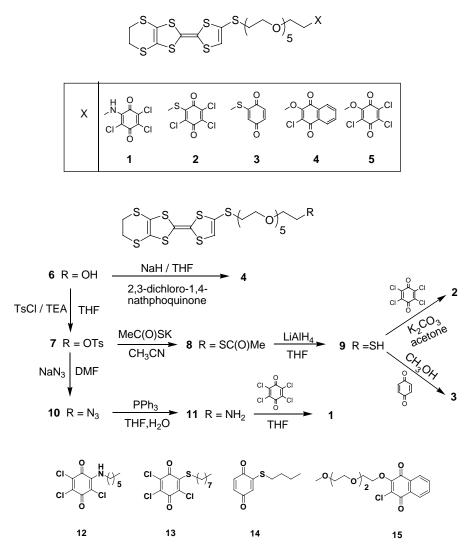
Supporting Information for the following manuscript:


New substituted tetrathiafulvalene-quinone dyads: the influences of electron accepting abilities of quinone units on the metal ion-promoted electron-transfer processes

Hui Wu, Deqing Zhang,^{*} Guanxin Zhang, Daoben Zhu^{*}

Contents

1. Synthesis of dyads 1, 2, 3, and 4 and compounds 12, 13, 14, and 15	S2-S7
2. Absorption spectra of dyads 1, 2, 3, and 4 in the presence of metal ions	S8-S13
3. Absorption spectra of 6 after chemical and electrochemical oxidations a	s well as
those of 6, 12 and the mixture of 6 and 12	.S14
4. ESR spectra of 2 , 3 , 4 , and 5 in the presence metal ions	.S15-S16
5. Cyclic voltammograms of 1, 2, 3, and 4, and compounds 12, 13, 14, and 15	
and those in the presence of metal ions	.\$17-\$25
6. The ¹ H NMR and ¹³ C NMR of dyads 1, 2, 3, and 4 and compounds 7, 8, 10,	
12, and 15	S26-S34

1. Synthesis of dyads 1, 2, 3, and 4 and compound 12 and 15.

General methods. ¹H-NMR, ¹³C-NMR, MS (including HRMS), absorption, and ESR spectra were recorded with conventional spectrometers. Cyclic voltammetric measurements were performed in a standard three-electrode cell, with Pt as the working and counter electrodes, and Ag/AgCl electrode (saturated KCl) as the reference electrode. The scan rate was 100 mV/s, and n-Bu₄NPF₆ (0.1 M) was used as supporting electrolyte.

All solvents were purified and dried following standard procedures unless otherwise stated. Compound 13^{a} and 14^{b} was synthesized according to the literature :

(a) Grennberg, H.; Gogoll, A.; Backvall, J-E. J. Org. Chem. 1991, 56, 5808-5811.

(b) Wu, H.; Zhang, D.; Zhu, D. Tetrahedron Lett. 2007, 48, 8951-8955.

Compound 7 To a magnetically stirred solution of **6** (0.59 g, 1.0 mmol) and p-toluenesulfonyl chloride (0.29 g, 1.5 mmol) in 50 mL dry CH₂Cl₂ at ambient temperature under N₂ atmosphere was added dropwise the solution of triethylamine (1 mL, 7.2 mmol) in 10 mL CH₂Cl₂. The reaction mixture was then slowly warmed to reflux. After being refluxed for 8 h the mixture was cooled to ambient temperature and the solvents were removed under reduced pressure to give a yellow oil. After column chromatography on silica gel with CH₂Cl₂/EtOAc (5 : 1, v/v) as eluant, **7** (0.63 g) was obtained as a yellow oil in 85% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (2H, d, *J* = 7.9 Hz), 6.43 (1H, s), 4.16 (2H, t, *J* = 4.7 Hz), 3.70-3.58 (20H, m), 3.29 (4H, s), 2.93 (2H, t, *J* = 6.4 Hz), 2.45 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 144.8, 133.0, 129.8, 128.0, 126.5, 122.9, 117.8, 113.9, 113.8, 106.5, 70.7, 70.6, 70.55, 70.52, 70.46, 69.6, 69.3, 68.6, 35.3, 30.2, 21.6; HR-MS (MALDI-TOF) calcd. for C₂₇H₃₆O₈S₈: 744.0176; found: 744.0170.

Compound 8 Potassium thioacetate (91 mg, 0.8 mmol) was added to a solution of **7** (0.29 g, 0.4 mmol) in dry CH₃CN (25 mL). The reaction mixture was heated at 60 °C for 4 h before 50 mL of H₂O was added. The aqueous solution was extracted with CH₂Cl₂(2 \times 50 mL). The combined organic phases were washed with water (50 mL) and brine (50 mL), dried over Na₂SO₄, and concentrated in vacuo. After column chromatography on

silica gel with CH₂Cl₂/EtOAc (6: 1, v/v) as eluant, **8** was obtained as a yellow oil (0.24 g) in 92 % yield. ¹H NMR (400 MHz, CDCl₃): δ 6.43 (1H, s), 3.67-3.63 (20H, m), 3.29 (4H, s), 3.09 (2H, t, *J* = 6.4 Hz), 2.93 (2H, t, *J* = 6.4 Hz), 2.34 (3H, s); ¹³C NMR (100 MHz, CDCl₃): δ 195.4, 126.5, 122.9, 117.8, 113.9, 113.8, 106.6, 70.59, 70.56, 70.47, 70.3, 69.7, 69.6, 35.2 30.6, 30.2, 28.8; HR-MS (MALDI-TOF) calcd. for C₂₂H₃₂O₆S₈: 647.9965; found: 647.9958.

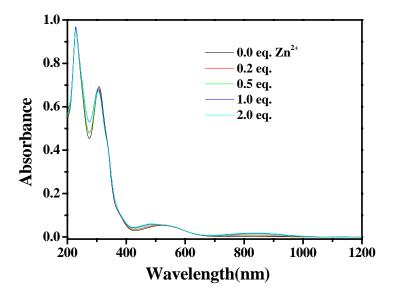
Compound 10 A solution of **7** (0.74 g, 1.0 mmol) in dry DMF (30 mL) was treated with NaN₃ (0.28 g, 5.0 mmol) at 25°C under N₂. The resulting reaction mixture was warmed at 80°C for 12 h before 30 mL of H₂O was added. The aqueous solution was extracted with dichloromethane (3×50 mL), and the combined extracts were washed with H₂O (2×50 mL) and saturated aqueous NaCl (20 mL), dried (MgSO₄) and concentrated in vacuo. After column chromatography on silica gel with CH₂Cl₂/ EtOAc (6:1, v/v) as eluant, **10** was obtained as an orange oil (0.55 g) in 90% yield. ¹H NMR (400 MHz, CDCl₃): δ 6.60-6.20 (1H, br), 3.66-3.63 (20H, m), 3.39 (2H, t, *J* = 4.7 Hz), 3.29 (4H, s), 2.93 (2H, t, *J* = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 126.4, 122.8, 117.8, 113.81, 113.76, 106.5, 70.54, 70.47, 70.39, 69.9, 69.5, 50.6, 35.2, 30.1; HR-MS (MALDI-TOF) calcd. for C₂₀H₂₉N₃O₅S₇: 615.0152; found: 615.0160.

