Improved procedure for the synthesis of enamines N oxides

David Bernier, Alexander Blake, Simon Woodward
School of Chemistry - University of Nottingham, U.K.

Experimental details (procedures and analytical data)

1. General methods 3

1.1. General procedure GP1: Preparation of dry mCPBA $\quad 3$
1.2. General procedure GP2: β-chloroamines from their corresponding hydrochlorides_ 4
1.2.1. N-(2-chloroethyl)-dimethylamine (7aa) __ 4
1.2.2. N-(2-chloroethyl)-piperidine (7ca) $\quad 4$
1.2.3. N-(2-chloroethyl)-pyrrolidine (7da) 5
1.3. α-chloroamides from α-chloroacetyl chloride $\quad 5$
1.3.1. General procedure GP3: 2-Chloro- N, N-diisobutylacetamide__ 5
1.3.2. 2-Chloro- N, N-dibenzylacetamide__ 6
1.4. $\mathrm{BH}_{3} . \mathrm{Me}_{2} \mathrm{~S}$ Reduction of α-chloroamides $\quad 6$
1.4.1. General procedure GP4: N-(2-chloroethyl)- \bar{N}, N-diisobutylamine (7ea)__ 6
1.4.2. N-(2-chloroethyl)- N, N-dibenzylamine (7fa)_ 7
1.5. Epoxidation of alkenes with mCPBA_ 7
1.5.1. General procedure GP5: Cyclohexyl oxirane (rac. 3c)__ 7
1.5.2. Phenethyl oxirane (3,4-epoxybutyl benzene, rac. 3d) $-\square$
1.6. Aminolysis of epoxides 8
1.6.1. General procedure GP6a: 1-(pyrrolidin-1-yl)hexan-2-ol (rac. 4db)___ 8
1.6.2. 1-cyclohexyl-2-(piperidin-1-yl)ethanol (rac. 4dc) _- 9
1.6.3. General procedure GP6b: 4-phenyl-1-(pyrrolidin-1-yl)butan-2-ol (rac. 4dd) ___ 9
1.6.4. trans-2-(Pyrrolidin-1-yl)cyclohexanol (rac. trans-4dx) __ 11
1.7. Chlorination of aminoalcohols __ 11
1.7.1. General procedure GP7: N-(2-chlorohexyl)pyrrolidine (rac. 7db)___ 11
1.7.2. N-(2-chloro-2-cyclohexylethyl)pyrrolidine (rac. 7dc) __ 12
1.7.3. 1-(2-chloro-4-phenylbutyl)pyrrolidine (rac. 7dd) 12
1.8. General procedure GP8: \mathbf{N}-oxidation of tertiary $\boldsymbol{\beta}$-chloroamines with mCPBA___ $\mathbf{1 3}$
1.8.1. N-(2-chloroethyl)-dimethylamine N-oxide (3-chlorobenzoic acid salt) (8aa) ___ 13
1.8.2. N-(2-chloroethyl)-piperidine N-oxide (3-chlorobenzoic acid salt) (8ca) ___ 14
1.8.3. N-(2-chloroethyl)-pyrrolidine N-oxide (3-chlorobenzoic acid salt) (8da) $\quad 14$
1.8.4. $\quad N$-(2-chloro-2-cyclohexylethyl)pyrrolidine N-oxide, 3-chlorobenzoic acid salt (rac. 8db) _ 15
1.8.5. $\quad N$-(2-chloro-2-cyclohexylethyl)pyrrolidine N-oxide, 3 -chlorobenzoic acid salt (rac. 8dc) — 15
1.8.6. $\quad 1$-(2-chloro-4-phenylbutyl)pyrrolidine N-oxide, 3-chlorobenzoic acid salt (rac. 8dd) _ 16
1.9. General procedure GP9: Enamine \mathbf{N}-oxides by dehydrochlorination of $\boldsymbol{\beta}$-chloroamine
\mathbf{N}-oxides
$\mathbf{1 6}$
1.9.1. N, N-Dimethylvinylamine N-oxide (1aa) 17
1.9.2. N-Vinylpiperidine N-oxide (1ca) 17
1.9.3. N-Vinylpyrrolidine N-oxide (1da) $\quad 18$
1.9.4. $\quad N$-(2-cyclohexylvinyl)pyrrolidine N-oxide (1db) 18
1.9.5. $\quad N$-(2-cyclohexylvinyl)pyrrolidine N-oxide (1dc) 19
1.9.6. N-(4-phenylbuten-1-yl)pyrrolidine N-oxide (1dd) 19
1.9.7. \quad cis-1-(2-chlorocyclohexyl)pyrrolidine N-oxide (1dx) 21
1.10. General procedure GP10: Forced "Owari-type" rearrangement 21
1.10.1. 2-(pyrrolidin-1-yloxy)ethyl 3-chlorobenzoate (12da) 21
1.10.2. 2-(diisobutylaminoxy)ethyl 3-chlorobenzoate (12ea) 22
1.10.3. 1-chloro-4-phenyl-2-(pyrrolidin-1-yloxy)butane (11dd) and 4-phenyl-2-(pyrrolidin-1- yloxy)butyl 3-chlorobenzoate (12dd) 23
2. Other procedures 24
2.1.1. trans-1-benzyl-1-(2-hydroxycyclohexyl)pyrrolidinium chloride (rac. trans-13) 24
2.1.2. cis-1-(2-chlorocyclohexyl)pyrrolidine (rac. cis-7dx) 24

1. General methods

All solvents were reagent grade. PE refers to light petroleum b.p. $40-60^{\circ} \mathrm{C}$. Diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and tetrahydrofuran (THF) were freshly distilled from sodium/benzophenone under argon. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was freshly distilled from calcium hydride under argon. Reagents were purchased from commercial sources and used without further purification unless otherwise stated.
Products were purified by flash-chromatography ${ }^{[1]}$ (eluent composition given in parentheses).

Stationary phase	Column packing	TLC
SiO_{2}	Fluorochem Davisil silica gel (35-70 $\mu \mathrm{m}$)	Merck Kieselgel $60 \mathrm{~F}_{245+366}$
Deactivated SiO_{2}	Fluorochem Davisil silica gel ($35-70 \mu \mathrm{~m}$) stirred for 2 h with $2.5 \mathrm{wt} .-\%$ of $\mathrm{Et}_{3} \mathrm{~N}$.	Merck Kieselgel $60 \mathrm{~F}_{245+366}$ plates dipped in a 10 vol. $-\% \mathrm{Et}_{3} \mathrm{~N}$ solution in $\mathrm{Et}_{2} \mathrm{O}$ and dried before use.
Neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$	Acros aluminium oxide, activated, neutral, 50-200 $\mu \mathrm{m}$	Fluka aluminium oxide on aluminium sheets F_{245} plates
Basic $\mathrm{Al}_{2} \mathrm{O}_{3}$	Acros aluminium oxide, activated, basic, $50-200 \mu \mathrm{~m}$	

${ }^{1} \mathbf{H}$-NMR $\left[\mathrm{CHCl}_{3}\left(7.26 \mathrm{ppm}^{[2]}\right)\right.$ internal standard in CDCl_{3}; benzene- $\mathrm{d}_{5}\left(7.16 \mathrm{ppm}^{[2]}\right)$ internal standard in benzene- $\left.\mathrm{d}_{6}\right]$ and ${ }^{13} \mathbf{C}$-NMR $\left[\mathrm{CDCl}_{3}\left(77.16 \mathrm{ppm}^{[2]}\right)\right.$ as internal standard in CDCl_{3}; benzene- $\mathrm{d}_{6}\left(128.06 \mathrm{ppm}^{[2]}\right)$ internal standard in benzene- $\left.\mathrm{d}_{6}\right]$: the assignments of ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR resonances refer to the IUPAC nomenclature; primed numbers belong to the side-chain. Chemical shifts (δ) quoted in ppm; integrals in accord with assignments; coupling constants (J) quoted in Hz; Melting points are uncorrected; Crystal structure determination: Diffraction data were collected on an APEX CCD area detector, using graphite monochromated MoK_{α} radiation ($\lambda=0.71073 \AA$), from a crystal cooled to 150 K using an open-flow nitrogen gas cryostat ${ }^{[3]}$. The structure was solved by direct methods using SHELXS $97{ }^{[4]}$ and refined by full-matrix least squares using SHELXL97 ${ }^{[4]}$. The figure was produced using PLATON ${ }^{[5]}$ which was also used for structure validation.

