Supporting Information

Magnetic Ground State and Phase Diagram, *H*_c(*T*), for Magnetically Ordered [Ru₂(O₂CMe)₄]₃[Cr(CN)₆]

William W. Shum, Jason N. Schaller, and Joel S. Miller

The possibility that **1** may contain a higher-than-second order transition was investigated. The transition below the tricritical point ($T < T_t$) is clearly a first order transition, due to the first derivative of energy (magnetization) being a discontinuous function. Between the tricritical point and critical temperature ($T_t < T < T_c$), a different type of transition occurs in which the first derivative of energy (magnetization) is continuous, but second derivative (susceptibility, χ) is discontinuous (Figure S1). When third derivative ($d\chi/dH$) is taken, no discontinuity is evident (Figure S2). Thus, the transition occurring between T_t and T_c is of the second order.

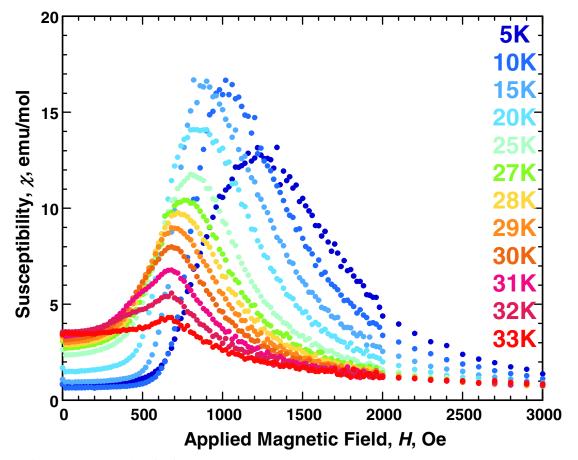


Figure S1. $\chi(H,T)$ data for 1.

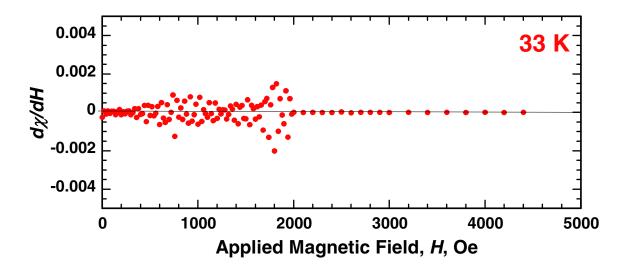


Figure S2. Representative 33-K $d\chi/dH$ data for 1.