Dyad 2 A solution of **8** (130 mg, 0.2 mmol) in dry THF (15 mL) was treated with LiAlH₄ (30 mg, 0.8 mmol) at 0 °C under N₂. After being stirred for 30 min, the reaction mixture was quenched with water (25 mL), and the resulting mixture was extracted with CH_2Cl_2 (2 × 25 mL). The combined organic layers were washed with water, dried (Na₂SO₄), and concentrated to give crude **9** as a yellow oil that was used directly without further purification.

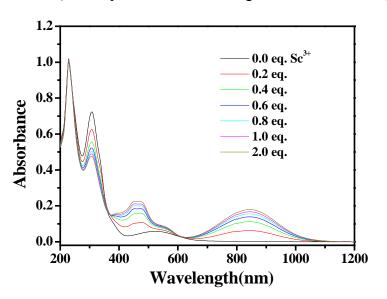
To a solution of previously obtained crude oil product **9** in dry acetone was added KCO₃ (69 mg, 0.5 mmol) under N₂ atmosphere at room temperature. The mixture was stirred for 10 min whereupon tetrachloro-1,4-benzoquinone (124 mg, 0.5 mmol) was added. After being stirred for 30 min the reaction mixture was filtered. The filtrate was concentrated in vacuo. After column chromatography on silica gel with CH₂Cl₂/EtOAc (5: 1, v/v) as eluant, **2** was obtained as a red oil (67 mg) in 41 % yield. ¹H NMR (400 MHz, CDCl₃): δ 6.60-6.20 (1H, br), 3.74 (2H, t, *J* = 5.5 Hz) 3.65-3.61 (10H, m), 3.57-3.54 (8H, m), 3.47 (2H, t, *J* = 5.5 Hz) 3.28 (4H, s), 2.92 (2H, t, *J* = 6.5 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 172.7, 169.0, 147.8, 141.3, 140.2, 136.2, 126.6, 123.1, 114.09, 114.07, 71.4, 70.74, 70.68, 70.66, 70.60, 69.7, 35.3, 33.9, 30.3; MS (MALDI-TOF) *m*/*z* 814.3 (M⁺); HR-MS (MALDI-TOF) calcd. for C₂₆H₂₉Cl₃O₇S₈: 813.8745; found: 813.8715.

Dyad 3 A solution of crude product **9** (126 mg) in CH₂Cl₂ (5mL) was added to a suspension of 1,4-benzoquinone (108 mg, 1.0 mmol) in methanol (25 mL). The mixture was stirred for 10 min. Water (25 mL) was added, and the resulting mixture was extracted with CH₂Cl₂ (2 × 25 mL). The combined organic layers were washed with water, dried (Na₂SO₄), and concentrated After column chromatography on silica gel with CH₂Cl₂/EtOAc (5: 1, v/v) as eluant, **3** was obtained as a yellow oil (74 mg) in 52 % yield. ¹H NMR (400 MHz, CDCl₃): δ 6.79 (1H, d, J = 10 Hz), 6.71 (1H, dd, J = 10, 2 Hz), 6.45 (1H, d, J = 2 Hz), 6.42 (1H, s), 3.76 (2H, t, J = 6.3 Hz), 3.66-3.61 (18H, m), 3.27 (4H, s), 2.99 (2H, t, J = 6.3 Hz), 2.91 (2H, t, J = 6.7 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 183.9, 183.7, 152.5, 137.3, 136.0, 126.5, 124.9, 122.9, 117.8, 113.9, 113.8, 106.5, 70.7, 70.6, 70.5, 70.4, 69.5, 68.0, 35.2, 30.3, 30.1; HR-MS(EI): calcd. for C₂₆H₃₂O₇S₈: 711.9914; found: 711.9921.

Dyad 1 A solution of **10** (0.5 g, 0.81 mmol) in THF (60 mL) was treated with PPh₃ (0.43 g, 1.62 mmol) and H₂O (0.2 mL, 11.1 mmol) at 25°C under N₂. The resulting reaction mixture was warmed at 45°C for 10 h. The reaction mixture was diluted with water and extracted with CH₂Cl₂. The organic phase was dried over MgSO₄ and concentrated in vacuo to give crude **11** as a yellow oil that was used directly without further purification.. The crude product of **11** was dissolved in dry THF and the solution was cooled to 0 °C. tetrachloro-1,4-benzoquinone (0.37 g, 1.5 mmol) was added. After being stirred for 30 min at this temperature the reaction mixture was concentrated in vacuo. Column chromatography of the residue on silica gel with CH₂Cl₂/ EtOAc (6:1, v/v) as eluant afforded dyad **1** as a purple oil (0.20 g) in 31% yield: ¹H-NMR (400 MHz, CDCl₃): δ 6.42 (1H, s), 4.00 (2H, m), 3.71 (2H, t, *J* = 5.1 Hz), 3.66-3.62 (18H, m), 3.29 (4H, s), 2.93 (2H, t, *J* = 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 174.3, 170.0, 143.6, 142.8, 135.9, 126.8, 123.1, 114.1, 106.9, 70.9, 70.8, 70.77, 70.74, 70.67, 69.8, 69.7, 44.9, 35.5, 30.4; HR-MS (MALDI-TOF) calcd. for C₂₆H₃₀Cl₃NO₇S₇:796.9133; found; 796.9092.


Dyad 4 To a solution of **6** (0.59 g, 1.0 mmol) in dry THF was added petroleum ether rinsed NaH (52%, 0.23 g, 5.0 mmol) in N₂ atmosphere at room temperature. The mixture was stirred for 20 min whereupon 2,3-dichloro-1,4-nathphoquinone (0.45 g, 2.0 mmol) was added. After being heated to reflux for 6 h the reaction mixture was cooled to room temperature and filtered. The filtrate was concentrated in vacuo. After column chromatography (CH₂Cl₂/EtOAc, 5: 1) on silica gel, **4** was obtained as a yellow oil (0.38 g) in 48 % yield. ¹H NMR (400 MHz, CDCl₃): δ 8.13 (1H, m), 8.07 (1H, m), 7.73 (2H, m), 6.42 (1H, s), 4.75 (2H, t, *J* = 4.4 Hz), 3.82 (2H, t, *J* = 4.4 Hz), 3.67-3.61 (12H, m), 3.55-3.49 (6H, m), 3.28 (4H, s), 2.92 (2H, t, *J* = 6.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ

179.5, 178.5, 157.0, 134.1, 133.8, 131.0, 130.8, 128.8, 126.8, 126.7, 126.5, 122.8, 117.6, 113.8, 113.7, 106.5, 73.2, 70.8, 70.7, 70.54, 70.47, 70.41, 69.5, 35.2, 30.1. HR-MS(EI): calcd. for C₃₀H₃₃ClO₈S₇: 779.9909; found: 779.9921.