1.1. General procedure GP1: Preparation of dry mCPBA

Following a procedure slightly modified from that of Aggarwal and coworkers ${ }^{[6]}$, commercial 3-chloroperoxybenzoic acid (Aldrich $57-86 \%, 30 \mathrm{~g}$) was dissolved in $350 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $3 \times 150 \mathrm{~mL}$ buffer solution $\left(410 \mathrm{ml} 0.1 \mathrm{M} \mathrm{NaOH}, 250 \mathrm{ml} 0.2 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}\right.$ made up to $11, \mathrm{pH} 7.5$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and carefully evaporated under reduced pressure to give ca. 12 g m CPBA . Iodometric titration ${ }^{[7]}$ gave a purity of $82 \mathrm{wt} .-\%$. (In the original literature, diethyl ether was used for the extraction. To avoid the hazard of incidental formation of dialkyl peroxides, we used $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ instead. The separation of the 2

[^0]layers is slower with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ than with $\mathrm{Et}_{2} \mathrm{O}$. In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the solubility of $m \mathrm{CPBA}$ is excellent but that of the 3 -chlorobenzoic acid is significantly lower than in $\mathrm{Et}_{2} \mathrm{O}$.)

1.2. General procedure GP2: β-chloroamines from their corresponding hydrochlorides

(Following the procedure of Hickmott, Wood, and Murray-Rust, ref. ${ }^{[8]}$)
The commercially available hydrochloride (20.0 mmol) was dissolved in water (10 mL) and the solution was basified by adding solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times$ $15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residual oil was shown by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ to be the pure free amine.

1.2.1. N-(2-chloroethyl)-dimethylamine (7aa)

* CARE! β-chloroamines are known to have a high toxicity. They should be handled in a fumehood only, and with appropriate care.
(Described in literature ${ }^{[8]}$) Prepared according to general procedure GP2, using 2Dimethylaminoethyl chloride $\cdot \mathrm{HCl}(2.88 \mathrm{~g}, 20 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.24 \mathrm{~g}, 40 \mathrm{mmol})$. This β chloroamine is very volatile. Therefore, concentration on the rotary evaporator (bath temperature: $30^{\circ} \mathrm{C}$) was limited to a few minutes: the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum consequently shows the presence of some residual $\mathrm{Et}_{2} \mathrm{O}$. Concentration afforded 1.26 g of colourless oil. Yield: 59\%.
The β-chloroamine is not stable and should be stored at $0^{\circ} \mathrm{C}$ and used within 24 h (after prolonged storage a white precipitate appears, presumably indicating internal cyclisation to the corresponding aziridinium).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta_{H}=3.49\left(\mathrm{t},{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}}=6.8 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right) 2.57\left(\mathrm{t},{ }^{3} J_{1-\mathrm{H}, 2-\mathrm{H}}=6.8 \mathrm{~Hz}\right.$, $\left.1-\mathrm{H}_{2}\right), 2.21\left(\mathrm{~s}, \mathrm{NMe}_{2}\right){ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta_{H}=61.0(\mathrm{C}-1), 45.5\left(\mathrm{NMe}_{2}\right), 41.7(\mathrm{C}-$ 2).

1.2.2. N-(2-chloroethyl)-piperidine (7ca)

* CARE! β-chloroamines are known to have a high toxicity. They should be handled in a fumehood only, and with appropriate care.
(Described in literature ${ }^{[8]}$) Prepared according to general procedure GP2. Prepared according to general procedure GP2, using N-(2-Chloroethyl)piperidine $\cdot \mathrm{HCl}(3.68 \mathrm{~g}, 20 \mathrm{mmol})$ and ($4.15 \mathrm{~g}, 30 \mathrm{mmol}$). Concentration on the rotary evaporator (bath temperature: $30^{\circ} \mathrm{C}$) afforded 2.79 g of colourless oil. Yield: 94%.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=3.57\left(\mathrm{t},{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}}=7.5 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.68\left(\mathrm{t},{ }^{3} J_{1-\mathrm{H}, 2-\mathrm{H}}=7.5 \mathrm{~Hz}\right.$, $\left.1-\mathrm{H}_{2}\right), 2.52-2.33\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}_{2}\right.$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 1.63-1.52\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}_{2}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 1.49-1.35\left(\mathrm{~m}, 4^{\prime}-\mathrm{H}_{2}\right)$;

[^1]${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=60.8(\mathrm{C}-1), 54.7\left(\mathrm{C}-2^{\prime}, \mathrm{C}-6\right.$ '), $41.2(\mathrm{C}-2), 26.0\left(\mathrm{C}-3^{\prime}, \mathrm{C}-\right.$ 5'), 24.3 (C-4').

1.2.3. N-(2-chloroethyl)-pyrrolidine (7da)

* CARE! β-chloroamines are known to have a high toxicity. They should be handled in a fumehood only, and with appropriate care.
(Described in literature ${ }^{[8]}$) Prepared according to general procedure GP2, using N-(2Chloroethyl)pyrrolidine $\cdot \mathrm{HCl}(3.40 \mathrm{~g}, 20 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.15 \mathrm{~g}, 30 \mathrm{mmol})$. Concentration on the rotary evaporator (bath temperature: $30^{\circ} \mathrm{C}$) afforded 2.47 g of colourless oil. Yield: 92%.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta_{H}=3.59\left(\mathrm{t},{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}}=7.0 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.82\left(\mathrm{t},{ }^{3} J_{1-\mathrm{H}, 2-\mathrm{H}}=7.0 \mathrm{~Hz}\right.$, $\left.1-\mathrm{H}_{2}\right), 2.60-2.52\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}_{2}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 1.82-1.75\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}_{2}\right.$ and $\left.4^{\prime}-\mathrm{H}_{2}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $101 \mathrm{MHz}): \delta_{C}=58.1(\mathrm{C}-1), 54.3\left(\mathrm{C}-2^{\prime} / \mathrm{C}-5^{\prime}\right), 42.7(\mathrm{C}-2), 23.6$ (C-3'/C-4'); HRMS (ESI, pos., $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$, calcd. for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{ClN}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=134.0731$, found: 134.0743 .

1.3. α-chloroamides from α-chloroacetyl chloride

1.3.1. General procedure GP3: 2-Chloro- N, N-diisobutylacetamide

To an ice-cooled solution of α-chloroacetyl chloride ($3.98 \mathrm{~mL}, 50 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added $i-\mathrm{Bu}_{2} \mathrm{NH}(6.15 \mathrm{~mL}, 35 \mathrm{mmol})$ dropwise, followed by $\mathrm{Et}_{3} \mathrm{~N}(4.90 \mathrm{~mL}, 35 \mathrm{mmol})$. After stirring at room temperature for 8 h , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$, washed with aq. $\mathrm{HCl}(1 \mathrm{M}, 40 \mathrm{~mL})$, then with sat. aq. $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, and finally with brine (30 mL).
The organic layer was separated and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration in vacuo afforded the known amide ${ }^{[9]}$ as an amber oil (7.05 g), of sufficient purity as determined by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR. Yield: 98\%.
IR $\left(\mathrm{CHCl}_{3}\right): v=2960,2930,2875,1650,1460,1390,1370,1125,1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=4.08\left(\mathrm{~s}, 2-\mathrm{H}_{2}\right), 3.20\left(\mathrm{~d},{ }^{3} J=7.6 \mathrm{~Hz}\right)$ and $3.13\left(\mathrm{~d},{ }^{3} J=7.6 \mathrm{~Hz}\right)(2$ sets of $1^{\prime}-\mathrm{H}_{2}$ due to anisotropy), $2.03(\mathrm{spt}, J=7.1 \mathrm{~Hz})$ and $1.93(\mathrm{spt}, J=6.90 \mathrm{~Hz})\left(2\right.$ distinct $2^{\prime}-\mathrm{H}$ due to anisotropy), $0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$ and $0.88(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})\left[2\right.$ sets of $2{ }^{\prime}-\left(\mathrm{CH}_{3}\right)_{2}$ due to anisotropy]; ${ }^{13} \mathbf{C - N M R}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta_{C}=167.2(\mathrm{C}-1), 55.8$ and $53.1(\mathrm{C}-1$ 'a and $\mathrm{C}-1$ 'b), 41.5 (C-2), 27.9 and 26.4 (C-2'a and C-2'b), 20.2 ($2^{\prime}-\mathrm{Me}_{2}$); Anal. calcd. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{ClNO}: \mathrm{C} 58.38 \%$, H 9.80%, N 6.81%, found C 58.10%, H 9.77%, N 6.77%.

