. Accordingly, ester 1a was subjected to hydrolysis with aq. 4 N NaOH at room temperature to afford the acid $\mathbf{1 7}$ in 98.5% yield. Coupling of acid $\mathbf{1 7}$ with the amine $\mathbf{2}$ (prepared by the reaction of 7a with hydrazine hydrate in $\mathrm{CH}_{3} \mathrm{OH}$ at room temperature for 2 h) in the presence of EDCI and HOBt in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 5 h furnished the dipeptide $\mathbf{1 8}$ in 58.59% yield, $[\alpha]_{\mathrm{D}}=+38.15$ (c 0.065, CHCl_{3}). Base (aq. 4 N NaOH) hydrolysis of dipeptide 18 gave the acid 19 , while $\mathbf{1 8}$ was converted into the corresponding amine salt 20 on exposure to $\mathrm{CF}_{3} \mathrm{COOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 2 h . The thus derived acid $\mathbf{1 9}$ was then coupled with amine $\mathbf{2 0}$ in the presence of EDCI, HOBt and DIPEA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 5 h to furnish the tetrapeptide 3b in 48.21% yield, $[\alpha]_{\mathrm{D}}=+246.7\left(c 1.04, \mathrm{CHCl}_{3}\right)$. Tetrapeptide 3b was converted into the corresponding amine salt 21 on exposure to $\mathrm{CF}_{3} \mathrm{COOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 2 h . Coupling of acid $\mathbf{1 9}$ salt $\mathbf{2 1}$ under the above reaction conditions afforded the hexapeptide $\mathbf{4 b}$ in 24.1% yield, $[\alpha]_{\mathrm{D}}=+249.55\left(c 0.13, \mathrm{CHCl}_{3}\right)$.

Supporting Figure 1. ${ }^{1} \mathrm{H}$ NMR spectrum of peptide $3 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right.$)

Supporting Figure 2. TOCSY spectrum of peptide $3 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 3. ROESY spectrum of peptide $3 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 4. HSQC spectrum of peptide $3 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 5. HMBC spectrum of peptide $3 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 6. Solvent titration plot for peptide 3a

Residue	Atom	Residue	Atom	Lower bond (\AA)	Higher bond (\AA)
1	NH	1	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	2.52	3.08
1	$\mathrm{C} \beta \mathrm{H}$	2	NH	3.15	3.84
1	$\mathrm{C} \beta \mathrm{H}$	3	NH	2.55	3.12
1	$\mathrm{C} \beta \mathrm{H}$	3	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	2.34	2.85
2	NH	1	$\mathrm{C} \alpha \mathrm{H}($ pro-S $)$	2.38	2.91
2	NH	2	$\mathrm{C} \alpha \mathrm{H}$	2.96	3.61
2	NH	3	NH	2.88	3.53
3	NH	2	$\mathrm{C} \alpha \mathrm{H}$	2.16	2.63
3	NH	3	$\mathrm{CaH}($ pro-R $)$	2.61	3.20
3	$\mathrm{C} \beta \mathrm{H}$	4	NH	2.95	3.61
4	NH	3	$\mathrm{CaH}($ pro-S $)$	2.72	3.32
4	NH	4	CaH	2.88	3.53

Supporting Table 1. Distance constraints used in MD calculations for peptide 3a, derived from ROESY experiment in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 278 \mathrm{~K})$

Supporting Figure 7. ${ }^{1} \mathrm{H}$ NMR spectrum of peptide $4 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 8. TOCSY spectrum of peptide $4 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 9. ROESY spectrum of peptide $4 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 10. HSQC spectrum of peptide $4 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 11. HMBC spectrum of peptide $4 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 12. Solvent titration plot for peptide 4a