Compound 12 This was prepared in a similar manner as for dyad **1** from 1-Hexylamine as a purple solid in 46 % yield. ¹H NMR (400 MHz, CDCl₃): δ 5.93 (1H, s), 3.80 (2H, m), 1.66 (2H, m), 1.40-1.26 (6H, m), 0.90 (3H, t, *J* = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 174.5, 170.1, 154.2, 144.0, 142.4, 135.7, 45.4, 31.4, 30.9, 26.3, 22.6, 14.2; MS(EI): *m/z* 309 (M⁺); HR-MS(EI): calcd. for C₁₂H₁₄NO₂Cl₃: 309.0090, 311.0061; found: 309.0086, 309.0056.

Compound 15 This was prepared in a similar manner as for dyad **4** from triethylene glycol monomethyl ether as a pale yellow oil in 53 % yield. ¹H NMR (400 MHz, CDCl₃): δ 8.15 (1H, m), 8.08 (1H, m), 7.75 (2H, m), 4.76 (2H, t, *J* = 4.5 Hz), 3.83 (2H, t, *J* = 4.5 Hz), 3.64 (2H, t, *J* = 4.8 Hz), 3.50 (4H, m), 3.47 (2H, m), 3.34 (3H, m); ¹³C NMR (100 MHz, CDCl₃): δ 179.2, 178.1, 156.8, 133.9, 133.6, 130.7, 130.6, 126.5, 73.0, 71.5, 70.6, 70.5, 70.2, 70.1, 58.6; HR-MS(EI): calcd. for C₁₇H₁₉ClO₆: 354.0870; found: 354.0875.

2. Absorption spectra of dyads 1, 2, 3, and 4 in the presence of metal ions

Figure S1. Absorption spectra of dyad **1** recorded in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0×10^{-5} M) in the presence of increasing amount of Zn^{2+} [$Zn(ClO_4)_2$].

Figure S2. Absorption spectra of dyad **1** recorded in a mixture of CH₂Cl₂ and CH₃CN (1:1, v/v; 5.0×10^{-5} M) in the presence of increasing amount of Sc³⁺ [Sc(SO₃CF₃)₃].

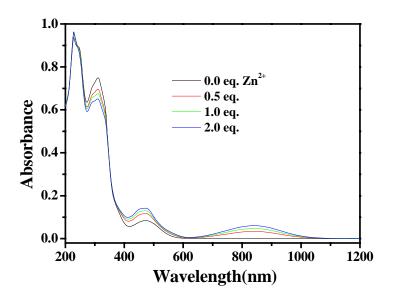
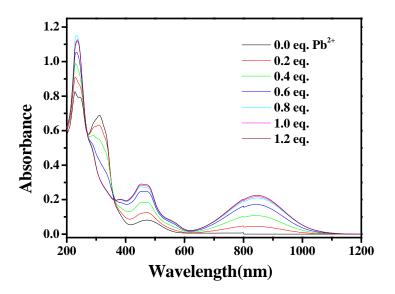
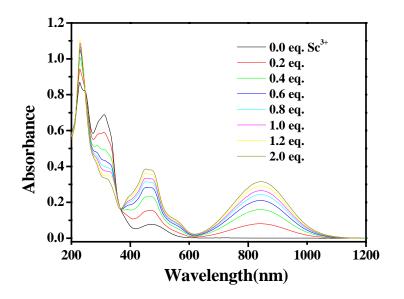




Figure S3. Absorption spectra of dyad 2 recorded in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; $5.0 \times 10^{-5}M$) in the presence of increasing amount of Zn^{2+} [$Zn(ClO_4)_2$].

Figure S4. Absorption spectra of dyad **2** recorded in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0×10^{-5} M) in the presence of increasing amount of Pb²⁺ [Pb(ClO₄)₂].

Figure S5. Absorption spectra of dyad **2** recorded in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0×10^{-5} M) in the presence of increasing amount of Sc^{3+} [Sc(SO₃CF₃)₃].

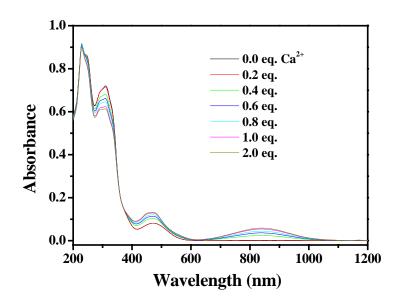
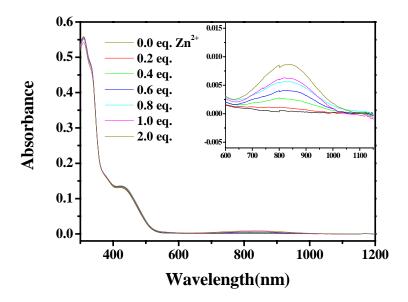
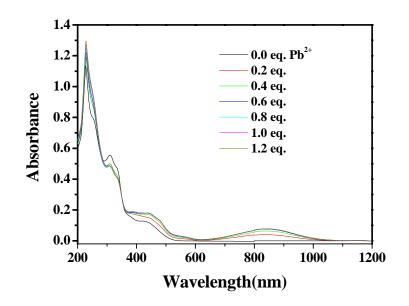
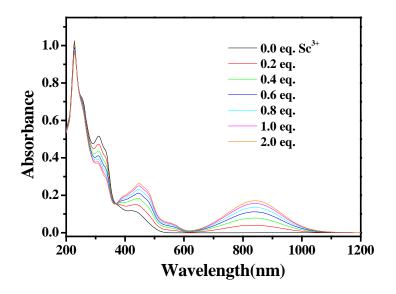
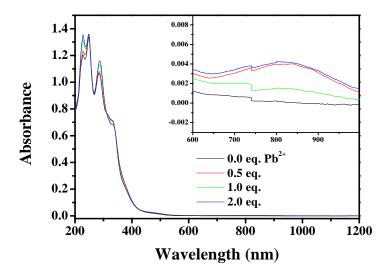
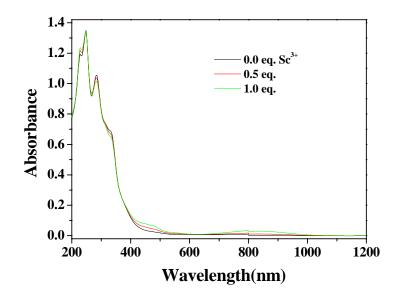


Figure S6. Absorption spectra of dyad 2 recorded in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0 × 10⁻⁵ M) in the presence of increasing amount of Ca^{2+} [Ca(ClO₄)₂].