[^2]
1.3.2. 2-Chloro- N, N-dibenzylacetamide

To an ice-cooled solution of α-chloroacetyl chloride ($3.98 \mathrm{~mL}, 50 \mathrm{mmol}$) in THF (100 mL) was added $\mathrm{Bn}_{2} \mathrm{NH}\left(9.61 \mathrm{~mL}\right.$, 50 mmol) dropwise, followed by $\mathrm{Et}_{3} \mathrm{~N}(6.97 \mathrm{~mL}, 50 \mathrm{mmol})$. After stirring at room temperature for 8 h , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (100 mL), washed with aq. $\mathrm{HCl}(1 \mathrm{M}, 75 \mathrm{~mL})$, then with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and finally with brine (30 mL).
The organic layer was separated and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration in vacuo afforded the known amide ${ }^{[9]}$ as an amber oil (13.11 g), of sufficient purity as determined by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR. Yield: 96\%.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta_{H}=7.38-7.08(\mathrm{~m}, 2 \times \mathrm{Ph}), 4.57(\mathrm{~s})$ and $4.46(\mathrm{~s})\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.10\left(\mathrm{~s}, 2-\mathrm{H}_{2}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=167.4(\mathrm{C}-1), 136.5,135.8(2 \times \mathrm{C}-1$) $)$, 129.2, 128.8, 128.3, $126.5\left(2 \times \mathrm{C}-2^{\prime} / \mathrm{C}-6^{\prime}\right.$ and $\left.2 \times \mathrm{C}-3^{\prime} / \mathrm{C}-5^{\prime}\right)$, 128.1, $127.8\left(2 \times \mathrm{C}-4^{\prime}\right)$, 50.4, $48.7\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 41.5(\mathrm{C}-2)$.

1.4. $\mathrm{BH}_{3} . \mathrm{Me}_{2} \mathrm{~S}$ Reduction of α-chloroamides

1.4.1. General procedure GP4: N-(2-chloroethyl)- N, N-diisobutylamine (7ea)

* CARE! Dimethyl sulphide is malodorous, β-chloroamines are toxic. Work in a fumehood, neutralise glassware with commercial bleach solution.
To a solution of the amide ($5.00 \mathrm{mmol}, 1.03 \mathrm{~g}$) in THF (20 mL), cooled at $0-5^{\circ} \mathrm{C}$ with an ice bath, was added $\mathrm{BH}_{3} . \mathrm{SMe}_{2}(1.19 \mathrm{~mL}, 2.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.$) . After 15 \mathrm{~min}$., the ice bath was removed and the mixture was stirred at r.t. overnight.
To the ice-cooled reaction mixture was carefully added aq. $\mathrm{HCl}(2 \mathrm{~m})$ dropwise until a clear solution was obtained and gas evolution stopped.* The mixture was then basified by addition of aq. $\mathrm{NaOH}(2 \mathrm{M})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated* in vacuo to afford the β-chloroamine (0.95 g) as a colourless oil. Yield: 99\%.
(Described in literature ${ }^{[10]}$)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=3.47\left(\mathrm{t},{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}}=7.6 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.71\left(\mathrm{t},{ }^{3} J_{1-\mathrm{H}, 2-\mathrm{H}}=7.6 \mathrm{~Hz}\right.$, $\left.1-\mathrm{H}_{2}\right), 2.15\left(\mathrm{~d},{ }^{3} J_{1^{\prime}-\mathrm{H} 2,2^{\prime}-\mathrm{H}}=7.3 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{2}\right), 1.66\left(\mathrm{th},{ }^{3} J_{2^{\prime}-\mathrm{H}, 1^{\prime}-\mathrm{H} 2}={ }^{3} J_{2^{\prime}-\mathrm{H}, 2^{\prime}-\mathrm{CH} 3}=6.7 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right)$,

[^3]$0.87\left(\mathrm{~d},{ }^{3} J_{2^{\prime}-\mathrm{CH3}, 2^{2}-\mathrm{H}}=6.6 \mathrm{~Hz}, 2^{\prime}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 67.9 \mathrm{MHz}\right): \delta_{C}=64.5\left(\mathrm{C}-1^{\prime}\right), 57.5$ (C-1), 42.2 (C-2), 27.1 (C-2'), $20.9\left(2^{\prime}-\mathrm{CH}_{3}\right)$; HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{10} \mathrm{H}_{23} \mathrm{ClN}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=192.1514$, found: 192.1504.

1.4.2. N-(2-chloroethyl)- N, N-dibenzylamine (7fa)

* CARE! Dimethyl sulphide is malodorous, β-chloroamines are toxic. Work in a fumehood, neutralise glassware with commercial bleach solution.
To a solution of the amide ($2.74 \mathrm{~g}, 10.0 \mathrm{mmol}$) in THF (20 mL), cooled at $0-5^{\circ} \mathrm{C}$ with an ice bath, was added $\mathrm{BH}_{3} . \mathrm{SMe}_{2}(2.38 \mathrm{~mL}, 25.0 \mathrm{mmol}, 2.5 \mathrm{eq}$.). After 15 min ., the ice bath was removed and the mixture was stirred at r.t. overnight.
The ice-cooled reaction mixture was acidified with aq. $\mathrm{HCl}(6 \mathrm{~m})$ dropwise until a clear solution was obtained and gas evolution stopped. Basification with $\mathrm{NaOH}(2 \mathrm{~m})$ and extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ afforded the crude chloroamine as a mixture with the starting chloroamide (2.55 g). After flash chromatography $\left(\mathrm{SiO}_{2},{\left.\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}: \mathrm{Et}_{3} \mathrm{~N}=1: 1: 0.1\right) \text {, the }}^{2}\right.$ title compound (4.75 mmol) was obtained as a pale yellow oil. Yield: 47%.
(Described in literature ${ }^{[11,12]}$)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta_{H}=7.50-7.18(\mathrm{~m}, 2 \times \mathrm{Ph}), 3.66\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.50\left(\mathrm{t},{ }^{3} J_{2-\mathrm{H}_{2}, 1-\mathrm{H}_{2}}=\right.$ $\left.7.2 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.84\left(\mathrm{t},{ }^{3} J_{1-\mathrm{H}_{2} 2-\mathrm{H}_{2}}=7.2,1-\mathrm{H}_{2}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=139.3\left(\mathrm{C}-1{ }^{1}\right)$, 128.9, 128.5 (C-2'/C-6' and C-3'/C-5'), 127.3 (C-4'), 58.9 ($\mathrm{CH}_{2} \mathrm{Ph}$), 55.5 (C-1), 42.0 (C-2); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClN}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=260.1201$, found: 260.1213.

1.5.Epoxidation of alkenes with mCPBA

1.5.1. General procedure GP5: Cyclohexyl oxirane (rac. 3c)

To an ice-cooled solution of vinylcyclohexane (Alfa Aesar, $98+\%, 2.20 \mathrm{~g}, 20.0 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added dried m CPBA ($82 \mathrm{wt} .-\%, 5.26 \mathrm{~g}, 25.0 \mathrm{mmol}$). After 15 min , the ice bath was removed and the reaction stirred at room temperature for 24 h . After dilution with pentane (100 mL), the suspension was filtered over a short (3 cm) plug of $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral, $\varnothing=2.5 \mathrm{~cm}$). Removal of the solvents under reduced pressure afforded cyclohexyl oxirane $(2.14 \mathrm{~g})$ as a clear, colourless, and fruity-smelling oil. It was used without further

[^4]purification for the next step (${ }^{1} \mathrm{H}-\mathrm{NMR}$ did not show any appreciable amount of contaminant). Yield: 85\%.
(Described in literature ${ }^{[13]}$)
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta_{H}=3.00-2.85\left(\mathrm{~m}, 1-\mathrm{H}\right.$ and $2-\mathrm{H}_{\mathrm{a}}$), 2.53 (poorly resolved dd, $J=$ $\left.4.4, J=3.7,2-\mathrm{H}_{\mathrm{b}}\right), 1.93-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.03(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=56.9(\mathrm{C}-1), 46.2(\mathrm{C}-2), 40.5(\mathrm{C}-1$ '), 29.9, 29.0, 26.5, 25.8, $25.7(\mathrm{C}-2$ ' to $\mathrm{C}-6$ ').