Residue	Atom	Residue	Atom	Lower bond (\AA)	Higher bond (\AA)
1	NH	1	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	2.45	3.00
1	$\mathrm{C} \beta \mathrm{H}$	2	NH	2.70	3.31
1	$\mathrm{C} \beta \mathrm{H}$	3	NH	2.36	2.88
1	$\mathrm{C} \beta \mathrm{H}$	3	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	2.18	2.66
2	NH	1	$\mathrm{C} \alpha \mathrm{H}($ pro-S $)$	2.38	2.91
2	NH	2	$\mathrm{C} \alpha \mathrm{H}$	2.82	3.44
2	NH	3	NH	3.30	4.03
2	NH	4	C H	2.84	3.47
3	NH	2	$\mathrm{C} \alpha \mathrm{H}$	1.90	2.32
3	NH	3	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	2.61	3.19
3	$\mathrm{C} \beta \mathrm{H}$	4	NH	2.60	3.18
3	$\mathrm{C} \beta \mathrm{H}$	5	NH	2.37	2.89
3	$\mathrm{C} \beta \mathrm{H}$	5	$\mathrm{C} \alpha \mathrm{H}(p r o-R)$	2.17	2.65
4	NH	3	$\mathrm{C} \alpha \mathrm{H}($ pro-S $)$	2.27	2.77
4	NH	4	$\mathrm{C} \alpha \mathrm{H}$	2.80	3.42
4	NH	5	NH	3.23	3.95
4	NH	6	$\mathrm{C} \alpha \mathrm{H}$	3.86	4.72
5	NH	4	CaH	1.90	2.32
5	NH	5	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	2.59	3.18
5	$\mathrm{C} \beta \mathrm{H}$	6	NH	2.74	3.35
6	NH	5	$\mathrm{C} \alpha \mathrm{H}($ pro-S $)$	2.34	2.86
6	NH	6	CaH	2.31	2.83

Supporting Table 2. Distance constraints used in MD calculations for peptide 4a, derived from ROESY experiment in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 278 \mathrm{~K})$

	Res-1	Res-2	Res-3	Res-4
NH	$\begin{gathered} 5.72 \\ (\mathrm{~d}, J=9.2) \end{gathered}$	$\begin{gathered} 10.39 \\ (\mathrm{~s}) \end{gathered}$	$\begin{gathered} 8.29 \\ (\mathrm{~d}, J=9.5) \end{gathered}$	$\begin{gathered} 9.77 \\ \text { (s) } \end{gathered}$
$\mathrm{C} \alpha \mathrm{H}$	$\begin{gathered} 2.60 \\ (\mathrm{dd}, J=3.6, \\ 15.0) \end{gathered}$	$\begin{gathered} 4.27 \\ (\mathrm{~d}, J=15.6) \end{gathered}$	2.64 $(\mathrm{dd}, J=3.5$, $14.5)$	$\begin{gathered} 4.46 \\ (\mathrm{~d}, J=17.0) \end{gathered}$
C ${ }^{\prime}$ 'H	$\begin{gathered} 2.47 \\ (\mathrm{dd}, J=8.4, \\ 15.0) \\ \hline \end{gathered}$	$\begin{gathered} 4.37 \\ (\mathrm{~d}, J=15.6) \end{gathered}$	$\begin{gathered} 2.48 \\ (\mathrm{dd}, J=8.7, \\ 14.5) \\ \hline \end{gathered}$	$\begin{gathered} 4.50 \\ (\mathrm{~d}, J=17.0) \end{gathered}$
$\mathrm{C} \beta \mathrm{H}$	$\begin{gathered} 4.35 \\ \text { (m) } \end{gathered}$	-	4.65 $(\mathrm{ddt}, J=$ $3.5,8.7,9.5$, $8.7)$	-
C4H	$\begin{gathered} 4.15 \\ (\mathrm{dd}, J=3.1, \\ 8.0) \\ \hline \end{gathered}$	-	$\begin{gathered} 4.22 \\ (\mathrm{~m}) \end{gathered}$	-
C3H	$\begin{gathered} 3.74 \\ (\mathrm{~d}, J=3.1) \end{gathered}$	-	$\begin{gathered} 3.75 \\ (\mathrm{~d}, \mathrm{~J}=3.0) \end{gathered}$	-
C2H	$\begin{gathered} 4.57 \\ (\mathrm{~d}, J=3.8) \end{gathered}$	-	$\begin{gathered} 4.58 \\ (\mathrm{~d}, J=3.8) \end{gathered}$	-
C1H	$\begin{gathered} 5.89 \\ (\mathrm{~d}, J=3.8) \end{gathered}$	-	$\begin{gathered} 5.89 \\ (\mathrm{~d}, J=3.8) \end{gathered}$	-
Acetonides: OMe: Ethyl ester: Boc:	$\begin{aligned} & 1.47(3 \mathrm{H}, \mathrm{~s}), 1 \\ & 3.41(\mathrm{~s}), 3.39(\\ & 4.24(2 \mathrm{H}, \mathrm{~m},- \\ & 1.44(9 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 1.32(3 \mathrm{H}, \mathrm{~s}), 1 \\ & (\mathrm{~s}) \\ & \left.-\mathrm{CH}_{2}\right), 1.30(3 \end{aligned}$	$1.31(6 \mathrm{H}, 2 \mathrm{~s})$ $3 \mathrm{H}, \mathrm{t}, J=7.0$	$\left.-\mathrm{CH}_{3}\right)$