Figure S7. Absorption spectra of dyad 3 recorded in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0 × 10⁻⁵ M) in the presence of increasing amount of Zn^{2+} [$Zn(ClO_4)_2$], inset is the enlargement of the 600-1150 nm region.


Figure S8. Absorption spectra of dyad **3** recorded in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0 × 10⁻⁵ M) in the presence of increasing amount of Pb²⁺ [Pb(ClO₄)₂].

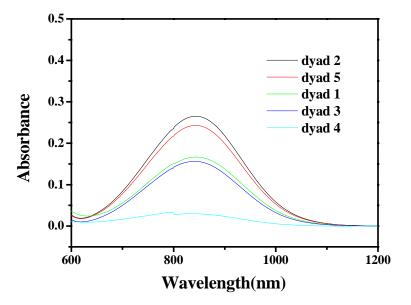

Figure S9. Absorption spectra of dyad **3** recorded in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0×10^{-5} M) in the presence of increasing amount of Sc^{3+} [Sc(SO₃CF₃)₃].

Figure S10. Absorption spectra of dyad **4** recorded in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0×10^{-5} M) in the presence of increasing amount of Pb^{2+} [Pb(ClO₄)₂], inset is the enlargement of the 600-1000 nm region.

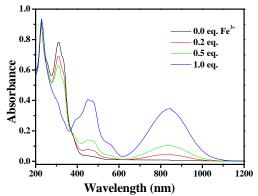


Figure S11. Absorption spectra of dyad **4** recorded in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0×10^{-5} M) in the presence of increasing amount of Sc^{3+} [Sc(SO₃CF₃)₃].

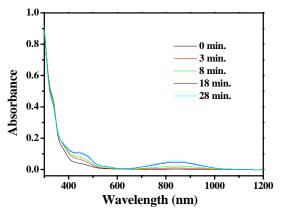


Figure S12. Absorption spectra of the 600-1200 nm region of dyads 1, 2, 3, 4, and 5 in the presence of 1.0 eq. of Sc^{3+} [Sc(SO₃CF₃)₃].

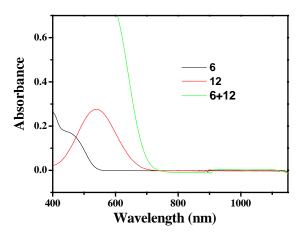

3. Absorption spectra of 6 after chemical and electrochemical oxidations as well as those of 6, 12 and the mixture of 6 and 12

Figure S13. Absorption spectra of compound **6** recorded in a mixture of CH₂Cl₂ and CH₃CN (1:1, v/v; 5.0×10^{-5} M) in the presence of increasing amount of Fe³⁺ [Fe(ClO₄)₃].

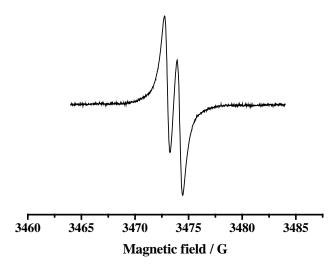


Figure S14. Absorption spectra of compound **6** recorded in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0 × 10⁻⁵ M) containing *n*-Bu₄NPF₆ (27.8 mM) after applying an oxidation potential of 0.65 V (vs. Ag/AgCl).

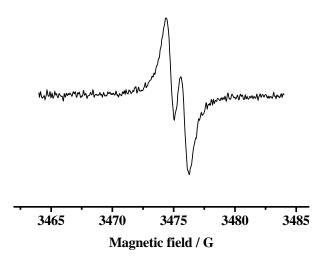
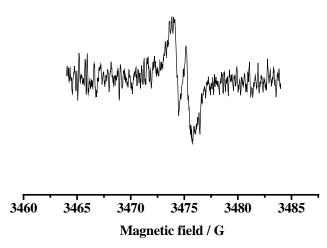


Figure S15. Absorption spectra of compound **6** (1.5×10^{-3} M), **12** (2.5×10^{-3} M) and the mixture of **6** (1.5×10^{-2} M) and **12** (2.5×10^{-2} M) recorded in CH₂Cl₂/CH₃CN (1:1, v/v).


4. ESR spectra of dyads 2, 3, 4, and 5 in the presence of metal ions.

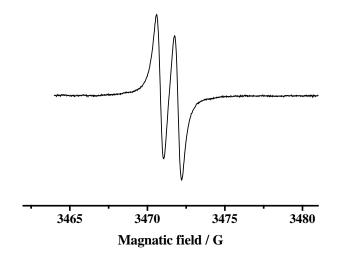

Figure S16. ESR spectrum of dyad **2** $(1.0 \times 10^{-4} \text{ M})$ in CH₂Cl₂/CH₃CN (1:1, v/v) in the presence of 1.0 equiv of Pb²⁺ [Pb(ClO₄)₂] recorded at room temperature; the solution was degassed before measurement.

Figure S17. ESR spectrum of dyad **3** $(1.0 \times 10^{-4} \text{ M})$ in CH₂Cl₂/CH₃CN (1:1, v/v) in the presence of 1.0 equiv of Pb²⁺ [Pb(ClO₄)₂] recorded at room temperature; the solution was degassed before measurement.

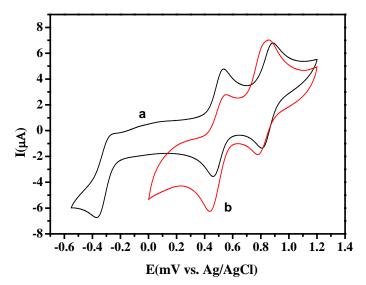


Figure S18. ESR spectrum of dyad **4** $(1.0 \times 10^{-4} \text{ M})$ in CH₂Cl₂/CH₃CN (1:1, v/v) in the presence of 1.0 equiv of Pb²⁺ [Pb(ClO₄)₂] recorded at room temperature; the solution was degassed before measurement.