1.5.2. Phenethyl oxirane (3,4-epoxybutyl benzene, rac. 3d)

To a solution of 4-phenylbut-1-ene (Alfa Aesar, $98+\%, 2.64 \mathrm{~g}, 20 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ was added dried m CPBA ($82 \mathrm{wt}-\%, 1.25$ eq., 5.26 g) at $0^{\circ} \mathrm{C}$ (ice bath), and the mixture stirred 30 min . at this temperature. The ice bath was then removed and the mixture was stirred further at r.t. for 18 h , at which point TLC showed disappearance of the starting material. The mixture was washed with a $1: 1$ mixture of water and sat. aq. $\mathrm{NaHCO}_{3}(2 \times 25 \mathrm{~mL})$ and pH 7 buffer (25 mL). Flash-chromatography $\left(\mathrm{SiO}_{2}, \varnothing 2.5 \mathrm{~cm}, \mathrm{~h}=12 \mathrm{~cm}, \mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=10: 1, \mathrm{~F} 7-15\right.$) yielded the title compound ($\mathrm{m}=2.21 \mathrm{~g}$) as a colourless oil. Yield: 74%. (Described in literature ${ }^{[14]}$)
${ }^{1} \mathbf{H}-N M R\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=7.34-7.27\left(\mathrm{~m}, 2^{\prime}{ }^{\prime}-\mathrm{H} / 6^{\prime}{ }^{\prime}-\mathrm{H}\right)$, 7.24-7.18 ($3^{\prime}{ }^{\prime}-\mathrm{H} / 5^{\prime}{ }^{\prime}-\mathrm{H}$ and $4{ }^{\prime}$ 'H), $2.99-2.93(\mathrm{~m}, 2-\mathrm{H}), 2.89-2.71\left(\mathrm{~m}, 4-\mathrm{H}_{2}\right.$ and $\left.1-\mathrm{H}^{\mathrm{a}}\right), 2.48\left(\mathrm{dd}, J=5.0, J=2.8,1-\mathrm{H}^{\mathrm{b}}\right)$, 1.95-1.79 (3-H2); ${ }^{13} \mathbf{C - N M R}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=141.4(\mathrm{C}-1 "), 128.6$ and $128.5(\mathrm{C}-$ 2'//C-6' and C-3'/C-5''), 126.1 (C-4'), 51.9 (C-2), 47.4 (C-1), 34.4 and 32.3 (C-3 and C-4).

1.6. Aminolysis of epoxides

1.6.1. General procedure GP6a: 1-(pyrrolidin-1-yl)hexan-2-ol (rac. 4db)

(Described in literature ${ }^{[15]}$)
To a solution of 1,2-epoxyhexane ($4.00 \mathrm{~mL}, 33.2 \mathrm{mmol}$) and pyrrolidine (Fluka, 2.86 mL , $33.2 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$ was added zinc chloride (Fischer Scientific, 226 mg , $5 \mathrm{~mol} .-\%$). The resulting clear solution was refluxed for 12 h under an argon atmosphere. After cooling down, the mixture was diluted with AcOEt (40 mL) and the zinc chloride was removed by filtration over a short plug (3 cm) of silica gel ($\varnothing=4.5 \mathrm{~cm}$), which was subsequently rinsed with $\operatorname{AcOEt}(2 \times 70 \mathrm{~mL})$. The organic washings were combined and the solvents were removed under reduced pressure, yielding a clear colourless oil (3.73 g), of sufficient purity to be used as such for the next steps. Yield: 66%.

[^5]IR $\left(\mathrm{CHCl}_{3}\right): v=3440,2955,2930,2870,2800,1460,1350,1290,1220,1145,1080,915$, $770,745 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{H}=3.63$ (dddd, ${ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{3}}=10.6,{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{3}}=6.9$, $\left.{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{o}}}=4.5,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}}=3.0,2-\mathrm{H}\right), 3.59$ (br. s, OH), 2.72-2.62 and 2.49-2.39 (m, $2^{\prime} / 5^{\prime}-\mathrm{H}_{2}$, axial and equatorial), $2.56\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{a}, 1-\mathrm{H}_{\mathrm{b}}}=11.9,{ }^{3} J_{1-\mathrm{H}_{4}, 2-\mathrm{H}}=10.6,1-\mathrm{H}_{\mathrm{a}}\right), 2.26\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{b}, 1-\mathrm{H}_{a}}=\right.$ $\left.11.9,{ }^{3} J_{1-\mathrm{H}_{3} 2-\mathrm{H}}=3.0,1-\mathrm{H}_{\mathrm{b}}\right), 1.82-1.70\left(\mathrm{~m}, 3^{\prime} / 4^{\prime}-\mathrm{H}_{2}\right), 1.56-1.23\left(\mathrm{~m}, 3-\mathrm{H}_{2}, 4-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}_{2}\right), 0.90$ $\left(\mathrm{t}, J_{6-\mathrm{H}_{3}, 5-\mathrm{H}_{2}}=7.1,6-\mathrm{H}_{3}\right) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=68.4(\mathrm{C}-2), 62.2(\mathrm{C}-1), 54.1(\mathrm{C}-$ $\left.2^{\prime} / \mathrm{C}-5^{\prime}\right), 35.0$ (C-3), 28.0 (C-4), 23.8 (C-3'/C-4'), 23.0 (C-5), 14.2 (C-6); HRMS (ESI, pos., $\mathrm{MeOH})$, calc for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$: 172.1696, found: 172.1686.

1.6.2. 1-cyclohexyl-2-(piperidin-1-yl)ethanol (rac. 4dc)

To a solution of cyclohexane oxirane ($2.14 \mathrm{~g}, 17.0 \mathrm{mmol}$) and pyrrolidine (Fluka, 98+\%, 1.46 $\mathrm{mL}, 1.0$ eq.) in $\mathrm{CH}_{3} \mathrm{CN}(70 \mathrm{~mL}$) was added zinc chloride (Fischer Scientific, $97+\%, 116 \mathrm{mg}, 5$ mol.-\%). The resulting clear solution was refluxed for 12 h under an argon atmosphere. After cooling down, the mixture was diluted with $\operatorname{AcOEt}(70 \mathrm{~mL})$ and the zinc chloride was removed by filtration over a short plug (3 cm) of silica gel ($\varnothing=4.5 \mathrm{~cm}$), which was subsequently rinsed with AcOEt $(2 \times 70 \mathrm{~mL})$. The organic washings were combined and the solvents were removed under reduced pressure. Flash chromatography $\left(\mathrm{SiO}_{2}\right.$; eluent $\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}: \mathrm{Et}_{3} \mathrm{~N}=1: 1: 0.1$) of the residual oil afforded the aminoalcohol as a clear colourless oil $(2.33 \mathrm{~g})$. Yield: 69%.
(Described in literature ${ }^{[16]}$)
IR $\left(\mathrm{CHCl}_{3}\right): v=3440,2925,2850,2795,1450,1350,1310,1260,1220,1110,1050,915$, $770,745 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, spectrum shows traces of $\mathrm{Et}_{2} \mathrm{O}, \mathrm{PE}$ and $\left.\mathrm{Et}_{3} \mathrm{~N}\right): \delta_{H}$ $=3.61$ (br. s, 1-OH), 3.37 (ddd, ${ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}}=10.8,{ }^{3} J_{2-\mathrm{H}, 1^{\prime}{ }^{\prime}-\mathrm{H}}=6.4,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}}=3.0,2-\mathrm{H}$), 2.732.67 and 2.47-2.37 (m, $2^{\prime} / 5^{\prime}-\mathrm{H}_{2}$, axial and equatorial), $2.62\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{3,} 1-\mathrm{H}_{\mathrm{b}}}=11.7,{ }^{3} J_{1-\mathrm{H}_{3} 2-\mathrm{H}}=\right.$ $\left.10.8,1-\mathrm{H}_{\mathrm{a}}\right), 2.28\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{\mathrm{b}}, 1-\mathrm{H}_{\mathrm{a}}}=11.7,{ }^{3} J_{1-\mathrm{H}_{\mathrm{b}}, 2-\mathrm{H}}=3.0,1-\mathrm{H}_{\mathrm{b}}\right), 1.94-1.60\left(\mathrm{~m}, 9 \mathrm{H}\right.$ including $3^{\prime} / 4{ }^{\prime}-$ $\left.\mathrm{H}_{2}\right), 1.42-0.82(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right.$, spectrum shows traces of $\mathrm{Et}_{2} \mathrm{O}$, PE and $\mathrm{Et}_{3} \mathrm{~N}$): $\delta_{C}=72.0(\mathrm{C}-2), 59.5(\mathrm{C}-1), 53.9\left(\mathrm{C}-2^{\prime} / \mathrm{C}-5^{\prime}\right), 42.4\left(\mathrm{C}-1^{\prime}\right)$), 28.8 and $28.6\left(\mathrm{C}-2^{\prime \prime}\right.$ and C6'), 26.6, 26.2, 26.1 (C-3'’, C-4'', C-5''), 23.6 (C-3'/C-4'); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=198.1852$, found: 198.1843.

