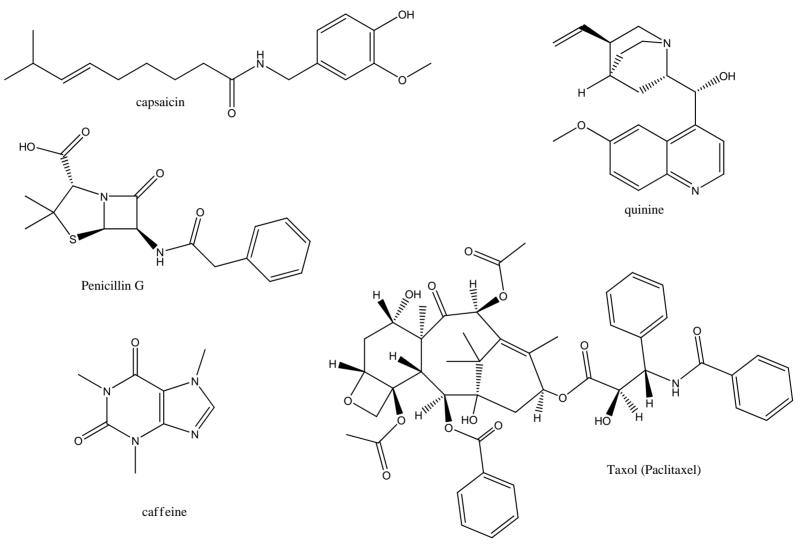
S1 Supporting Information Contents Page

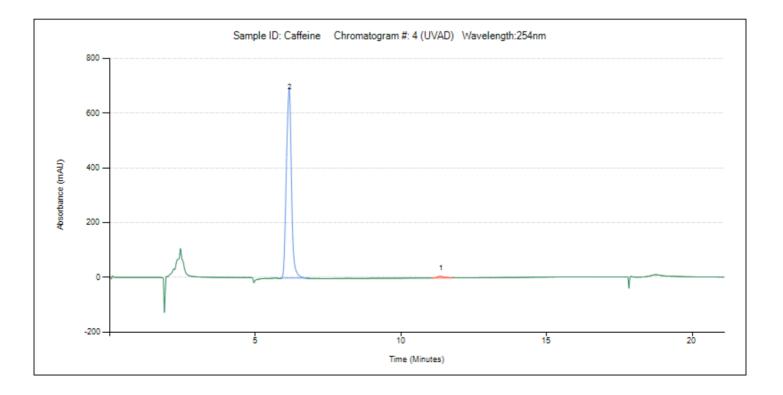

Title: Determination of Analyte Concentration using the Residual Solvent Resonance in ¹H NMR Spectroscopy

Authors: Gregory K. Pierens, Anthony R. Carroll, Rohan A. Davis, Meredith E. Palframan, and Ronald J. Quinn

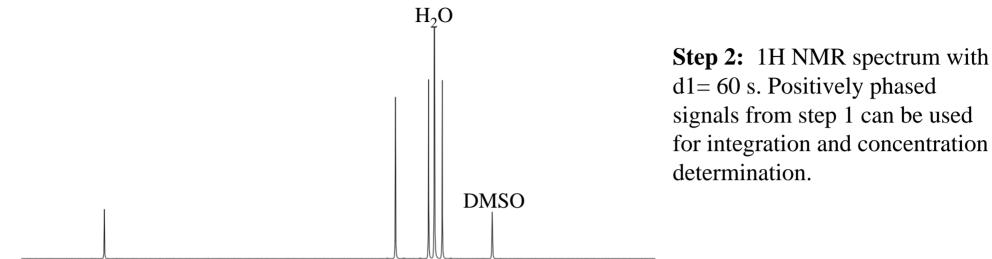
Contents:

