Catalytic, Asymmetric Transannular Aldolizations: Total Synthesis of (+)-Hirsutene

Carley L. Chandler and Benjamin List*
Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
E-mail: list@mpi-muelheim.mpg.de
Supporting Information

General: All reactions were carried out under argon atmosphere in oven-dried and/or flame-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All solvents employed in the reactions were distilled from appropriate drying agent prior to use. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Reactions were monitored by thin layer chromatography using 0.25 mm E. Merck silica gel precoated glass plates (0.25 mm thickness, $60 \mathrm{~F}-254$, E. Merck) using UV light to visualize the course of reaction. Flash column chromatography was performed using E. Merck siliga gel 60 (particle size $0.040-0.063 \mathrm{~mm}$) following the general protocol of Still. ${ }^{1}$ Chemical yields refer to pure isolated substances. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on Bruker spectrometers at 500,400 or 300 and 125,100 or 75 MHz , respectively, using CDCl 3 as the solvent and internal reference. The following abbreviations were used to designate chemical shift mutiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet).

General Procedure for Preparation of bis- α-Diazocarbonyl Compounds ${ }^{2}$

A stirred suspension of the corresponding dicarboxylic acid (1 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M})$ under argon was cooled to $0{ }^{\circ} \mathrm{C}$. Oxalyl chloride (2.2 equiv) was added to the solution followed by a catalytic amount of DMF ($10 \mu \mathrm{~L} / 1 \mathrm{~g}$ of substrate). After gas evolution had ceased and the solution became homogeneous, excess reagent and solvent were removed under reduced pressure. The residue was dissolved in a solution of dry $1: 1 \mathrm{THF}: \mathrm{CH}_{3} \mathrm{CN}(0.6 \mathrm{M}$ in diacid $)$ under argon. In a different flask, a solution of TMS-diazomethane (4.05 equiv, 2 M soln in $\mathrm{Et}_{2} \mathrm{O}$) in dry $1: 1 \mathrm{THF}: \mathrm{CH}_{3} \mathrm{CN}\left(0.6 \mathrm{M}\right.$ in diacid) was cooled to $0^{\circ} \mathrm{C}$. The above solution of the diacid chloride was added dropwise to the prepared reagent solution. Immediate $\mathrm{N}_{2}(\mathrm{~g})$ evolution was observed and the reaction stirred at $0^{\circ} \mathrm{C}$ for 4 h . Excess reagent and solvent were removed under reduced pressure. The crude oil was subjected to column chromatography [silica gel; gradient $30 \%-50 \% \mathrm{EtOAc}: \mathrm{Hex}$] to provide the pure products. Characterization of the diazo compounds en route to diones $\mathbf{5}, \mathbf{7}, \mathbf{1 3}, \mathbf{1 5}, \mathbf{1 7}, \mathbf{1 9}$ and $\mathbf{2 1}$ is given below.

1,10-Bis-diazodecane-2,9-dione: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.24$ (bs, 2H), 2.29 (bm, 4H), $1.60(\mathrm{p}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.31(\mathrm{p}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $40.8,28.8,24.9$; IR (thin film, cm^{-1}): 2098, 1618, 1352. HRMS (m / z): $[\mathrm{MNa}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{NaO}_{2}$, 245.1009; found 245.1008. yield: 76%

1,9-Bis-diazononane-2,8-dione: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.22(\mathrm{bs}, 2 \mathrm{H}), 2.28(\mathrm{bm}$, $4 \mathrm{H}), 1.60(\mathrm{p}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.32(\mathrm{p}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 194.5, 54.4, 40.4, 24.5; IR (thin film, cm^{-1}): 2098, 1619, 1350. HRMS (m / z): [MNa] calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{NaO}_{2}, 231.0852$; found 231.0852. yield: 72\%

[^0]

1-Diazo-4-(2-(2-diazoacetyl)phenyl)butan-2-one: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.13(\mathrm{~m}, 4 \mathrm{H})$, $5.55(\mathrm{bs}, 1 \mathrm{H}), 5.24(\mathrm{bs}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{bm}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 194.2,139.7,137.0,131.1,127.3,126.3,56.3,54.3,43.0,29.2 ;$ IR (thin film, cm^{-1}): 2106, 1624, 1602, 1334. HRMS (m/z): [MH $]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}, 243.0882$; found 243.0880 . yield: 65%
 3,3'-((1R,2S)-cyclohexan-1,2-diyl)bis(1-diazopropan-2-one): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.31-7$13(\mathrm{~m}, 4 \mathrm{H}), 5.55(\mathrm{bs}, 1 \mathrm{H}), 5.24(\mathrm{bs}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{bm}, 2 \mathrm{H})$; IR (thin film, $\left.\mathrm{cm}^{-1}\right):$ 2097, 1627, 1355. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.6,54.8,42.0,36.2,28.8,23.2 ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z}):$ [MNa$]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Na} \mathrm{O}_{2}, 271.1165$; found 271.1162. yield: 70%