1.6.3. General procedure GP6b: 4-phenyl-1-(pyrrolidin-1-yl)butan-2-ol (rac. 4dd)

[^6]A heterogenous mixture of 3,4-epoxypbutyl benzene ($5.15 \mathrm{~g}, 34.7 \mathrm{mmol}$) and pyrrolidine ($3.60 \mathrm{~mL}, 41.8 \mathrm{mmol}, 1.2$ eq.) in water (18 mL) was stirred 18 h at r.t. After dilution with $\operatorname{EtOAc}(35 \mathrm{~mL})$, the layers were separated, and the aqueous layer was further extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic extracts were combined, washed with brine $(20 \mathrm{~mL})$, filtered over a short plug of SiO_{2}, and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure yielded a clear light amber oil (7.02 g), of sufficient purity to be used as such for the next steps. Yield: 92\%.
$\mathrm{R}_{\mathrm{F}}\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}: \mathrm{Et}_{3} \mathrm{~N}=10: 1: 0.1\right)=0.38$
IR $\left(\mathrm{CHCl}_{3}\right): v=3430,3005,2970,2935,2880,2810,1495,1455,1420,1355,1315,1290$, $1260,1145,1130,1095,1075,1030,885 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=7.32-7.14$ (m, Ph), 3.67 (dddd, ${ }^{3} J_{2-\mathrm{H}, 1-\mathrm{Ha}}=10.7,{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{Ha}}=7.6,{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{Hb}}=4.4,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{Hb}}=3.2,2-\mathrm{H}$), 3.55 (br. s, 2-OH), $2.85\left(d d d, \mathrm{~J}=13.9,10.0,5.8 \mathrm{~Hz}, 4-\mathrm{H}^{\mathrm{a}}\right), 2.74-2.64\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}^{\mathrm{a}} / 5^{\prime}-\mathrm{H}^{\mathrm{a}}\right.$ and $\left.4-\mathrm{H}^{\mathrm{b}}\right)$, $2.61\left(\mathrm{dd},{ }^{3} J_{1-\mathrm{Ha}, 1-\mathrm{Hb}}=11.7,{ }^{3} J_{1-\mathrm{Ha}, 2-\mathrm{H}}=10.7,1-\mathrm{H}^{\mathrm{a}}\right), 2.49-2.41\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}^{\mathrm{b}} / 5^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 2.29\left(\mathrm{dd},{ }^{3} J_{1-}\right.$ $\left.\mathrm{Hb}, 1-\mathrm{Ha}=11.9,{ }^{3} J_{1-\mathrm{Hb}, 2-\mathrm{H}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}^{\mathrm{b}}\right), 1.73\left(3-\mathrm{H}_{2}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=$ 142.5 (C-1'"), 128.6 and 128.5 (C-3''/C-5'" and C-2''/C-6''), 125.9 (C-4''), 67.7 (C-2), 62.1 (C-1), 54.2 (C-2’/C-5'), 37.0 (C-3), 32.2 (C-4), 23.8 ($\mathrm{C}-3^{\prime} / \mathrm{C}-4^{\prime}$); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=220.1696$, found: 220.1690 .

(Described in literature ${ }^{[17,18]}$)
To a mixture of cyclohexene oxide (Aldrich, $21.2 \mathrm{~mL}, 210 \mathrm{mmol}, 1.05 \mathrm{eq}$.) and water (80 mL) was added pyrrolidine ($16.6 \mathrm{~mL}, 200 \mathrm{mmol}$). After stirring at room temperature for 40 h , , the mixture was diluted with EtOAc (100 mL). The layers were separated; the aqueous phase was washed with EtOAc $(3 \times 75 \mathrm{~mL})$. The combined organic layers were washed with brine $(35 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated at $40^{\circ} \mathrm{C}$ in vacuo, to afford the title compound $(31.2 \mathrm{~g})$ as an off-yellow oil, of sufficient purity to be used as such for the next steps. Yield: 92\%.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=4.04(\mathrm{br} \mathrm{s}, \mathrm{OH}), 3.35\left(\mathrm{ddd},{ }^{3} J_{1-\mathrm{H}, 6-\mathrm{Hax}} \sim{ }^{3} J_{1-\mathrm{H}, 6-\mathrm{Heq}}=9.5,{ }^{3} J_{1-}\right.$ $\left.{ }_{\mathrm{H}, 2-\mathrm{H}}=4.1,1-\mathrm{H}\right), 2.68(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 2.45\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{Hax}}=11.0,{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{Heq}}=9.5\right.$, $\left.{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}}=3.3,2-\mathrm{H}\right), 2.10(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.64(\mathrm{~m}, 7 \mathrm{H}), 1.32-1.10\left(\mathrm{~m}, 4 \mathrm{H}\right.$, one of the $3-\mathrm{H}_{2}$, one of the $4-\mathrm{H}_{2}$, one of the $5-\mathrm{H}_{2}$, one of the $\left.6-\mathrm{H}_{2}\right)$; ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=70.0(\mathrm{C}-1)$, 65.4 (C-2), $47.9(2 \times \mathrm{C}-2$ '), $33.3(\mathrm{C}-6), 24.6(2 \times \mathrm{C}-3$ '), 24.0, 23.4, $22.2(\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5)$.

1.7.Chlorination of aminoalcohols

1.7.1. General procedure GP7: N-(2-chlorohexyl)pyrrolidine (rac. 7db)

* CARE! β-chloroamines are known to have a high toxicity. They should be handled in a fumehood only, and with appropriate care.
To an ice-cooled solution of 1-(pyrrolidin-1-yl)hexan-2-ol ($2.58 \mathrm{~g}, 15.1 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ was added dropwise $\mathrm{SOCl}_{2}(1.65 \mathrm{~mL}, 1.50 \mathrm{eq}$.$) . After the end of the$ addition, the ice bath was removed and the mixture was refluxed for 2 h . After cooling down to room temperature, the reaction mixture was poured into a mixture of ice water $(50 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$. The water phase was basified with $\mathrm{NaOH}(2 \mathrm{~m})$, the layers were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash-chromatography $\left(\mathrm{SiO}_{2}\right.$; eluent $\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}: \mathrm{Et}_{3} \mathrm{~N}=10: 1: 0.2$) of the residual oil afforded the β-chloroamine as a pale ambercoloured oil (2.54 g). Yield: 89%.
IR $\left(\mathrm{CHCl}_{3}\right): v=2960,2935,2875,2800,1465,1380,1355,1315,1295,1245,1145,1105$ $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=3.95\left(\mathrm{dddd},{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}}=9.2,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}}=7.4,{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{o}}}=\right.$ $\left.5.8,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}}=3.4 \mathrm{~Hz}, 2-\mathrm{H}\right), 2.78\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{\mathrm{a}}, 1-\mathrm{H}_{\mathrm{b}}}=12.7,{ }^{3} J_{1-\mathrm{H}_{\mathrm{a}}, 2-\mathrm{H}}=7.4 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{a}}\right), 2.67\left(\mathrm{dd},{ }^{2} J_{1-}\right.$

[^7]$\left.\mathrm{H}_{\mathrm{b}, 1-\mathrm{H}_{\mathrm{a}}}=12.7,{ }^{3} J_{1-\mathrm{H}_{\mathrm{b}}, 2-\mathrm{H}}=3.4,1-\mathrm{H}_{\mathrm{b}}\right), 2.59-2.52\left(\mathrm{~m}, 2^{\prime} / 5^{\prime}-\mathrm{H}_{2}\right), 1.94-1.83\left(\mathrm{~m}, 3-\mathrm{H}_{\mathrm{a}}\right), 1.83-1.74$ $\left(\mathrm{m}, 3^{\prime} / 4^{\prime}-\mathrm{H}_{2}\right), 1.70-1.23\left(\mathrm{~m}, 3-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}_{2}\right), 0.92\left(\mathrm{t}, J_{6-\mathrm{H}_{3}, 5-\mathrm{H}_{2}}=7.2,6-\mathrm{H}_{3}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R}$ $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=63.8(\mathrm{C}-1), 61.8(\mathrm{C}-2), 54.6\left(\mathrm{C}-2^{\prime} / \mathrm{C}-5{ }^{\prime}\right), 36.3(\mathrm{C}-3), 28.7(\mathrm{C}-4), 23.7$ (C-3'/C-4'), 22.4 (C-5), 14.1 (C-6); HRMS (ESI, pos., MeOH), calc for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{ClNO}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}: 190.1357$, found: 190.1353.