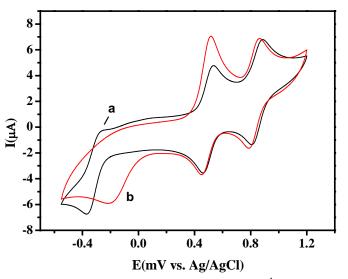
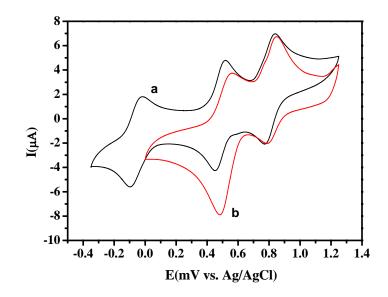
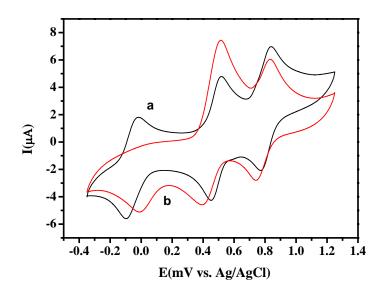
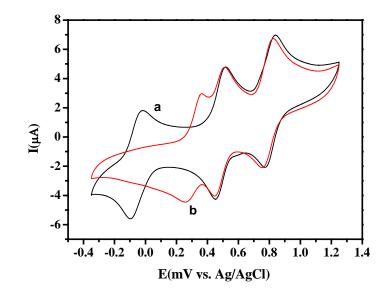
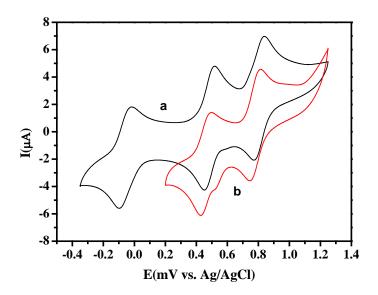


Figure S19. ESR spectrum of dyad **5** $(1.0 \times 10^{-4} \text{ M})$ in CH₂Cl₂/CH₃CN (1:1, v/v) in the presence of 1.0 equiv of Pb²⁺ [Pb(ClO₄)₂] recorded at room temperature; the solution was degassed before measurement.


5. Cyclic voltammograms of 1, 2, 3, and 4, and compounds 12-15 and those in the presence of metal ions.


Figure S20. Cyclic voltammograms of dyad **1** (5.0×10^{-4} M) (a, black) before and (b, red) after addition of 1.2 equiv of Sc³⁺ in a mixture of CH₂Cl₂ and CH₃CN at a scan rate of 100 mV S⁻¹.


Figure S21. Cyclic voltammograms of dyad **1** (5.0×10^{-4} M) (a, black) before and (b, red) after addition of 2 equiv of Zn^{2+} in a mixture of CH_2Cl_2 and CH_3CN at a scan rate of 100 mV S⁻¹.


Figure S22. Cyclic voltammograms of dyad **2** (5.0×10^{-4} M) (a, black) before and (b, red) after addition of 2 equiv of Pb²⁺ in a mixture of CH₂Cl₂ and CH₃CN at a scan rate of 100 mV S⁻¹.

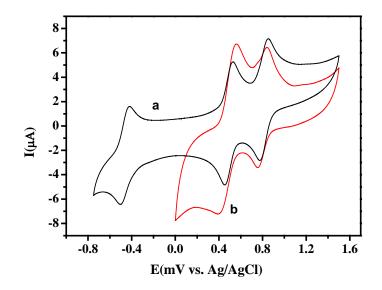

Figure S23. Cyclic voltammograms of dyad **2** (5.0×10^{-4} M) (a, black) before and (b, red) after addition of 4 equiv of Zn²⁺ in a mixture of CH₂Cl₂ and CH₃CN at a scan rate of 100 mV S⁻¹.

Figure S24. Cyclic voltammograms of dyad **2** (5.0×10^{-4} M) (a, black) before and (b, red) after addition of 4 equiv of Ca²⁺ in a mixture of CH₂Cl₂ and CH₃CN at a scan rate of 100 mV S⁻¹.

Figure S25. Cyclic voltammograms of dyad **2** (5.0×10^{-4} M) (a, black) before and (b, red) after addition of 2 equiv of Sc³⁺ in a mixture of CH₂Cl₂ and CH₃CN at a scan rate of 100 mV S⁻¹.

Figure S26. Cyclic voltammograms of dyad **3** (5.0×10^{-4} M) (a, black) before and (b, red) after addition of 2 equiv of Pb²⁺ in a mixture of CH₂Cl₂ and CH₃CN at a scan rate of 100 mV S⁻¹.

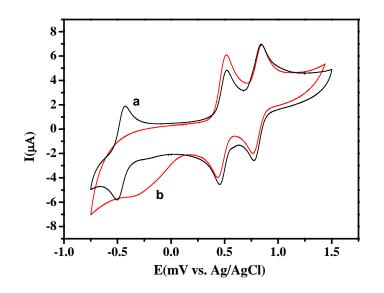
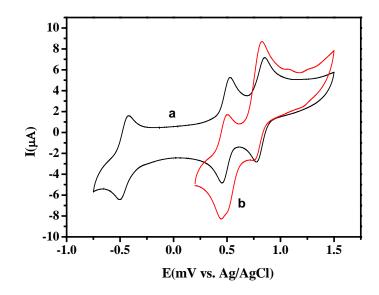
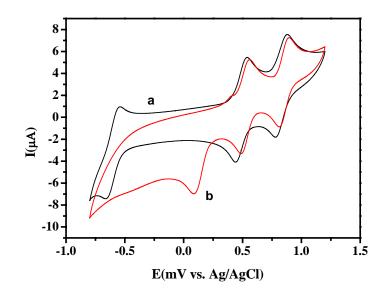
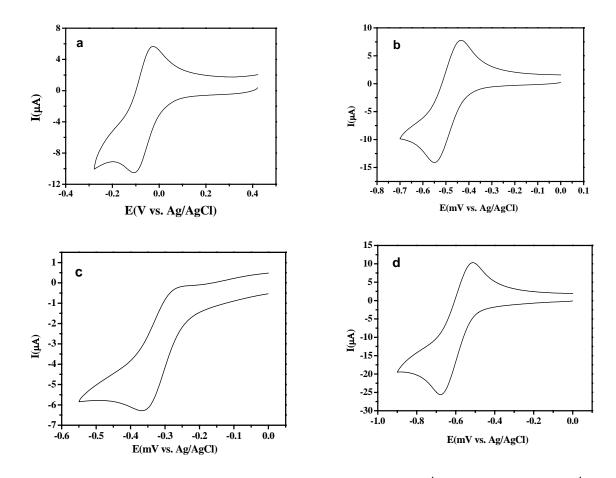
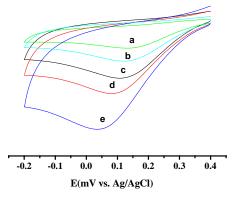
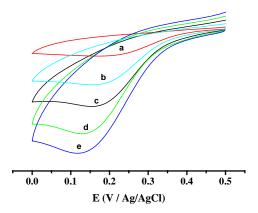
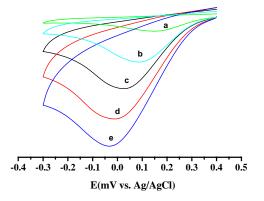




Figure S27. Cyclic voltammograms of dyad 3 (5.0×10^{-4} M) (a, black) before and (b, red) after addition of 2 equiv of Zn^{2+} in a mixture of CH_2Cl_2 and CH_3CN at a scan rate of 100 mV S⁻¹.