1-Diazo-4-(2-(2-diazoacetyl)cyclohexyl)butan-2-one: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.28$ (bs, 1H), $5.27(\mathrm{bs}, 1 \mathrm{H}), 2.53-2.15(\mathrm{bm}, 4 \mathrm{H}), 1.48-1.34(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,194.9$, $54.2,50.6,39.0,37.1,282 ., 25.1,24.8,23.8,22.1$; IR (thin film, cm^{-1}): 2096, 1628, 1339. HRMS (m / z): $[\mathrm{MNa}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}_{2}, 271.1165$; found 271.1162. yield: 68%

General Procedure for Preparation of 1,4-Enediones ${ }^{3}$

A stirred catalyst solution under argon containing $\mathrm{Ru}\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Cl}\left(0.03\right.$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.0006 \mathrm{M})$ was heated to $55^{\circ} \mathrm{C}$ in a round-bottom flask equipped with a reflux condenser and an addition funnel. The substrate was added slowly dropwise as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.005 \mathrm{M})$. After the addition was complete, the reaction mixture was refluxed for an additional 0.5 h . The solution was concentrated under reduced pressure and purified by column chromatography [silica gel; 10% EtOAc:Hex] to provide the pure products. Characterization of the ene-diones en route to diones 5, 7, 13, 15, 17, 19 and 21 is given below.

(Z)-Cyclodec-2-ene-1,4-dione (9): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.33(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.75$ (p, $J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.42(\mathrm{p}, J=3.1 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.2,136.4,41.3,23.7,22.2$; IR (thin film, cm^{-1}): 1686. HRMS (m / z): [M] calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}, 166.0993$; found 166.0993. yield: 77\%

(Z)-Cyclonon-2-ene-1,4-dione (11): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.33(\mathrm{bs}, 2 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.82$ (p, $J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.65(\mathrm{p}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.4,136.6,42.0,26.1,25.4$; IR (thin film, cm^{-1}): 1668. HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]$ calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}, 152.1902$; found 152.1902. yield: 76\%

[^1]
(Z)-Cyclooct-2-ene-1,4-dione: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.40(\mathrm{~s}, 2 \mathrm{H}), 2.59-2-54(\mathrm{~m}, 4 \mathrm{H}), 1.89(\mathrm{p}, \mathrm{J}=$ $3.2 \mathrm{~Hz}, 4 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.7,136.8,40.3$, 23.3; IR (thin film, cm^{-1}): 1642. HRMS $(\mathrm{m} / \mathrm{z})$: [M] calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}, 138.0681$; found 138.0682. yield: 82%

(Z)-Benzo[8]annulene-6,9(5H, 10H)-dione: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H})$, $3.87(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.0,134.3,133.0,130.8,129.4,128.3,127.1,126.7,125.6$, 81.4, 48.5, 36.9; IR (thin film, cm^{-1}): 1662. HRMS (m / z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}, 186.0681$; found 186.0679 . yield: 79\%

9,10-Dihydrobenzo[8]annulene-5,8-dione: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ characterized as a mixture of cis:trans isomers (10:1) $\delta 7.74(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.16(\mathrm{~m}, 8 \mathrm{H}), 6.62(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 6.55(\mathrm{~d}, J=$ $13.7 \mathrm{~Hz}), 6.10(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.84(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.9,194.6,162.9,137.6,137.4,136.8,134.9,133.0,132.5,130.4,129.9,129.1,127.6,127.5,125.7$, 123.9, 57.1, 48.3, 31.8, 28.4; IR (thin film, cm^{-1}): 1691, 1635. HRMS (m / z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}, 186.0681$; found 186.0680. yield: 70\%

(4aR,10aS,Z)-1,2,3,4,4a,5,10,10a-Octahydrobenzo[8]annulene-6,9-dione: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.34(\mathrm{~s}, 2 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.36(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.2$, 137.1, 44.9, 35.2, 29.5, 23.1; IR (thin film, cm^{-1}): 16691. HRMS (m/z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}, 192.1150$; found 192.1148. yield: 75\%

(4aR,10aR,Z)-2,3,4,4a,10,10a-Hexahydrobenzo[8]annulene-5,8(1H,9H)-dione: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.43(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.44(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 1 \mathrm{H})$, 2.02-1.92 (m, 2H), $1.79(\mathrm{bm}, 1 \mathrm{H}), 1.68-1.25(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.8,204.0,138.6$, $135.0,49.0,40.0,35.5,31.1,27.2,24.0,22.7,22.4$; IR (thin film, cm^{-1}): 1669. HRMS (m / z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}, 192.1150$; found 192.1152. yield: 76%

General Procedure for Preparation of 1,4-Diones from 1,4-Ene-Diones

To stirred solution of the substrate in wet $\operatorname{EtOAc}(0.5 \mathrm{M})$ was added palladium on carbon $(10 \%$ by wt. $)$. The flask was evacuated and filled with hydrogen (x 3), equipped with a hydrogen-filled balloon and left to stir 3 h . The mixture was filtered through a plug of celite and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography [silica gel; $10 \% \mathrm{EtOAc}: \mathrm{Hex}$] to provide the pure products. Characterization of diones 5, 7, 13, 15, 17, 19 and 21 is given below.