1.7.2. N-(2-chloro-2-cyclohexylethyl)pyrrolidine (rac. 7dc)

* CARE! β-chloroamines are known to have a high toxicity. They should be handled in a fumehood only, and with appropriate care.
Prepared according to general procedure GP7, using 1-cyclohexyl-2-(pyrrolidin-1-yl)ethanol ($2.33 \mathrm{~g}, 11.8 \mathrm{mmol}$), $\mathrm{SOCl}_{2}\left(1.0 \mathrm{~mL}, 1.17 \mathrm{eq}\right.$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ (reflux, 3 h). Work-up and flash chromatography (SiO_{2}; eluent $\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}: \mathrm{Et}_{3} \mathrm{~N}=10: 1: 0.2$), afforded the β-chloroamine as a pale amber-coloured oil $(1.42 \mathrm{~g})$. Yield: 56%.
IR $\left(\mathrm{CHCl}_{3}\right): v=2930,2855,2800,1450,1355,1310,1125,895 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta_{H}=3.93\left(\mathrm{ddd},{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}}=8.3,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}}=5.0,{ }^{3} J_{2-\mathrm{H}, 1,{ }^{1}-\mathrm{H}}=3.3,2-\mathrm{H}\right), 2.81\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{0}, 1-\mathrm{H}_{\mathrm{b}}}=\right.$ $\left.12.9,{ }^{3} J_{1-\mathrm{H}_{2} 2-\mathrm{H}}=8.3,1-\mathrm{H}_{\mathrm{a}}\right), 2.71\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{\mathrm{b}}, 1-\mathrm{H}_{\mathrm{a}}}=12.9,{ }^{3} J_{1-\mathrm{H}_{\mathrm{b}} 2-\mathrm{H}}=5.0,1-\mathrm{H}_{\mathrm{b}}\right), 2.47-2.63(\mathrm{~m}$, $\left.2^{\prime} / 5^{\prime}-\mathrm{H}_{2}\right), 1.85-1.53$ and $1.42-1.08\left(\mathrm{~m}, 3^{\prime} / 4{ }^{\prime}-\mathrm{H}_{2}, 2^{\prime} / / 6^{\prime}{ }^{\prime}-\mathrm{H}_{2}, 3^{\prime} / 5^{\prime}{ }^{\prime}-\mathrm{H}_{2}, 4^{\prime}{ }^{\prime}-\mathrm{H}_{2}\right) ;{ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=67.3(\mathrm{C}-2), 61.3(\mathrm{C}-1), 54.6\left(\mathrm{C}-2^{\prime} / \mathrm{C}-5^{\prime}\right), 42.3\left(\mathrm{C}-1{ }^{\prime}\right), 30.6$, 27.3, 26.4, 26.4, 26.1 (C-2'", C-3'", C-4', C-5'", C-6''), 23.6 (C-3'/C-4'); HRMS (ESI, pos., $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$, calcd. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{ClN}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=216.1514$, found: 216.1517.
1.7.3. 1-(2-chloro-4-phenylbutyl)pyrrolidine (rac. 7dd)

* CARE! β-chloroamines are known to have a high toxicity. They should be handled in a fumehood only, and with appropriate care.
Prepared according to general procedure GP7, using 4-phenyl-1-(pyrrolidin-1-yl)butan-2-ol $(1.97 \mathrm{~g}, 9.0 \mathrm{mmol}), \mathrm{SOCl}_{2}\left(1.0 \mathrm{~mL}, 1.52 \mathrm{eq}\right.$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ (reflux, 3 h). Work-up and flash chromatography $\left(\mathrm{SiO}_{2}\right.$; eluent $\left.\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}: \mathrm{Et}_{3} \mathrm{~N}=10: 1: 0.2\right)$, afforded the β-chloroamine as a pale amber-coloured oil $(1.71 \mathrm{~g})$. Yield: 80%.
IR $\left(\mathrm{CHCl}_{3}\right): v=2930,2855,1700,1570,1450,1360,1305,1070,980,895 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}$
 (dddd, ${ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}}=9.6,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}}=7.3,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}}=6.4,{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}}=3.1,2-\mathrm{H}$), 2.93 (ddd, ${ }^{2} J_{4-\mathrm{H}_{3}, 4-\mathrm{H}_{\mathrm{b}}}$ $\left.=13.9,{ }^{3} J_{4-\mathrm{H}_{2}, 3-\mathrm{H}_{\mathrm{a}}}=9.4,{ }^{3} J_{4-\mathrm{H}_{3} 3-\mathrm{H}_{0}}=4.8,4-\mathrm{H}_{\mathrm{a}}\right), 2.79\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{3} 11-\mathrm{H}_{0}}=12.6,{ }^{3} J_{1-\mathrm{H}_{2} 2-\mathrm{H}}=7.3,1-\mathrm{H}_{\mathrm{a}}\right)$, $2.76\left(\mathrm{ddd},{ }^{2} J_{4-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{a}}}=13.9,{ }^{3} J_{4-\mathrm{H}_{b}, 3-\mathrm{H}_{\mathrm{b}}}=9.0,{ }^{3} J_{4-\mathrm{H}_{b}, 3-\mathrm{H}_{\mathrm{a}}}=7.3,4-\mathrm{H}_{\mathrm{b}}\right), 2.70\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{b}, 1-\mathrm{H}_{\mathrm{a}}}=12.6\right.$, $\left.{ }^{3} J_{1-\mathrm{H}_{\mathrm{b}}, 2-\mathrm{H}}=6.4,1-\mathrm{H}_{\mathrm{b}}\right), 2.57-2.46\left(\mathrm{~m}, 2^{\prime} / 5^{\prime}-\mathrm{H}_{2}\right), 2.22\left(\mathrm{dddd},{ }^{2} J_{3-\mathrm{H}_{a}, 3-\mathrm{H}_{\mathrm{b}}}=14.2,{ }^{3} J_{3-\mathrm{H}_{4}, 4-\mathrm{H}_{\mathrm{a}}}=9.4,{ }^{3} J_{3-}\right.$ $\left.{ }_{H_{a}, 4-\mathrm{H}_{\mathrm{b}}}=7.3,{ }_{3}^{3} J_{3-\mathrm{H}_{3}, 2-\mathrm{H}}=3.1,3-\mathrm{H}_{\mathrm{a}}\right), 1.94\left(\mathrm{dddd},{ }^{2} J_{3-\mathrm{H}_{\mathrm{b}}, 3-\mathrm{H}_{\mathrm{a}}}=14.2,{ }_{3-\mathrm{H}_{0}, 2-\mathrm{H}}=9.6,{ }^{3} J_{3-\mathrm{H}_{b}, 4-\mathrm{H}_{\mathrm{b}}}=9.0\right.$,
$\left.{ }^{3} J_{3-\mathrm{H}_{3} 4-\mathrm{H}_{\mathrm{a}}}=4.8,3-\mathrm{H}_{\mathrm{b}}\right), 1.82-1.71\left(\mathrm{~m}, 3^{\prime} / 4^{\prime}-\mathrm{H}_{2}\right) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=141.3(\mathrm{C}-$ $1^{\prime \prime}$), 128.7 and 128.6 (C-2''/C-6'" and C-3''/C-5''), 126.2 (C-4''), 63.6 (C-1), 60.8 (C-2), 54.6 (C-2', C-5'), 38.1 (C-3), 32.6 (C-4), 23.6 (C-3', C-4'); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ClN}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=238.1357$, found: 238.1363.

1.8. General procedure GP8: \boldsymbol{N}-oxidation of tertiary $\boldsymbol{\beta}$-chloroamines with $m C P B A$

Dried m CPBA (prepared according to GP1 and titrated according to ref. ${ }^{[7]}$, usually containing $5-15 \%$ residual chlorobenzoic acid, 1.1-1.5 eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (to obtain an approximately 0.2 M solution). To this solution, cooled with an ice-brine bath, was added the amine slowly (approximately $1 \mathrm{~mL} / \mathrm{min}$) via syringe. The mixture was then stirred while being allowed to warm up to room temperature. After 2 to 12 h , consumption of the starting amine was completely as shown by TLC of a basified aliquot of the reaction mixture (Eluent $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$: 1:1:0.1). The solvent was removed under reduced pressure to yield quantitative amounts of the m-chlorobenzoic acid salt (8) of the β-chloroamine N-oxide as a brown oil. In all cases, excess m-chlorobenzoic acid was the main contaminant; the excess of m-chlorobenzoic acid was assessed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ to be between 0.2 and 0.7 eq. The highly hygroscopic nature of these salts (8) limits their suitability for combustion analysis.