Supporting Table 3. ${ }^{1} \mathrm{H}$ NMR chemical shifts δ in ppm with multiplicity and coupling constants J in Hz (in parentheses) of 5 a ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}$)

Supporting Figure 13. ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{Fa}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 14. TOCSY spectrum of $5 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 15. ROESY spectrum of $5 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 16. HSQC spectrum of $5 \mathrm{a}\left(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 17. HMBC spectrum of peptide $5 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 18. Solvent titration plot for 5a

Residue	Atom	Residue	Atom	Lower bond (\AA)	Higher bond (\AA)
1	NH	1	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	2.70	3.30
1	$\mathrm{C} \beta \mathrm{H}$	2	NH	2.92	3.57
1	$\mathrm{C} \beta \mathrm{H}$	3	NH	2.70	3.30
2	NH	1	$\mathrm{C} \alpha \mathrm{H}($ pro-S $)$	3.18	3.88
2	NH	2	CaH	3.28	4.01
2	NH	3	NH	3.40	4.15
3	NH	2	CaH	2.96	3.62
3	NH	3	$\mathrm{CaH}($ pro-R $)$	3.13	3.82
3	$\mathrm{C} \beta \mathrm{H}$	4	NH	3.12	3.81
4	NH	3	$\mathrm{C} \alpha \mathrm{H}($ pro-S $)$	2.89	3.35
4	NH	4	CaH	2.89	3.54

Supporting Table 4. Distance constraints used in MD calculations for 5a, derived from ROESY experiment in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 278 \mathrm{~K})$

Supporting Figure 19. Stereoview of twenty superimposed structures of 5a (H-bonds are shown as dotted lines)

	Res-1	Res-2	Res-3	Res-4	Res-5	Res-6
NH	$\begin{gathered} 5.83 \\ (\mathrm{~d}, J=9.8) \end{gathered}$	10.61 (s)	$\begin{gathered} 8.33 \\ (\mathrm{~d}, J=8.2) \end{gathered}$	$\begin{gathered} 10.58 \\ (\mathrm{~s}) \end{gathered}$	$\begin{gathered} 8.35 \\ (\mathrm{~d}, \mathrm{~J}=9.0) \end{gathered}$	9.95 (s)
$\mathrm{C} \alpha \mathrm{H}$	$\begin{gathered} 2.61 \\ (\mathrm{dd}, J=3.6 \\ 14.3) \end{gathered}$	$\begin{gathered} 4.38 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.79 \\ (\mathrm{dd}, J=3.3 \\ 14.7) \end{gathered}$	$\begin{gathered} 4.42 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.63 \\ (\mathrm{dd}, J=3.6 \\ 14.8) \end{gathered}$	$\begin{gathered} 4.72 \\ (\mathrm{~m}) \end{gathered}$
C ${ }^{\prime}{ }^{\prime} \mathrm{H}$	$\begin{gathered} 2.40 \\ (\mathrm{dd}, J=9.2, \\ 14.3) \\ \hline \end{gathered}$	$\begin{gathered} 4.24 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.51 \\ (\mathrm{dd}, J= \\ 10.0,14.7) \end{gathered}$	$\begin{gathered} 4.24 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.5 \\ (\mathrm{dd}, J=9.0, \\ 14.8) \end{gathered}$	$\begin{gathered} 4.72 \\ (\mathrm{~m}) \end{gathered}$
$\mathrm{C} \beta \mathrm{H}$	$\begin{gathered} 4.43 \\ (\mathrm{~m}) \end{gathered}$	-	$\begin{gathered} 4.24 \\ (\mathrm{~m}) \end{gathered}$	-	$\begin{gathered} 4.71 \\ (\mathrm{~m}) \end{gathered}$	-
C4H	$\begin{gathered} 4.13 \\ (\mathrm{dd}, J=3.1, \\ 7.9) \\ \hline \end{gathered}$	-	$\begin{gathered} 4.32 \\ (\mathrm{~m}) \end{gathered}$	-	$\begin{gathered} 4.18 \\ (\mathrm{dd}, J=3.1, \\ 7.7) \\ \hline \end{gathered}$	-
C3H	$\begin{gathered} 3.73 \\ (\mathrm{~d}, J=3.1) \end{gathered}$	-	$\begin{gathered} 3.71 \\ (\mathrm{~d}, J=3.1) \end{gathered}$	-	$\begin{gathered} 3.74 \\ (\mathrm{~d}, J=3.1) \end{gathered}$	-
C2H	$\begin{gathered} 4.56 \\ (\mathrm{~d}, J=3.9) \end{gathered}$	-	$\begin{gathered} 4.56 \\ (\mathrm{~d}, J=3.9) \end{gathered}$	-	$\begin{gathered} 4.56 \\ (\mathrm{~d}, J=3.9) \end{gathered}$	-
C1H	$\begin{gathered} 5.87 \\ (\mathrm{~d}, \mathrm{~J}=3.9) \end{gathered}$	-	$\begin{gathered} 5.80 \\ (\mathrm{~d}, J=3.9) \end{gathered}$	-	$\begin{gathered} 5.90 \\ (\mathrm{~d}, J=3.9) \end{gathered}$	-

