SUPPORTING INFORMATION

Insulin Analogs with Modifications at Position B26.

Divergence of Binding Affinity and Biological Activity.

Lenka Žáková¹, Ludmila Kazdová², Ivona Hančlová¹, Eva Protivínská¹, Miloslav Šanda¹,

Miloš Buděšínský¹ and Jiří Jiráček^{1*}

¹Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic

²Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4, Czech Republic

zakova@uochb.cas.cz, *jiracek@uochb.cas.cz

Binding affinity of [D-AlaB26]-insulin and of human insulin.

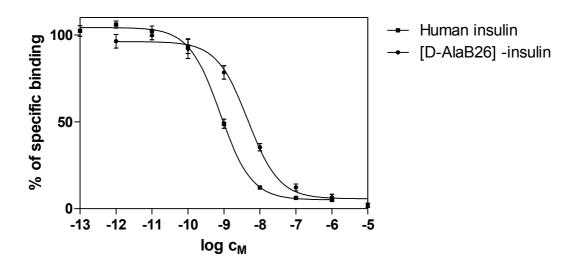

[D-AlaB26]-insulin analog was prepared according to the methodology described in the main manuscript. The binding affinities of [D-AlaB26]-insulin and of human insulin (Table) were determined in a separate experiment using the methodology described in the main manuscript. The binding curves are shown in Figure. The relative binding affinity of the analogue [D-AlaB26]-insulin, 17% compared to human insulin, is in a very good agreement with the result of Kurapkat et al. (1) who published 18% potency. This result again shows that substitutions, which give very potent DTI-NH₂ analogs, [NMeAlaB26]-DTI-NH₂ (this study) or [D-AlaB26]-DTI-NH₂ (1), do not result in potent full length analogs.

Table. Values of IC_{50}^{a} and relative receptor binding affinities of human insulin and [D-AlaB26]-insulin. The experimental values were determined with 125 I-monoiodotyrosylA14-insulin.

Peptide	$IC_{50}^{a} \pm SEM [nM]$	(n) potency ^b [%]
Human insulin	0.79 ± 0.08	(6) 100
[D-AlaB26]-insulin	4.66 ± 0.41	(5) 17

 $^{^{}a}IC_{50}$ values represent concentrations of insulin or the analog that cause half-maximal inhibition of binding of human ^{125}I -monoiodotyrosylA14-insulin to the insulin receptor. Each value represents the mean \pm SEM of multiple determinations (n).

Figure. Inhibition of binding of human ¹²⁵I-insulin to adipose plasma membranes by human insulin (■) and [D-AlaB26]-insulin (●).Quantitative information is provided in Table.

Reference

1. Kurapkat G., Siedentop M., Gattner H.-G., Hagelstein M., Brandenburg D., Grötzinger J. and Wollmer A., *Protein Sci.* **8**, 499-508 (1999).

 $^{^{}b}$ Relative receptor binding affinity is defined as (IC₅₀ of human insulin/IC₅₀ of analog) x 100.