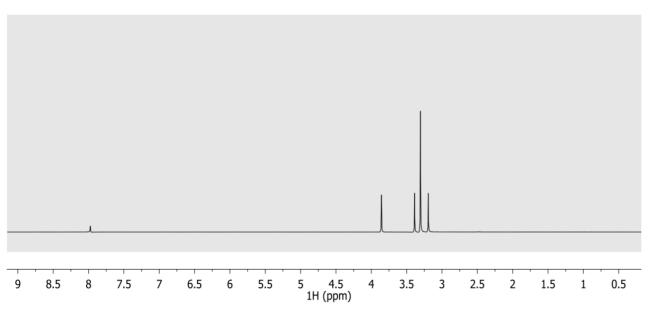
- S2 Chemical Structures of the Commercially Available Crystalline Compounds (neutral form)
- **S3** Example of C_{18} µPLC Purity Analysis (Caffeine)
- **S4** Example of Two Step qNMR Analysis in DMSO- d_6 (Caffeine)
- **S5** Caffeine / DMSO- d_5 Integration Ratios Used to Construct 9-Point Calibration Curve
- **S6** Single Point Calibration Curve Construction using Caffeine For DMSO-*d*₅ Concentration Determination
- **S7** ¹H NMR Spectrum of 3-Chloro-4-hydroxyphenylacetic Acid (sample 11) in DMSO- d_6 Showing Integrals and Calculations for Concentration Determination
- **S8** ¹H NMR Spectrum of Ellipticine (sample 12) in DMSO- d_6 Showing Integrals and Calculations for Concentration Determination
- **S9** ¹H NMR Spectrum of Endiandrin A (sample 15) in DMSO- d_6 Showing Integrals and Calculations for Concentration Determination
- **S10** ¹H NMR Spectrum of Dimethyl-O-endiandrin A (sample 18) in DMSO- d_6 Showing Integrals and Calculations for Concentration Determination

S2 Chemical Structures of the Commercially Available Crystalline Compounds (neutral form)



S3 Example of $C_{18} \mu PLC$ Purity Analysis (Caffeine)


Data File: COMPOUND PURITY ANALYSIS-002.dat			
Method File: Pure Compound Analysis			
Column No.: 4			
Wavelength (nm): 254			
Sample ID: Caffeine			
Load Volume: 3 µL			
Column Type: 4209002 C ₁₈ 7 μm			


Peak Information

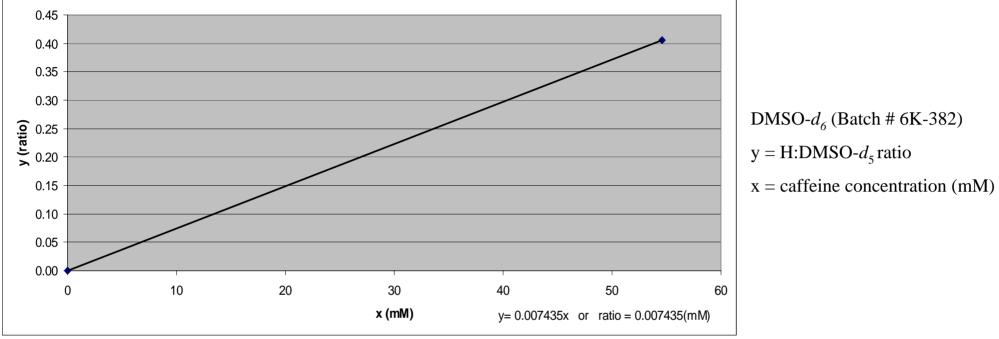
Peak #	Retention Time	Area	Area %	Height	FWHM
1	11.25	1.54	1.08	6.19	0.23
2	6.08	140.89	98.92	693.47	0.19

S4 Example of Two Step qNMR Analysis in DMSO- d_6 (Caffeine)

signals from step 1 can be used for integration and concentration

Step 1: Inversion recovery null point experiment. Used to determine which peaks can be used for accurate integration and concentration determination. NB: DMSO signal is nulled and all other signals are positively phased.