Cyclodecane-1,4-dione (5): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.71$ (bm, 4H), 2.46-2.42 (m, 4H), 1.69-1.62 (m, 4 H), 1.33-1.28 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.8,40.8,39.5,23.4,22.5$; IR (thin film, cm^{-1}): 1699. HRMS (m / z): [M] calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}, 168.1150$; found 168.1150. yield: 67%

Cyclononane-1,4-dione (7): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.66(\mathrm{bm}, 4 \mathrm{H}), 2.39-2.34(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.70(\mathrm{~m}$, $4 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H}),{ }^{.13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.9,44.7,38.5,28.7,21.1$; IR (thin film, cm^{-1}): 1696.

Cyclooctane-1,4-dione (13): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.70(\mathrm{~m}, 4 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.81$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.9,41.4,40.8,24.6$; IR (thin film, cm^{-1}): 1697. HRMS (m / z): $[\mathrm{M}]$ calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}, 140.0837$; found 140.0837. yield: 72%

7,8-Dihydrobenzo[8]annulene-6,9(5H,10H)-dione (15): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{bm}, 4 \mathrm{H}), 3.78$ $(\mathrm{s}, 4 \mathrm{H}), 2.58(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.6,133.0,128.4,49.2,38.8$; IR (thin film, cm^{-1}): 1662, 1608. HRMS (m / z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}, 188.0837$; found 188.0838. yield: 88%

6,7,9,10-Tetrahydrobenzo[8]annulene-5,8-dione (17): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.43-7.20 (m, $4 \mathrm{H})$, , 3.15-3.07 (m, 4H), 2.86-2.80 (m, 2H), 2.71-2.65 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.6$, 206.1, 139.3, 136.6, 131.5, 130.0, 127.5, 127.2, 45.4, 40.9, 38.7, 29.5; IR (thin film, cm^{-1}): 1688, 1669. HRMS (m / z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}, 188.0837$; found 188.0838 . yield: 75%

(4aR,10aS)-Decahydrobenzo[8]annulene-6,9-dione (19): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 2.71-2.52 (m, 6 H), $2.21(\mathrm{bm}, 2 \mathrm{H}), 2.14-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.34(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.9,46.2,40.7$, 36.2, 30.1, 23.3; IR (thin film, cm^{-1}): 1718. HRMS (m / z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}, 194.1306$; found 194.1305. yield: 89%

General Procedure for Preparation of $\mathbf{1 , 5}$ - and 1,6- Diones by Oxidative Cleavage ${ }^{4}$

To a stirred mixture of the appropriate olefin ${ }^{5}$ (6.0 mmol , 1 equiv) in $\mathrm{CCl}_{4}(30 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(43 \mathrm{~mL})$ were added $\mathrm{NaIO}_{4}\left(5.4 \mathrm{~g}, 25.2 \mathrm{mmol}, 4.2\right.$ equiv) and $\mathrm{RuO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(16.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 0.02$ equiv). The resulting mixture was stirred vigorously for 30 min . The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by column chromatography [silica gel; 10% EtOAc:Hex] to afford the pure products. Characterization of diones $\mathbf{1}$ and $\mathbf{3}$ is given below.

Cyclononane-1,5-dione (1): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.46-2.43(\mathrm{~m}, 4 \mathrm{H}), 2.34-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.86-$ $1.81(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.1,42.1,40.7,23.4,21.5$; IR (thin film, cm^{-1}): 1695. HRMS (m / z): [M] calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}, 154.0994$; found 154.0995 . yield: 93%

[^2]

Cyclodecane-1,6-dione (3): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.31-2.28(\mathrm{~m}, 8 \mathrm{H}), 1.79-1.76(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 213.9,42.1,233.3$; IR (thin film, cm^{-1}): 1685. HRMS $(\mathrm{m} / \mathrm{z})$: [M] calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}, 168.1150$; found 168.1148. yield: 91\%

General Procedure for the Organocatalytic Transannular Aldol Reaction

To a dried vial under argon was added the diketone substrate followed by DMSO (0.5 M). Trans-4-fluoro-proline ($20 \mathrm{~mol} \%$) was then added to the stirred solution and the reaction was allowed to continue for 24 h . At this time, the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and poured into a separatory funnel containing $\mathrm{H}_{2} \mathrm{O}$. After thorough mixing, the layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x 2). The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography [silica gel; gradient 20\%-60\% EtOAc:Hex] to afford the pure products. Characterization of aldols $\mathbf{2 , 4 , 1 0 , 1 2 , 1 4 , 1 6 , 1 8 , 2 0}$ and $\mathbf{2 2}$ is given below.

(3aS,7aR)-7a-Hydroxyhexahydro- \mathbf{H}-inden-4(2H)-one (2): $[\alpha]_{D}^{20}=+41.9\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.55-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.53(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 ratio was determined to be $97: 3$ by chiral-GC using $\mathrm{BGB}-178 / \mathrm{BGB}-15$ column $29 \mathrm{~m}\left(10 \mathrm{~min}\right.$ at $150{ }^{\circ} \mathrm{C}, 6^{\circ} \mathrm{C} / \mathrm{min}$ until 220 $\left.{ }^{\circ} \mathrm{C}\right)$. Major enantiomer: $\mathrm{t}_{\mathrm{R}}=8.90 \mathrm{~min}$, minor enantiomer: $\mathrm{t}_{\mathrm{R}}=8.64 \mathrm{~min}$.