1.8.1. N-(2-chloroethyl)-dimethylamine N-oxide (3-chlorobenzoic acid salt)

(8aa)

Prepared according to general procedure GP8. (Contains approx. 0.70 eq. excess m chlorobenzoic acid, based on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integrations of the aromatic signals.)
IR $\left(\mathrm{CHCl}_{3}\right): v=3005,1700,1575,1475,1430,1290,1260,1145,1070,905,850 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta_{H}=10.40$ (br. s, OH$), 8.05\left(\mathrm{t},{ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=1.5 \mathrm{~Hz}\right.$, $\mathrm{Ar} 2-\mathrm{H}), 7.94\left(\mathrm{dt},{ }^{3} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=7.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}}={ }^{4} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}=1.5 \mathrm{~Hz}, \mathrm{Ar} 6-\mathrm{H}\right)^{*}, 7.48$ (ddd, $\left.{ }^{2} J_{\text {Ar4-H,Ar5-H }}=7.8 \mathrm{~Hz},{ }^{3} J_{\text {Ar4-H,Ar6-H }} \sim^{3} J_{\text {Ar4-H,Ar2-H }} \sim 1.5 \mathrm{~Hz}, \mathrm{Ar} 4-\mathrm{H}\right)^{*}, 7.35\left(\mathrm{t},{ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}=\right.$ $\left.{ }^{2} J_{\text {Ars-H,Arg-H }}=7.8 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H}\right), 4.14\left(\mathrm{t},{ }^{3} J_{2-\mathrm{H}_{2}, 1-\mathrm{H}_{2}}=5.8 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 3.98\left(\mathrm{t},{ }^{3} J_{1-\mathrm{H}_{2}, 2-\mathrm{H}_{2}}=5.8 \mathrm{~Hz}, 1-\right.$ $\left.\mathrm{H}_{2}\right), 3.56\left(\mathrm{~s}, \mathrm{NMe}_{2}\right) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta_{\mathrm{C}}=169.7\left(\mathrm{CO}_{2} \mathrm{H}\right), 134.5,134.3(\mathrm{Ar}-1$, Ar-3), 132.4, 130.1, 129.6, 128.0 (Ar-2, Ar-4, Ar-5, Ar-6), 71.1 (C-1), 58.5 (NMe_{2}), 36.4 (C2)HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calc for $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{ClNO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$: 124.0524, found: 124.0522.
*The spectroscopic data does not allow unequivocal differentiation of 4' vs. 6'.
1.8.2. N-(2-chloroethyl)-piperidine N-oxide (3-chlorobenzoic acid salt) (8ca)

Prepared according to general procedure GP8. (Contains approx. 0.45 eq. excess m chlorobenzoic acid, based on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integrations of the aromatic signals.)
IR $\left(\mathrm{CHCl}_{3}\right): v=3005,2970,1700,1570,1430,1290,1265,940,905,850 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta_{H}=8.04\left(\mathrm{t},{ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=1.6 \mathrm{~Hz}, \mathrm{Ar} 2-\mathrm{H}\right), 7.93\left(\mathrm{dt},{ }^{3} J_{\mathrm{Ar} 6-}\right.$ H,Ar5-H $\left.=7.8 \mathrm{~Hz},{ }^{4} J_{\text {Arb-H,Ar2-H }}={ }^{4} J_{\text {Ar6-H,Ar4-H }}=1.6 \mathrm{~Hz}, \operatorname{Ar6}-\mathrm{H}\right)^{*}, 7.46\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=7.8\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}} \sim^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}} \sim 1.6 \mathrm{~Hz}, \mathrm{Ar} 4-\mathrm{H}\right)^{*}, 7.34\left(\mathrm{t},{ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=7.8 \mathrm{~Hz}\right.$, Ar5-H), 4.13-4.20 (m, 2- H_{2}), 4.05-4.12 (m, 1- H_{2}), 3.91-4.01 (m, 2H) and 3.23-3.39 (m, 2H) ($2^{\prime}-\mathrm{H}_{2}$ and $6^{\prime}-\mathrm{H}_{2}$, presumably splitted into axial and equatorial signals), 2.22-2.39 (m, 2H), $1.68-1.88(\mathrm{~m}, 3 \mathrm{H})$ and $1.41-1.61(\mathrm{~m}, 1 \mathrm{H})\left(3^{\prime}-\mathrm{H}_{2}, 4^{\prime}-\mathrm{H}_{2}, 5^{\prime}-\mathrm{H}_{2}\right.$, presumably respectively splitted into axial and equatorial signals); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta_{C}=169.8\left(\mathrm{CO}_{2} \mathrm{H}\right)$, 134.9, 134.3 (Ar-1, Ar-3), 132.1, 130.0, 129.5, 128.0 (Ar-2, Ar-4, Ar-5, Ar-6), 69.2 (C-1), 65.5 (C-2', C-6'), 36.1 (C-2), 21.7 and 21.0 (C-3', C-4', C-5'); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{ClNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$calc: 164,0837 ; found: 164.0829. *The spectroscopic data does not allow unequivocal differentiation of 4 ' vs. 6^{\prime}.

1.8.3. N-(2-chloroethyl)-pyrrolidine N-oxide (3-chlorobenzoic acid salt) (8da)

Prepared according to general procedure GP8. (Contains approx. 0.20 eq. excess m chlorobenzoic acid, based on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integrations of the aromatic signals.)
IR $\left(\mathrm{CHCl}_{3}\right): v=3015,2400,1700,1570,1455,1360,1305,1070,985,895 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=8.03\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=1.8 \mathrm{~Hz}, \mathrm{Ar} 2-\mathrm{H}\right), 7.92(\mathrm{dt}, 1 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=7.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}}={ }^{4} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}=1.3 \mathrm{~Hz}, \mathrm{Ar} 6-\mathrm{H}\right), 7.44\left(\mathrm{ddd}, 1 \mathrm{H},{ }^{2} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=\right.$ $\left.7.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}} \sim{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}} \sim 1.6 \mathrm{~Hz}, \mathrm{Ar} 4-\mathrm{H}\right), 7.32\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=7.8\right.$ $\mathrm{Hz}, \mathrm{Ar} 5-\mathrm{H}), 4.24-4.12\left(\mathrm{~m}, 6 \mathrm{H}, 1-\mathrm{H}_{2}, 2-\mathrm{H}_{2}, 2^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 3.46-3.32\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$, 2.56-2.44 (m, 2H, $3^{\prime}-\mathrm{H}^{-}$and $\left.4^{\prime}-\mathrm{H}\right), 2.17-2.06\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}\right.$ and $\left.4^{\prime}-\mathrm{H}\right) ;{ }^{13} \mathbf{C}^{\prime} \mathbf{- N M R}\left(\mathrm{CDCl}_{3}, 101\right.$ $\mathrm{MHz}): \delta_{C}=169.9\left(\mathrm{ArCO}_{2}\right), 135.6,134.2(\mathrm{Ar}-1, \mathrm{Ar}-3), 131.8,129.9,129.5,127.9$ (Ar-2, Ar-4, Ar-5, Ar-6), 68.2 (C-2', C-5'), 67.6 (C-1), 37.2 (C-2), 21.5 (C-3', C-4'); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=150.0680$, found: 150.0694; Anal. matches the hemihydrate of the expected salt, with the stoechiometry deduced from the NMR: calcd. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{ClNO} \cdot\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClO}_{2}\right)_{1.20} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.50}$: C 49.91%, H $5.53 \%, \mathrm{~N} 4.04 \%$, found $\mathrm{C} 49.77 \%, \mathrm{H}$ 5.51%, N 3.91%.

1.8.4. N-(2-chloro-2-cyclohexylethyl)pyrrolidine N-oxide, 3-chlorobenzoic acid salt (rac. 8db)

Prepared according to general procedure GP8. (Contains approx. 0.38 eq. excess m chlorobenzoic acid, based on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integrations of the aromatic signals.)
IR $\left(\mathrm{CHCl}_{3}\right): v=3000,2965,2875,1700,1570,1455,1430,1365,1290,1240,1145,1070$, $985,905 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=9.95(\mathrm{br} . \mathrm{s}, \mathrm{OH}), 8.04\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}=\right.$ $\left.{ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=1.6 \mathrm{~Hz}, \mathrm{Ar} 2-\mathrm{H}\right), 7.93\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=7.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}}={ }^{4} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}=\right.$ 1.6 Hz, Ar6-H), 7.46 (ddd, $1 \mathrm{H},{ }^{2} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=7.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}} \sim^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}} \sim 1.6 \mathrm{~Hz}$, Ar4H), $7.34\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=7.8 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H}\right), 4.90\left(\mathrm{dddd},{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{p}}}=8.4,{ }^{3} \mathrm{~J}=\right.$ $\left.8.1,{ }^{3} J=5.1,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}}=1.2,2-\mathrm{H}\right), 4.81\left(\mathrm{dd},{ }^{3} J_{1-\mathrm{H}_{\mathrm{a}}, 1-\mathrm{H}_{b}}=13.9,{ }^{3} J_{1-\mathrm{H}_{\mathrm{a}} 2-\mathrm{H}}=1.2,1-\mathrm{H}_{\mathrm{a}}\right), 4.53-4.45$ (m), 4.11-4.03 (m) and 3.46-3.36 (m) ($2^{\prime}-\mathrm{H}_{2}$ and $5^{\prime}-\mathrm{H}_{2}$, diastereotopic and splitted into axial and equatorial signals), 3.48 (dd, $\left.{ }^{3} J_{1-\mathrm{H}_{\mathrm{b}} 1-\mathrm{H}_{\mathrm{a}}}=13.9,{ }^{3} J_{1-\mathrm{H}_{\mathrm{b}}, 2-\mathrm{H}}=8.4,1-\mathrm{H}_{\mathrm{b}}\right), 2.55-2.42(\mathrm{~m})$ and 2.21-2.02 (m) ($3^{\prime}-\mathrm{H}_{2}$ and $4^{\prime}-\mathrm{H}_{2}$, diastereotopic and splitted into axial and equatorial signals), 1.93-1.75 (m, 3- H_{2}, diastereotopic), 1.55-1.42 (m, 4- H_{2}, diastereotopic), 1.40-1.21 (m, $5-\mathrm{H}_{2}$, diastereotopic), $0.85\left(\mathrm{t}, J_{6-\mathrm{H}_{3}, 5-\mathrm{H}_{2}}=7.3,6-\mathrm{H}_{3}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=169.9$ (ArCO_{2}), 135.2, 134.3 (Ar-1, Ar-3), 132.0, 130.0, 129.5, 128.0 (Ar-2, Ar-4, Ar-5, Ar-6), 73.1 (C-1), 69.5 and 67.1 (C-2', C-5'), 55.6 (C-2), 36.9 (C-3); 28.0, 22.3, 22.1 and 20.5 (C-4, C-5 and C-3'/C-4'), 13.9 (C-6); HRMS (ESI, pos., MeOH), calc for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{ClNO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$: 206.1306, found: 206.1309.