S5 Caffeine / DMSO-*d*₅ Integration Ratios Used to Construct 9-Point Calibration Curve

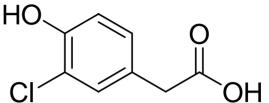

Caffeine	H:DMSO-d ₅ Ratios				
Concentration (mM)	n=1	n=2	n=3	mean	STDev
0.098	0.0013	0.0011	0.0011	0.0012	1.3021E-04
0.295	0.0027	0.0024	0.0025	0.0025	1.6187E-04
0.589	0.0051	0.0054	0.0055	0.0053	1.7227E-04
0.982	0.0101	0.0091	0.0101	0.0098	5.9454E-04
2.945	0.0297	0.0295	0.0294	0.0295	1.5822E-04
5.890	0.0587	0.0586	0.0588	0.0587	9.4197E-05
9.820	0.1026	0.1024	0.1012	0.1021	7.6686E-04
29.450	0.2971	0.2972	0.2970	0.2971	1.2446E-04

•Each sample was measured 3 times (n = 1-3) and H:DMSO- d_5 result averaged and saved under the "mean"

•The standard deviation for the 3 experiments (n=1-3) was calculated

•DMSO-*d*₆ (Batch # 7H-266)

S6 Single Point Calibration Curve Construction using Caffeine For DMSO-*d*₅ Concentration Determination



Worked example for DMSO- d_5 concentration determination:

- 1. Make up caffeine standard (54.6 mM) in DMSO- d_6 and then run 2-step qNMR experiment
- 2. Measure ratio of integrals, H:DMSO- $d_5 = 0.406$
- 3. Gradient of calibration curve = 0.406/54.6 = 0.007435
- 4. Concentration of DMSO- $d_5 = 1/0.007435 = 134.5$ mM

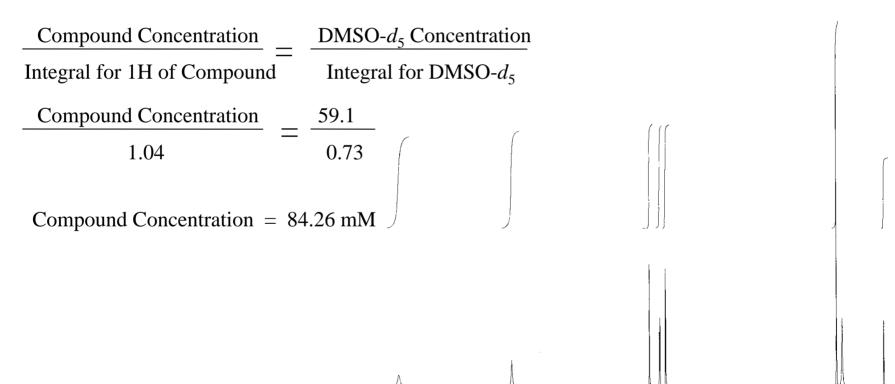
S7 ¹H NMR Spectrum of 3-Chloro-4-Hydroxyphenylacetic Acid (sample 11) in DMSO- d_6 Showing Integrals and Calculations for Concentration Determination

Integral for DMSO– $d_5 = 0.73$ Integral for 1H of Compound = 7.28 / 7H = 1.04 DMSO- d_5 Concentration (Batch # 6L-488) = 59.1 mM