(3aS,8aS)-8a-Hydroxyoctahydroazulen-4(5H)-one (4): $[\alpha]_{D}^{20}=-28.0\left(c \quad 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 3.11(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 2 \mathrm{H})$, 1.81-1.34 (m, 9H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 211.8,81.8,62.4,44.0,43.2,38.1,25.9,23.7,23.5,22.2 ;$ IR (thin film, cm^{-1}): $3434(\mathrm{~b}), 1687$. HRMS $(\mathrm{m} / \mathrm{z})$: [M] calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}, 168.1150$; found 168.1150 . yield: 57% (84% based on recovered diketone) The enantiomeric ratio of the major diastereomer ($\mathrm{dr}=7: 1$) was determined to be $82: 18$ by chiral-GC using BGB-176/SE-52 column $29.5 \mathrm{~m}\left(80^{\circ} \mathrm{C}\right.$, $1.2{ }^{\circ} \mathrm{C} / \mathrm{min}$ until $220^{\circ} \mathrm{C}$, 10 min at $\left.220^{\circ} \mathrm{C}\right)$. Major enantiomer: $\mathrm{t}_{\mathrm{R}}=49.88 \mathrm{~min}$, minor enantiomer: $\mathrm{t}_{\mathrm{R}}=50.39 \mathrm{~min}$. The peaks at 51.89 min and 53.25 min represent the minor diastereomer.

(3aR,8aS)-3a-Hydroxy-4,5,6,7,8,8a-hexahydroazulen-1(3aH)-one (10): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{bs}, 1 \mathrm{H}) 2.03-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.72(\mathrm{~m}$, 2H) 1.64-1.30 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.0,166.5,132.3,82.9,59.2,37.7,31.1,27.3,27.1,23.0$; IR (thin film, cm^{-1}): 3400 (b), 1682. HRMS (m / z): [M] calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}, 166.0993$; found 166.0994 . yield: 67% (92% based on recovered diketone)

 NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}$, $1 \mathrm{H}) 1.86(\mathrm{bs}, 1 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 2 \mathrm{H}) 1.63-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.13(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 206.8,166.0,131.7,78.0,54.5,36.1,20.9,20.5,19.1$; IR (thin film, cm^{-1}): 3424 (b), 1679. HRMS (m / z): $[\mathrm{M}]$ calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}, 152.1902$; found 152.1902 . yield: 67% (92% based on recovered diketone) The enantiomeric ratio was determined to be $71: 39$ by chiral-GC using BGB-178/BGB- 15 column 29 m (12 min at $150^{\circ} \mathrm{C}, 8^{\circ} \mathrm{C} / \mathrm{min}$ until $230^{\circ} \mathrm{C}$, 5 min at $230^{\circ} \mathrm{C}$). Major enantiomer: $\mathrm{t}_{\mathrm{R}}=8.89 \mathrm{~min}$, minor enantiomer: $\mathrm{t}_{\mathrm{R}}=8.68 \mathrm{~min}$.

(3aR,6aS)-3a-Hydroxyhexahydropentalen-1(2H)-one (14): $[\alpha]_{D}^{20}=+41.9\left(c \quad 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.65-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.44(\mathrm{bm}, 1 \mathrm{H}), 2.36-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.91-1.71(\mathrm{~m}, 5 \mathrm{H})$ 1.64-1.56 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 219.8, ~ 87.5,59.9,40.9,38.5,34.4,28.0,25.6$; IR (thin film, cm^{-1}): 3344 (b), 1728. HRMS (m / z): [M] calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}, 140.0837$; found 140.0836. yield: 53% (95% based on recovered diketone) The enantiomeric ratio was determine to be $97: 3$ by chiral-GC using BGB-178/BGB-15 column 29 m (7 min at $150{ }^{\circ} \mathrm{C}, 12{ }^{\circ} \mathrm{C} / \mathrm{min}$ until $230^{\circ} \mathrm{C}, 5 \mathrm{~min}$ at $230^{\circ} \mathrm{C}$). Major enantiomer: $\mathrm{t}_{\mathrm{R}}=6.32 \mathrm{~min}$, minor enantiomer: $\mathrm{t}_{\mathrm{R}}=5.97 \mathrm{~min}$.

(3aS,8aS)-8a-Hydroxy-1,2,8,8a-tetrahydrocyclopenta[a]inden-3(3aH)-one (16): $[\alpha]_{D=+93.4 \text { (c 1.0, }}^{20}=$ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{bs}, 1 \mathrm{H}), 3.24(\mathrm{bs}, 2 \mathrm{H})$, $2.65(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.3$, $141.1,137.3,128.0,127.4,125.2,124.8,87.0,65.6,46.4,38.0,35.2$; IR (thin film, cm^{-1}): 3421 (b), 1734. HRMS (m / z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}, 188.0837$; found 188.0835. yield: 67% (93% based on recovered diketone) The enantiomeric ratio was determined to be $97: 3$ by chiral-GC using BGB-178/BGB-15 column $29 \mathrm{~m}\left(20 \mathrm{~min}\right.$ at $180{ }^{\circ} \mathrm{C}$). Major enantiomer: $\mathrm{t}_{\mathrm{R}}=13.03$ \min, minor enantiomer: $\mathrm{t}_{\mathrm{R}}=12.42 \mathrm{~min}$.