Acetonides(6): $1.47(6 \mathrm{H}, 2 \mathrm{~s}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.31(9 \mathrm{H}, 3 \mathrm{~s})$.
OMe: $\quad 3.40(3 \mathrm{H}, \mathrm{s}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.36(3 \mathrm{H}, \mathrm{s})$.
Ethyl ester: $\quad 4.25\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}\right), 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0,-\mathrm{CH}_{3}\right)$.
Boc: $\quad 1.99$ (9H, s)
Supporting Table 5. ${ }^{1} \mathrm{H}$ NMR chemical shifts δ in ppm with multiplicity and coupling constants J in Hz (in parentheses) of $5 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 20. ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 21. TOCSY spectrum of peptide $5 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 22. ROESY spectrum of peptide $5 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 23. HSQC spectrum of $5 \mathrm{bb}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 24. HMBC spectrum of peptide $5 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 25. Solvent titration plot for peptide 5b

Supporting Table 6. ${ }^{1} \mathrm{H}$ NMR chemical shifts δ in ppm with multiplicity and coupling constants J in Hz (in parentheses) of $3 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

	Res-1	Res-2	Res-3	Res-4
NH	$\begin{gathered} 5.18 \\ (\mathrm{~d}, J=8.8) \end{gathered}$	$\begin{gathered} 10.4 \\ (\mathrm{~s}) \end{gathered}$	$\begin{gathered} 8.21 \\ (\mathrm{~d}, J=7.8) \end{gathered}$	$\begin{gathered} 9.72 \\ \text { (s) } \end{gathered}$
$\mathrm{C} \alpha \mathrm{H}$	2.46 $(\mathrm{dd}, J=4.8$, $14.5)$ pro S	$\begin{gathered} 4.25 \\ (\mathrm{q}, J=7.1) \end{gathered}$	2.39 (dd, $J=5.0$, $14.0)$ pro S	$\begin{gathered} 4.57 \\ (\mathrm{q}, J=7.2) \end{gathered}$
C $\alpha^{\prime} \mathrm{H}$	$\begin{gathered} 2.29 \\ (\mathrm{dd}, J=8.8, \\ 14.5) \\ \text { pro } R \\ \hline \end{gathered}$	-	$\begin{gathered} 2.34 \\ (\mathrm{dd}, \mathrm{~J}= \\ 8.5,14.0) \\ \text { pro } R \\ \hline \end{gathered}$	-
$\mathrm{C} \beta \mathrm{H}$	$\begin{gathered} 4.05 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.42 \\ (\mathrm{~d},, J=7.1) \end{gathered}$	$\begin{gathered} 4.24 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.49 \\ (\mathrm{~d},, J=7.2) \end{gathered}$
$\mathrm{C} \gamma \mathrm{H}$	$\begin{gathered} 1.22 \\ (\mathrm{~d},, J=6.9) \end{gathered}$	-	$\begin{gathered} 1.25(\mathrm{~d}, J= \\ 6.9) \end{gathered}$	-
Ethyl ester: $4.25\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}\right), 1.31\left(3 \mathrm{H}, \mathrm{t}, \quad J=7.2,-\mathrm{CH}_{3}\right)$ Boc: $\quad 1.43(9 \mathrm{H}, \mathrm{s})$				

Supporting Figure 26. ${ }^{1} \mathrm{H}$ NMR spectrum of peptide $3 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 27. TOCSY spectrum of peptide $3 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 28. ROESY spectrum of peptide $3 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 29. HSQC spectrum of peptide $3 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 30. HMBC spectrum of peptide 3b ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}, 278 \mathrm{~K}$)