Ż

1.08 1.07

з


2.15

ż

0.73

ppm

8

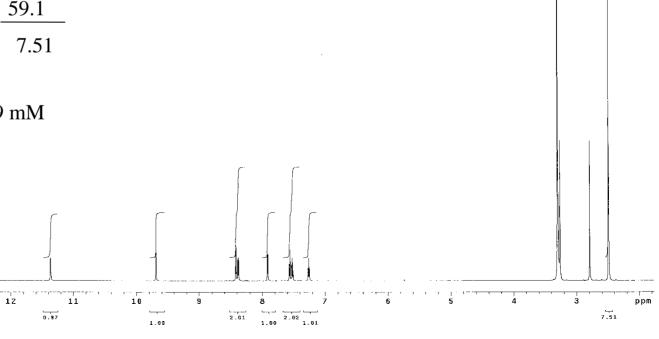
13

12

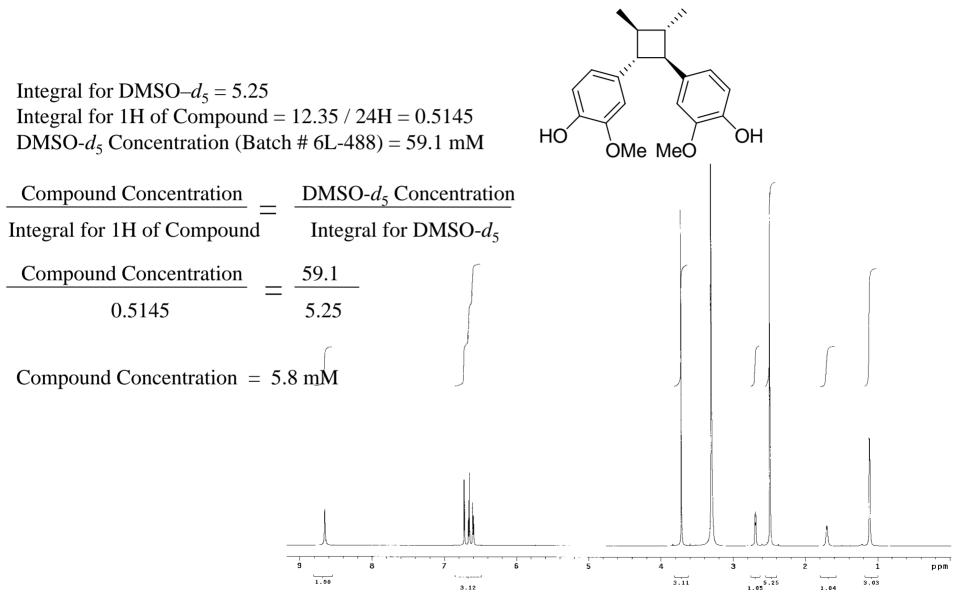
0.94

11

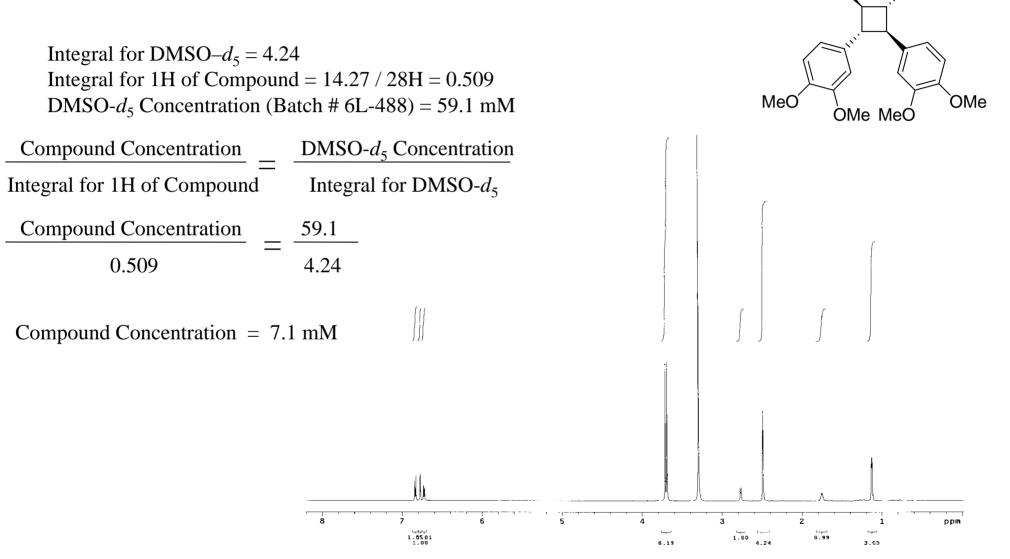
10


1.00

S8 ¹H NMR Spectrum of Ellipticine (sample 12) in DMSO-*d*₆ Showing Integrals and Calculations for Concentration Determination


Integral for DMSO– $d_5 = 7.51$ Integral for 1H of Compound = 8.01 / 8H = 1.001 DMSO- d_5 Concentration (Batch # 6L-488) = 59.1 mM

Compound Concentration	DMSO- <i>d</i> ₅ Concentration
Integral for 1H of Compound	Integral for DMSO- d_5
Compound Concentration	59.1
1.001	7.51


Compound Concentration = 7.9 mM

S9 ¹H NMR Spectrum of Endiandrin A (sample 15) in DMSO- d_6 Showing Integrals and Calculations for Concentration Determination

S10 ¹H NMR Spectrum of Dimethyl-O-endiandrin A (sample 18) in DMSO- d_6 Showing Integrals and Calculations for Concentration Determination