Figure S28. Cyclic voltammograms of dyad **3** (5.0×10^{-4} M) (a, black) before and (b, red) after addition of 2 equiv of Sc³⁺ in a mixture of CH₂Cl₂ and CH₃CN at a scan rate of 100 mV S⁻¹.

Figure S29. Cyclic voltammograms of dyad **4** (5.0×10^{-4} M) (a, black) before and (b, red) after addition of 1.2 equiv of Pb²⁺ in a mixture of CH₂Cl₂ and CH₃CN at a scan rate of 100 mV S⁻¹.


Figure S30. Cyclic voltammograms of compounds 13 (5.0×10^{-4} M) (a), 14 (5.0×10^{-4} M) (b) 12 (5.0×10^{-4} M) (c), and 15 (1.0×10^{-3} M) (d) in a mixture of CH₂Cl₂ and CH₃CN at a scan rate of 100 mV S⁻¹.

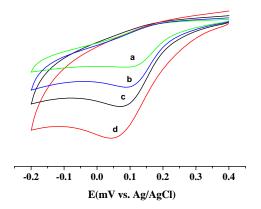
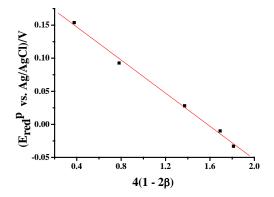
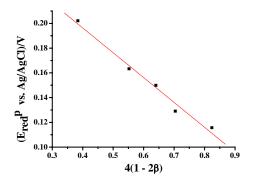
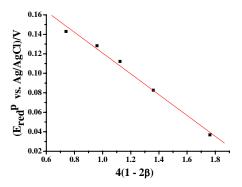

Figure S31. Cathodic waves of compound **12** in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0×10^{-4} M) in the presence of 4.0 equiv of Pb(ClO₄)₂ at various sweep rates: (a) 10, (b) 50, (c) 100, (d) 200, (e) 300 mV s⁻¹

Figure S32. Cathodic waves of compound **13** in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0 × 10⁻⁴ M) in the presence of 4.0 equiv of Pb(ClO₄)₂ at various sweep rates: (a) 10, (b) 50, (c) 100, (d) 200, (e) 300 mV s⁻¹


Figure S33. Cathodic waves of compound **14** in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0 × 10⁻⁴ M) in the presence of 2.0 equiv of Pb(ClO₄)₂ at various sweep rates: (a) 10, (b) 50, (c) 100, (d) 200, (e) 300 mV s⁻¹


Figure S34. Cathodic waves of compound **15** in a mixture of CH_2Cl_2 and CH_3CN (1:1, v/v; 5.0×10^{-4} M) in the presence of 4.0 equiv of Pb(ClO₄)₂ at various sweep rates: (a) 10, (b) 50, (c) 100, (d) 200 mV s⁻¹

According to previous report (*J. Chem.. Soc. Perkin Trans. II*, **1985**, 371-378 and *Bull. Chem. Soc. Jpn.* **1983**, 56, 2220-2227), the width of the cathodic wave $(E_{red}^{p/2} - E_{red}^p)$ in such an irreversible system is known to depend on the transfer coefficient β according to equation (1), where *F* is the faraday constant and the other notations are conventional.


According to equation (2), the reduction potential E_{red}^{0} can be evaluated from the intercept of the linear correlation between E_{red}^{p} and $4(1 - 2\beta)$. β value is obtained from the cyclic voltammogram by using equation (1).