(3aR,8aS)-3a-Hydroxy-3,3a,8,8a-tetrahydrocyclopenta[a]inden-1(2H)-one (18): $[\alpha]_{D}^{20}=+219.6$ (c $1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.49-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H})$, 3.40-3.34 (m, 1H), 3.12-3.07 (m, 1H), 2.87-2.85 (m, 1H), 2.65-2.56 (m, 2H), 2.51-2.43 (m, 1H), 2.05-1.96(m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 219.0,144.5,142.7,129.5,127.8,125.2,123.0,88.5,59.2,38.8,33.7,33.2$; IR (thin film, cm^{-1}): 3400 (b), 1734, 1665. HRMS (m / z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}, 188.0837$; found 188.0836. yield: 80% The enantiomeric ratio was determined to be $97: 3$ by chiral-GC using BGB-178/BGB-15 column $29 \mathrm{~m}\left(17 \mathrm{~min}\right.$ at $\left.180{ }^{\circ} \mathrm{C}\right)$. Major enantiomer: $\mathrm{t}_{\mathrm{R}}=13.30$
min, minor enantiomer: $\mathrm{t}_{\mathrm{R}}=12.68 \mathrm{~min}$.

(3aS,3bR,7aR,8aS)-8a-Hydroxydecahydrocyclopenta[a]inden-3(3aH)-one (20): $[\alpha]_{D=+78.2 \text { (c 0.8, }}^{20}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.62-2-56(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.15-1.90(\mathrm{~m}, 6 \mathrm{H}), 1.75(\mathrm{bs}$, $1 \mathrm{H}), 1.65-1.23(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 219.6,86.8,65.0,45.6,39.0,38.8,37.7,27.7,27.1$, 24.0, 22.0; IR (thin film, cm^{-1}): 3434, 1726. HRMS (m / z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}, 194.1307$; found 194.1308. yield: 68% (95% based on recovered diketone) The enantiomeric ratio was determined to be $97: 3$ by chiral-GC using B-PM-CD column $29 \mathrm{~m}\left(60 \mathrm{~min}\right.$ at $\left.140^{\circ} \mathrm{C}\right)$. Major enantiomer: $\mathrm{t}_{\mathrm{R}}=53.77 \mathrm{~min}$, minor enantiomer: $\mathrm{t}_{\mathrm{R}}=56.32 \mathrm{~min}$.

(3aS,3bS,7aS,8aS)-3a-Hydroxydecahydrocyclopenta[a]inden-1(2H)-one (22): $[\alpha]_{D}^{20}=+24.1$ (c 0.8, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 2.75-2.67 (m, 1H), $2.22(\mathrm{bm}, 1 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.03$ $(\mathrm{m}, 3 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{bs}, 1 \mathrm{H}) 1.60-1.05(\mathrm{~m}, 8 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 221.3,89.4$, $58.2,48.4,38.6,37.3,35.7,29.0,26.7,24.7,23.0,20.7$; IR (thin film, cm^{-1}): 3385 (b), 1718. HRMS (m / z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}, 194.1307$; found 194.1305. yield: 42% The enantiomeric ratio was determined to be $95: 5$ by chiral-GC using B-PM-CD column $30 \mathrm{~m}\left(70 \mathrm{~min}\right.$ at $140^{\circ} \mathrm{C}, 8{ }^{\circ} \mathrm{C} / \mathrm{min}$ until $230^{\circ} \mathrm{C}$, 5 min at $230^{\circ} \mathrm{C}$). Major enantiomer: $\mathrm{t}_{\mathrm{R}}=64.22 \mathrm{~min}$, minor enantiomer: $\mathrm{t}_{\mathrm{R}}=62.43 \mathrm{~min}$.

Experimental Procedures for a Total Synthesis of (+)-Hirsutene:

(2E,7E)-Diethyl 5,5-dimethylnona-2,7-dienedioate, (26)

To a stirred solution of DMSO ($20 \mathrm{~mL}, 280.0 \mathrm{mmol}, 5$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(224 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added oxalyl chloride $(14.5 \mathrm{~mL}, 168.0 \mathrm{mmol}, 3$ equiv) slowly dropwise. The resulting solution was allowed to stir for 20 min . A solution of 3,3-dimethylpentane-1,5-diol ${ }^{6}$ ($7.4 \mathrm{~g}, 56.0 \mathrm{mmol}$, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(56 \mathrm{~mL}$) was then added dropwise, slowly and the mixture continued to stir for 1 h at $-78{ }^{\circ} \mathrm{C}$. Freshly distilled triethylamine ($55 \mathrm{~mL}, 392.0 \mathrm{mmol}, 7$ equiv) was added slowly, dropwise to the solution and the mixture stirred for 1 h before being warmed to $0^{\circ} \mathrm{C}$. After the solution stirred at $0^{\circ} \mathrm{C}$ for 15 min , it was poured into a separatory funnel containing saturated $\mathrm{NaHCO}_{(\mathrm{aq})}(300 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organics were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The crude oil thus obtained was used immediately for the next reaction.