Supporting Figure 31. Solvent titration plot for peptide 3b

Residue	Atom	Residue	Atom	Lower bond (\AA)	Higher bond (\AA)
1	NH	1	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	2.87	3.51
1	$\mathrm{C} \beta \mathrm{H}$	2	NH	3.08	3.76
1	$\mathrm{C} \beta \mathrm{H}$	3	NH	3.33	4.07
1	$\mathrm{C} \beta \mathrm{H}$	3	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	1.9	2.31
2	NH	1	$\mathrm{C} \alpha \mathrm{H}($ pro-S $)$	3.13	3.83
2	NH	2	CaH	3.56	4.34
2	NH	3	NH	3.49	4.27
3	NH	3	$\mathrm{CaH}($ pro-R $)$	2.97	3.63
3	$\mathrm{C} \beta \mathrm{H}$	4	NH	3.22	3.94
4	NH	3	$\mathrm{CaH}($ pro-S $)$	3.35	3.69

Supporting Table 7. Distance constraints used in MD calculations for peptide 3b, derived from ROESY experiment in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 278 \mathrm{~K})$

Supporting Figure 32. Stereoview of twenty superimposed structures of 3b (Hbonds are shown as dotted lines)

Residue	Res-1	Res-2	Res-3	Res-4	Res-5	Res-6
Protons						

Ethyl ester: $4.25\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}\right), 1.31\left(3 \mathrm{H}, \mathrm{t}, J=7.1,-\mathrm{CH}_{3}\right)$
Boc:
$1.43(9 \mathrm{H}, \mathrm{s})$

Supporting Table 8. ${ }^{1} \mathrm{H}$ NMR chemical shifts δ in ppm with multiplicity and coupling constants J in Hz (in parentheses) of $\mathbf{3 b} \mathbf{(} \mathbf{6 0 0} \mathbf{~ M H z}$, CDCl $\left._{3}, 278 \mathrm{~K}\right)$

Supporting Figure 33. ${ }^{1}$ H NMR spectrum of peptide $\mathbf{4 b}\left(600 \mathbf{M H z}, \mathbf{C D C l}_{3}\right.$, 278K)

Supporting Figure 34. TOCSY spectrum of peptide $4 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 35. ROESY spectrum of peptide $4 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

Supporting Figure 36. HSQC spectrum of peptide $4 \mathrm{~b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 278 \mathrm{~K}\right)$

ng Figure 38. Solvent titration plot for peptide 4b

Supporti

Residue	Atom	Residue	Atom	Lower bond (\AA)	Higher bond (\AA)
1	NH	1	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	3.21	3.92
1	$\mathrm{C} \beta \mathrm{H}$	2	NH	3.04	3.72
1	$\mathrm{C} \beta \mathrm{H}$	3	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	2.12	2.59
2	NH	1	$\mathrm{C} \alpha \mathrm{H}($ pro-S $)$	2.51	3.06
2	NH	2	$\mathrm{C} \alpha \mathrm{H}$	3.13	3.82
2	NH	3	NH	4.11	5.02
2	NH	4	$\mathrm{C} \alpha \mathrm{H}$	3.02	3.70
3	NH	2	$\mathrm{C} \alpha \mathrm{H}$	2.55	3.12
3	NH	3	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	3.06	3.75
3	$\mathrm{C} \beta \mathrm{H}$	4	NH	2.55	3.11
3	$\mathrm{C} \beta \mathrm{H}$	5	NH	3.48	4.25
3	$\mathrm{C} \beta \mathrm{H}$	5	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	2.90	3.55
4	NH	3	$\mathrm{C} \alpha \mathrm{H}($ pro-S $)$	2.42	2.96
4	NH	5	NH	4.33	5.29
4	NH	6	$\mathrm{C} \alpha \mathrm{H}$	4.56	5.57
5	NH	4	$\mathrm{C} \alpha \mathrm{H}$	2.53	3.09
5	NH	5	$\mathrm{C} \alpha \mathrm{H}($ pro-R $)$	2.90	3.54
5	$\mathrm{C} \beta \mathrm{H}$	6	NH	3.70	4.52
6	NH	5	$\mathrm{C} \alpha \mathrm{H}($ pro-S $)$	3.09	3.78

Supporting Table 9. Distance constraints used in MD calculations for peptide 4b, derived from ROESY experiment in $\mathrm{CDCl}_{3}(600 \mathrm{MHz}, 278 \mathrm{~K})$

Supporting Figure 39. Stereoview of twenty superimposed structures of 4b (H-bonds are shown as dotted lines)

Supporting Figure 40. Circular Dichroism (CD) spectra of peptides 3a, 3b and 5a in methanol

Supporting Figure 41. Circular Dichroism (CD) spectra of peptides 3a, 3b and 5a in TFE

Supporting Figure 42. Circular Dichroism (CD) spectra of peptides 4a, 4b and 5b in methanol

Supporting Figure 43. Circular Dichroism (CD) spectra of peptides 4a, 4b and 5b in TFE