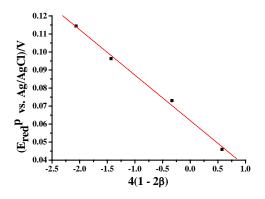
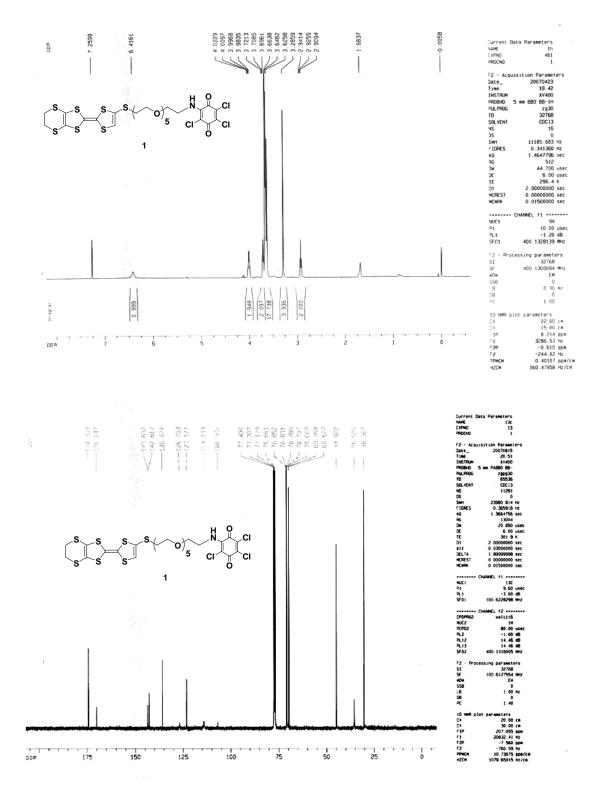
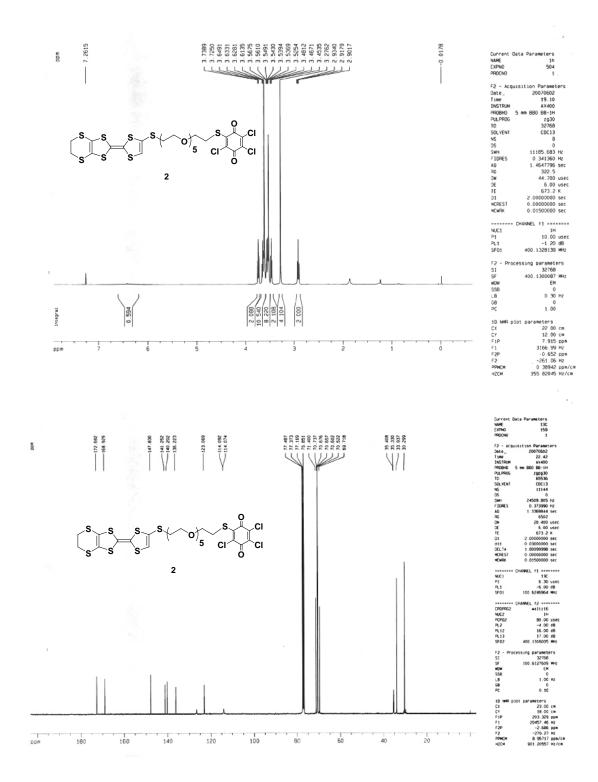
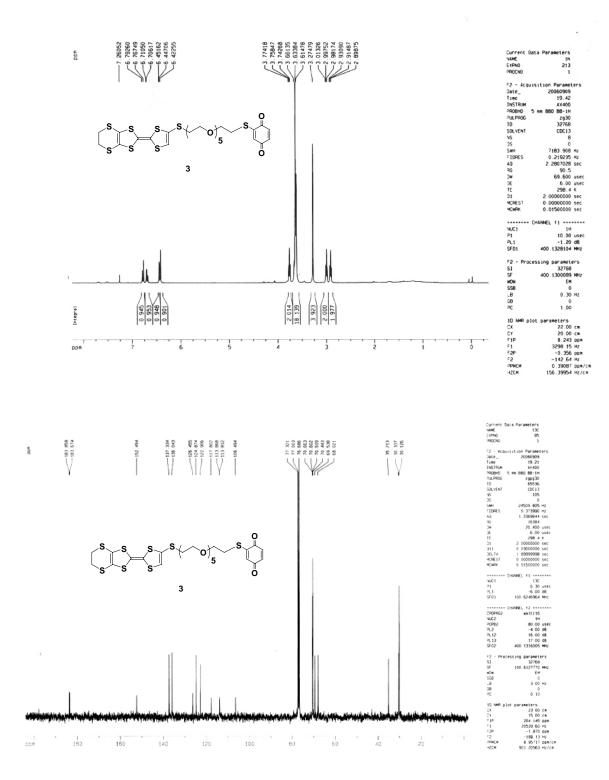
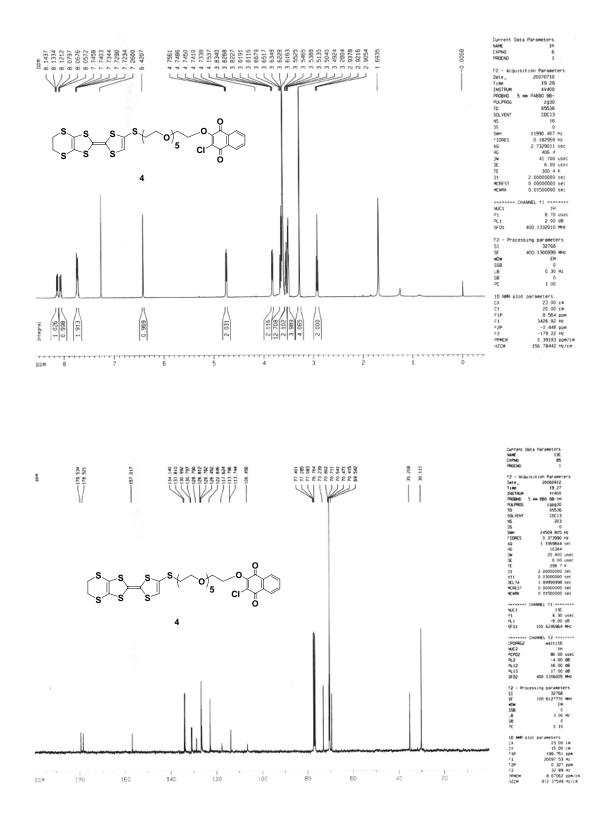

Figure S35. The plot of the cathodic-peak potentials E_{red}^{p} (vs. Ag/AgCl) of compound **12** (5.0 × 10⁻³ M) in the presence of 2.0 equiv of Pb(ClO₄)₂ vs. 4(1-2 β); the reduction potential of compound **14** in the presence of Pb²⁺ was estimated to be 0.22 V.

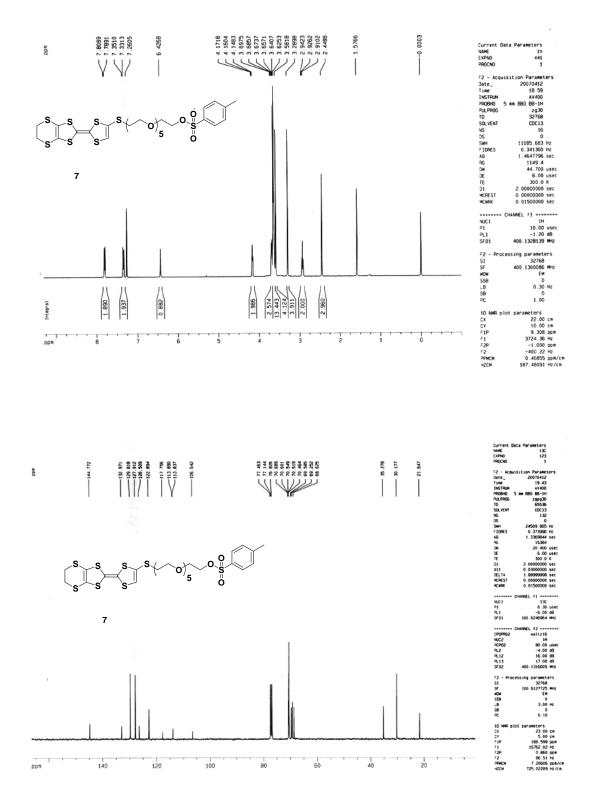
Figure S36. The plot of the cathodic-peak potentials E_{red}^{p} (vs. Ag/AgCl) of compound **13** (5.0 × 10⁻³ M) in the presence of 4.0 equiv of Pb(ClO₄)₂ vs. 4(1-2 β); the reduction potential of compound **13** in the presence of Pb²⁺ was estimated to be 0.28 V.