To a stirred solution of crude 3,3-dimethylpentanedialdehyde (56.0 mmol , 1 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(280 \mathrm{~mL}\right.$) at $0{ }^{\circ} \mathrm{C}$ was added ethoxycarbonylmethylene triphenylphosphorane ($43 \mathrm{~g}, 123.2 \mathrm{mmol}, 2.2$ equiv) and the resulting mixture was allowed to stir for 3 h . The solvent was removed in vacuo and the residue was purified by column chromatography [silica gel; 5% EtOAc:Hex] to afford the diester (11.4 g , yield: 76\%).
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-6.91(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.12(\mathrm{dd}, J=1.32,6.6$ $\mathrm{Hz}, 4 \mathrm{H}$), $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.7,47.1,45.5,40.2,40.0,36.5,31.8,31.5$; IR (thin film, cm^{-1}): 1716, 1652. HRMS (m / z): [M] calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}, 208.1463$; found 208.1461.

Dimethyl 2,2'-(4,4-dimethylcyclopentane-1,2-diyl)diacetate, (27)

To a stirred solution of diester $26\left(8.0 \mathrm{~g}, 29.8 \mathrm{mmol}, 1\right.$ equiv) in dry $\mathrm{MeOH}(445 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ in a round bottom flask equipped with a reflux condenser was added magnesium powder ($10.7 \mathrm{~g}, 15$ equiv). After 15-20 min the reaction mixture exothermed and continued to stir for an additional 3 h . The reaction was quenched by pouring into $1 \mathrm{~N} \mathrm{HCl}(300 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ The solution was stirred for 20 min and then extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was purified by column chromatography [silica gel;

[^3]5\% EtOAc:Hex] to afford cyclopentane 27 (6.36 g , yield: 88\%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ characterized as a mixture of cis:trans isomers $(1.1: 1) \delta 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.66(\mathrm{~s}, 6 \mathrm{H}), 2.63-2.58(\mathrm{~m}$, $2 \mathrm{H}), 2.49(\mathrm{dd}, J=4.2,10.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{dd}, J=6.0,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.01(\mathrm{~m}, 6 \mathrm{H}), 1.76(\mathrm{dd}, J=5.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.66$ $(\mathrm{dd}, J=6.0,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.25-1.15(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 6 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.6$, $173.5,51.5,51.4,47.7,46.7,41.8,38.9,37.7,37.2,37.0,35.7,31.2,30.9,30.2$; IR (thin film, cm^{-1}): 1733. HRMS (m / z): $[\mathrm{MNa}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NaO}_{4}, 265.1410$; found 265.1407.

2,2'-(4,4-Dimethylcyclopentane-1,2-diyl)diacetic acid, (28)

To a stirred solution of diester $27\left(6.36 \mathrm{~g}, 23.5 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{EtOH}(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a cooled solution of KOH ($6 \mathrm{~N}, 40 \mathrm{~mL}, 10$ equiv). The reaction was brought to room temperature and was allowed to stir 24 h . The mixture was cooled to $0^{\circ} \mathrm{C}$, acidified with 6 N HCl and extracted with EtOAc (3 x 100 mL). The solvent was removed under reduced pressure and the residue was purified by recrystallization with hot hexanes to obtain the diacid as a white solid ($2.86 \mathrm{~g}, 57 \%$). The mother liquor contained 28 ($1.03 \mathrm{~g}, 20 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone d^{6}) characterized as a mixture of cis:trans isomers (1.1:1) $\delta 11.19-7.00(\mathrm{bs}, 4 \mathrm{H}), 2.57(\mathrm{dd}, J=$ $3.8,11.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.41(\mathrm{dd}, J=5.8,9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 6 \mathrm{H}), 1.80(\mathrm{dd}, J=5.6,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{dd}, J=5.9,7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.31(\mathrm{dd}, J=5.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{dd}, J=3.5,9.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , acetone d^{6}) $\delta 175.2,175.0,49.3,48.1,43.1,39.9,39.3,38.4,38.1,36.6,33.2,32.0,31.3$; IR (thin film, cm^{-1}): 2950 (b), 1694 HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{MNa}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NaO}_{4}, 237.1097$; found 237.1095.
(S)-3,3'-(4,4-dimethylcyclopentane-1,2-diyl)bis(1-diazopropan-2-one), (29)

Bis- α-diazo compound 29 was prepared from diacid $28(2 \mathrm{~g}, 9.3 \mathrm{mmol})$ according to the general procedure to afford 1.79 g (yield: 73\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) characterized as a mixture of cis:trans isomers (1.1:1) $\delta 5.23(\mathrm{bs}, 4 \mathrm{H}), 2.63-2.53(\mathrm{bm}, 2 \mathrm{H})$, 2.49-2.29 (bm, 4H), 2.21-1.98 (bm, 6 H$), 1.72(\mathrm{dd}, J=5.9,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{dd}, J=6.1,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{dd}, J=5.3,7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.09(\mathrm{dd}, J=3.4,9.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 194.3, 54.7, $54.5,47.6,46.4,45.8,42.6,42.0,38.0,37.2,37.0,31.1,30.8,30.0$; IR (thin film, cm^{-1}): 2095, 1628, 1345, $1320,1139$. HRMS (m / z): $[\mathrm{MNa}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{NaO}_{2}, 285.1322$; found 285.1321.

Ene-dione $\mathbf{3 0}$ was prepared from bis- α-diazo compound $29(950 \mathrm{mg}, 3.62 \mathrm{mmol})$ according to the general procedure to afford 386 mg (yield: 52%) of the cis-isomer and 170 mg (yield: 22%) of the trans-isomer.
cis: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.35(\mathrm{~s}, 2 \mathrm{H}), 2.68-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{dd}, J=6.3$, $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{dd}, J=6.6,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.3,136.6,46.4$, $44.3,38.7,36.6,31.8,31.7$; IR (thin film, cm^{-1}): 1677, 1665. HRMS (m / z): [M] calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}, 206.1307$; found 206.1304. (trans: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.34(\mathrm{~s}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=4.6,9.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{dd}, J=6.6,7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.03-1.97 (m, 2H), 1.66-1.61 (m, 2H), 1.29-1.23 (m, 2H), $1.00(\mathrm{~s}, 6 \mathrm{H}))$.
(3aR,9aS)-2,2-Dimethylhexahydro-1H-cyclopenta[8]annulene-5,8(9H,9aH)-dione, (23)

Diketone 23 was prepared from ene-dione $\mathbf{3 0}(386 \mathrm{mg}, 1.87 \mathrm{mmol})$ according to the general procedure to afford 354 mg (yield: 91\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.74-2.44(\mathrm{~m}, 8 \mathrm{H}), 2.30-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H})$, $1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.7,47.1,45.5,40.2,40.0,36.5,31.8,31.5 ; \mathrm{IR}\left(\right.$ thin film, $\left.\mathrm{cm}^{-1}\right): 1694$. HRMS (m / z): [M] calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}, 208.1463$; found 208.1461.
(+)-(3aS,3bR,6aR,7aS)-7a-Hydroxy-5,5-dimethyl-decahydro-cyclopenta[a]pentalen-3-one, (24)

Aldol 24 was prepared from diketone $23(45 \mathrm{mg}, 0.216 \mathrm{mmol})$ according to the general procedure to afford 37.8 mg (yield: 84%) of the aldol adduct.
$[\alpha]_{D=+67.6}^{20}\left(с \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.73-2.53(\mathrm{~m}, 3 \mathrm{H}), 2.36-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 1 \mathrm{H})$, 2.06-1.98 (m, 2H), 1.86-1.81 (m, 1H), 1.75-1.69 (m, 2H), $1.65(\mathrm{bs}, 1 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 219.4,90.0,66.4,48.9,48.5,46.1,45.5,43.2,42.3,37.5,34.2,29.0,26.9$; IR (thin film, cm^{-1}): 3423 (b), 1711. HRMS (m / z): [M] calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}, 208.1463$; found 208.1461. The enantiomeric ratio was determined to be 97.5:2.5 by chiral-GC using B-PM column 30 m (80 min at $130{ }^{\circ} \mathrm{C}, 8{ }^{\circ} \mathrm{C} / \mathrm{min}$ until $230{ }^{\circ} \mathrm{C}$, 5 min at $230{ }^{\circ} \mathrm{C}$). Major enantiomer: $\mathrm{t}_{\mathrm{R}}=67.68 \mathrm{~min}$, minor enantiomer: $\mathrm{t}_{\mathrm{R}}=69.33 \mathrm{~min}$.

(-)-(3bR,6aR)-5,5-Dimethyl-1,2,3b,4,5,6,6a,7-octahydro-cyclopenta[a]pentalen-3-one, (32)

To a stirred solution of beta-hydroxy ketone $24\left(58.0 \mathrm{mg}, 0.28 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(1.2 \mathrm{~mL})$ was added $2 \mathrm{~N} \mathrm{NaOH}(1.2$ $\mathrm{mL}, 10$ equiv). The reation was allowed to stir for 24 h and then was poured into a separatory funnel containing saturated $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}(25 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting residue was purified by column chromatography [silica gel; 15% EtOAc:Hex] to afford enone 32 (52.0 mg , yield: 99%).
$[\alpha]_{D}^{20}$ $2.22(\mathrm{bm}, 1 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.3,184.7$ $151.7,49.2,47.3,44.9,42.8,41.4,41.1,38.6,28.7,26.9,25.7$; IR (thin film, cm^{-1}): 1691, 1634. HRMS (m / z): [M] calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{1}, 190.1358$; found 190.1356. The enantiomeric ratio was determined to be $97.5: 2.5$ by chiral-GC using B-PM-CD column $30 \mathrm{~m}\left(35 \mathrm{~min}\right.$ at $130{ }^{\circ} \mathrm{C}, 8{ }^{\circ} \mathrm{C} / \mathrm{min}$ until $230{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$ at $230{ }^{\circ} \mathrm{C}$). Major enantiomer: $\mathrm{t}_{\mathrm{R}}=28.88 \mathrm{~min}$, minor enantiomer: $\mathrm{t}_{\mathrm{R}}=29.71 \mathrm{~min}$.