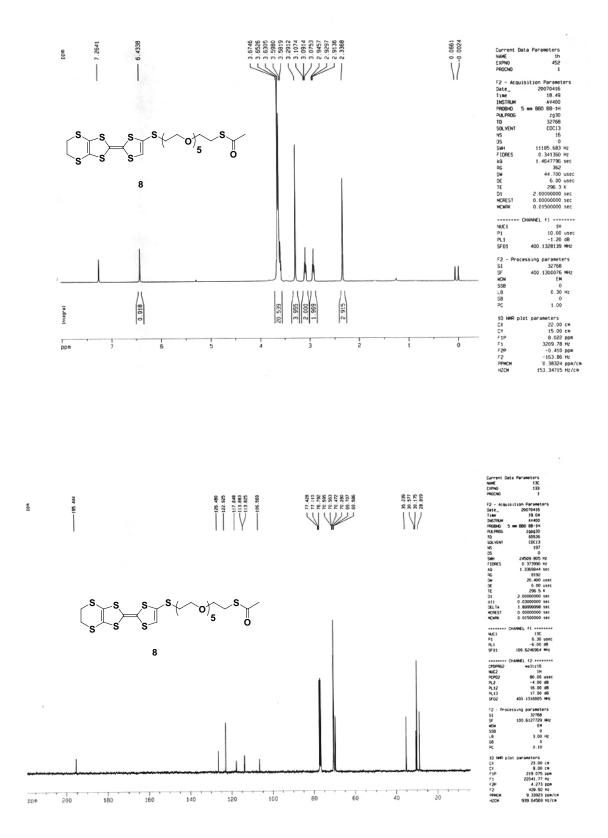


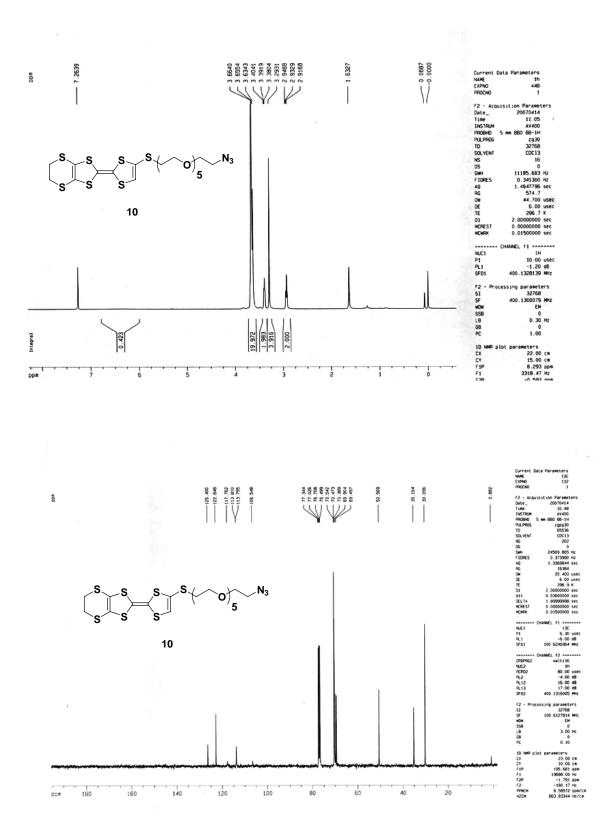

Figure S37. The plot of the cathodic-peak potentials E_{red}^{p} (vs. Ag/AgCl) of compound 14 (5.0 × 10⁻³ M) in the presence of 2.0 equiv of Pb(ClO₄)₂ vs. 4(1-2 β); the reduction potential of compound 13 in the presence of Pb²⁺ was estimated to be 0.19 V.

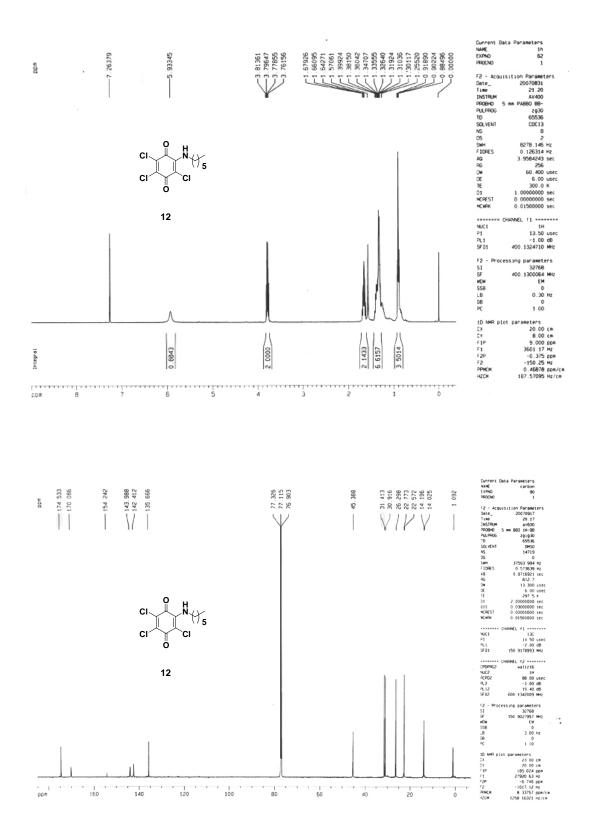

Figure S38. The plot of the cathodic-peak potentials E_{red}^{p} (vs. Ag/AgCl) of compound **15** (5.0 × 10⁻³ M) in the presence of 2.0 equiv of Pb(ClO₄)₂ vs. 4(1-2 β); the reduction potential of compound **15** in the presence of Pb²⁺ was estimated to be 0.06 V.

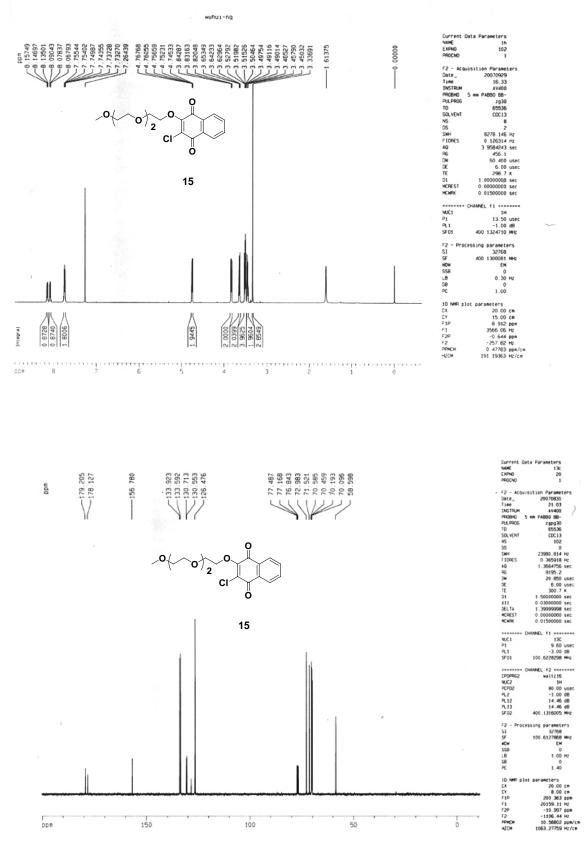

6. The ¹H NMR and ¹³C NMR of dyads 1, 2, 3, and 4, and compounds 7, 8, 10, 12, and 15.






S27





S34