$\mathrm{NH}_{3(\mathrm{~g})}(200 \mu \mathrm{~L})$ was condensed into a flask containing THF ($30 \mu \mathrm{~L}$) at $-78{ }^{\circ} \mathrm{C}$. A freshly cut piece of $\mathrm{Li}(0.30 \mathrm{mg}, 0.046$ mmol, 1.1 equiv) was added and the solution turned immediately dark blue. After the Li completely dissolved (5-10 min) enone $32(8.0 \mathrm{mg}, 0.042 \mathrm{mmol}, 1$ equiv) was added dropwise as a solution in THF $(85 \mu \mathrm{~L})$. The mixture was stirred vigorously for 10 min upon which $\operatorname{MeI}(10 \mu \mathrm{~L}, 0.084 \mathrm{mmol}, 2$ equiv) was added as a solution in THF $(85 \mu \mathrm{~L})$. The reaction was allowed to stir for 10 min and was then quenched with solid $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and poured into a separatory funnel containing $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The resulting residue was purified by column chromatography [silica gel; 2.5% EtOAc:Hex] to afford hirustene norketone ($\mathbf{3 3}$) (6.5 mg , yield: 75%). $[\alpha]_{D}^{20}=+41.0(c 0.1$, hexane $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.78(\mathrm{dt}, J=10.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dq}, J=3.4,9.0 \mathrm{~Hz}, 1 \mathrm{H})$ 2.41-2.23 (m, 2H), 2.02-1.95 (m, 1H), 1.74-1.68 (m, 1H), 1.65-1.54 (m, 3H), 1.46-1.35 (m, 2H), 1.19-1.13 (m, 1H), 1.03 (s, $3 \mathrm{H}), 1.06-0.96(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 224.7,59.3,48.9,48.8,46.7,43.3,41.8$, 41.1, 37.6, 34.2, 30.9, 29.7, 29.2, 26.5, 22.4, 17.3; HRMS (m / z): [M] calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}, 206.1671$; found 206.1671.
(+)-Hirsutene, (34)

To a stirred solution of methyl triphenyl phosphonium bromide ($35 \mathrm{mg}, 0.098 \mathrm{mmol}, 2.05$ equiv) in $\mathrm{PhCH}_{3}(100 \mu \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ was added potassium tert-butoxide ($11.0 \mathrm{mg}, 0.096 \mathrm{mmol}, 2.0$ equiv). The resulting mixture was allowed to stir for 40 min . A solution of hirsutene norketone (33) ($10.0 \mathrm{mg}, 0.048 \mathrm{mmol}, 1$ equiv) in $\mathrm{PhCH}_{3}(200 \mu \mathrm{~L})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$. The solution was brought to reflux $\left(115{ }^{\circ} \mathrm{C}\right)$ for 2.5 h . The reaction was cooled to room temperature, diluted with EtOAc $(10 \mathrm{~mL})$ and poured into a separatory funnel containing saturated $\mathrm{NH}_{4} \mathrm{C}_{(\mathrm{aq})}(25 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude residue was purified by column chromatography [silica gel; 2\% EtOAc:Hex] to afford hirsutene (34) (9.3 mg , yield: 87%).
$[\alpha]_{D=+13.0}^{20}$ (c 0.1 , hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.83(\mathrm{bs}, 1 \mathrm{H}), 4.78(\mathrm{bs}, 1 \mathrm{H}) 2.64-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.18-2.13(\mathrm{~m}$, $1 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}) 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.11-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.96$ $(\mathrm{s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.0,103.5,56.0,53.4,49.9,49.0,44.3,41.9,40.9,38.6,30.9,29.8$, 27.2, 26.8, 23.2; IR (thin film, cm^{-1}): 1461. HRMS (m / z): [M] calcd for $\mathrm{C}_{15} \mathrm{H}_{24}, 204.1878$; found 204.1877.

$$
\underbrace{\mathrm{N} 2} \mathrm{~N}^{\mathrm{N}}
$$

Mir

$$
\underbrace{\mathrm{H}}_{\mathrm{H}}
$$

-

Co

$$
\mathrm{EtO}_{2} \mathrm{C} \sim>\mathrm{CO}_{2} \mathrm{Et}
$$

$$
\mathrm{EtO}_{2} \mathrm{C}
$$

cocces

$$
\underbrace{H}_{H}
$$

8	6	4	2	[ppm]

[^0]: ${ }^{1}$ Still, W.C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
 ${ }^{2}$ Makhey, D.; Dajie, L.; Zhao, B.; Sim, S.-P.; Li, T.-K.; Liu, A.; Liu, L. F.; La Voie, E. J. Bioorg. Med. Chem.2003, 11, 1809.

[^1]: ${ }^{3}$ Del Zotto, A.; Baratta, W.; Verardo, G.; Rigo, P. Eur. J. Org. Chem. 2000, 2795.

[^2]: ${ }_{5}^{4}$ Piers, E.; Skupinska, K. A.; Wallace, D. J. Synlett 1999, 12, 1867.
 ${ }^{5}$ House, H. O.; Lee, J. H.; VanDerveer, D.; Wissinger, J. E. J. Org. Chem. 1983, 48, 5285.

[^3]: ${ }^{6}$ Berglund, R. A.; Braish, T. F.; Jakubowshi, J. A.; Fuchs, P. L. Bioorg. Med. Chem. Lett. 1991, 1, 649