1.8.5. N-(2-chloro-2-cyclohexylethyl)pyrrolidine N-oxide, 3-chlorobenzoic acid salt (rac. 8dc)

Prepared according to general procedure GP8. (Contains approx. 0.45 eq. excess m chlorobenzoic acid, based on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integrations of the aromatic signals.)
IR $\left(\mathrm{CHCl}_{3}\right): v=3000,2935,2860,1700,1570,1450,1425,1360,1290,1240,1070,905 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=8.78$ (br. s, OH), $8.04\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} J_{\text {Ar2-H, Ar4-H }}={ }^{4} J_{\text {Ar2-H, Ar }-\mathrm{H}}=\right.$ $1.6 \mathrm{~Hz}, \mathrm{Ar} 2-\mathrm{H}), 7.94\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=7.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}}={ }^{4} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}=1.6 \mathrm{~Hz}, \mathrm{Ar} 6-\right.$ H), 7.46 (ddd, $\left.1 \mathrm{H},{ }^{2} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=7.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}} \sim{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}} \sim 1.6 \mathrm{~Hz}, \mathrm{Ar} 4-\mathrm{H}\right), 7.34$ (t , $\left.1 \mathrm{H},{ }^{2} J_{\text {Ar } 5-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{2} J_{\text {Ar } 5-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=7.8 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H}\right), 4.84\left(\mathrm{ddd},{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{0}}=7.8,{ }^{3} J_{2-\mathrm{H}, 1}{ }^{\prime}{ }^{-H}=3.1,{ }^{3} J_{2-}\right.$ $\left.{ }_{\mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}}=1.0,2-\mathrm{H}\right), 4.77\left(\mathrm{dd},{ }^{3} J_{1-\mathrm{H}_{3} 1-\mathrm{H}_{\mathrm{b}}}=13.9,{ }^{3} J_{1-\mathrm{H}_{3} 2-\mathrm{H}}=1.0,1-\mathrm{H}_{\mathrm{a}}\right), 4.59-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.07-$ $3.99(\mathrm{~m}, 1 \mathrm{H})$ and $3.45-3.34(\mathrm{~m}, 2 \mathrm{H})\left(2^{\prime}-\mathrm{H}_{2}\right.$ and $5^{\prime}-\mathrm{H}_{2}$, diastereotopic and splitted into axial and equatorial signals), 3.47 (dd, $\left.{ }^{3} J_{1-\mathrm{H}_{\mathrm{b}} 1-\mathrm{H}_{\mathrm{a}}}=13.9,{ }^{3} J_{1-\mathrm{H}_{\mathrm{b}}, 2-\mathrm{H}}=8.0,1-\mathrm{H}_{\mathrm{b}}\right), 2.56-2.41(\mathrm{~m}, 2 \mathrm{H})$ and 2.21-2.02 $(\mathrm{m}, 2 \mathrm{H})\left(3^{\prime}-\mathrm{H}_{2}\right.$ and $4^{\prime}-\mathrm{H}_{2}$, diastereotopic and splitted into axial and equatorial signals), 1.86-1.58 and 1.38-1.02 (m, $3^{\prime} / 44^{\prime}-\mathrm{H}_{2}, 2^{\prime \prime} / 6^{\prime}-\mathrm{H}_{2}, 3^{\prime \prime} / 5^{\prime}-\mathrm{H}_{2}, 4^{\prime \prime}-\mathrm{H}_{2}$); ${ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=169.9\left(\mathrm{ArCO}_{2}\right), 135.3,134.3(\mathrm{Ar}-1, \mathrm{Ar}-3), 132.0,130.0,129.5$, 127.9 (Ar-2, Ar-4, Ar-5, Ar-6), 72.2 (C-1), 69.5 and 67.0 (C-2', C-5'), 60.7 (C-2), 44.2 (C$1^{\prime \prime}$), 29.7, 27.4, 26.0, 26.0 and 25.8 (C-2'', C-3'', C-4'', C-5'', C-6''), 22.3 and 20.6 (C-3',

C-4'); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{ClNO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=232.1463$, found: 232.1472 .

Prepared according to general procedure GP8. (Contains approx. 0.25 eq. excess m chlorobenzoic acid, based on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integrations of the aromatic signals.)
IR $\left(\mathrm{CHCl}_{3}\right): v=3000,1700,1570,1495,1455,1430,1365,1290,1255,1145,1070,905 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=8.03\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=1.6 \mathrm{~Hz}, \mathrm{Ar} 2-\mathrm{H}\right)$, $7.92\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=7.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}}={ }^{4} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}=1.6 \mathrm{~Hz}, \mathrm{Ar} 6-\mathrm{H}\right), 7.45(\mathrm{ddd}, 1 \mathrm{H}$, $\left.{ }^{2} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=7.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}} \sim{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}} \sim 1.6 \mathrm{~Hz}, \mathrm{Ar} 4-\mathrm{H}\right), 7.33\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}=\right.$ $\left.{ }^{2} J_{\text {Ars-H,Ar6-H }}=7.8 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H}\right)$, 7.26-7.20 (m, 2''-H and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.20-7.14$ (3^{\prime} '-, $4^{\prime \prime}$ ' and $5^{\prime \prime}$-H), 4.90 (dddd, $\left.{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}}=9.1,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}}=8.0,{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}}=4.6,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}}=1.3,2-\mathrm{H}\right), 4.86\left(\mathrm{dd},{ }^{2} J_{1-}\right.$ $\left.\mathrm{H}_{2,1} 1-\mathrm{H}_{\mathrm{b}}=13.9,{ }^{3} J_{1-\mathrm{H}_{2}, 2-\mathrm{H}}=1.3,1-\mathrm{H}_{\mathrm{a}}\right), 4.51-4.39(\mathrm{~m}, 1 \mathrm{H})$ and 4.11-3.94 $(\mathrm{m}, 1 \mathrm{H})$ and 3.45-3.34 $(\mathrm{m}, 2 \mathrm{H})\left(2^{\prime}-\mathrm{H}_{2}\right.$ and $5^{\prime}-\mathrm{H}_{2}$, diastereotopic and presumably splitted into axial and equatorial signals), 3.52 (dd, ${ }^{2} J_{1-\mathrm{H}_{\mathrm{b}}, 1-\mathrm{H}_{\mathrm{a}}}=13.9,{ }^{3} J_{1-\mathrm{H}_{\mathrm{b}}, 2-\mathrm{H}}=8.0 \mathrm{~Hz}, 1-\mathrm{H}_{\mathrm{b}}$), 2.91 (ddd, ${ }^{2} J_{4-\mathrm{H}_{3}, 4-\mathrm{H}_{\mathrm{b}}}=13.8,{ }^{3} J_{4-}$ $\left.\mathrm{H}_{\mathrm{a}}, 3-\mathrm{H}_{\mathrm{a}}=9.9,{ }^{3} J_{4-\mathrm{H}_{3}, 3-\mathrm{H}_{\mathrm{b}}}=5.0 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.81\left(\mathrm{ddd},{ }^{2} J_{4-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{a}}}=13.8,{ }^{3} J_{4-\mathrm{H}_{\mathrm{b}}, 3-\mathrm{H}_{\mathrm{b}}}=9.5,{ }^{3} J_{4-\mathrm{H}_{\mathrm{b}}, 3-\mathrm{H}_{\mathrm{a}}}=\right.$ $\left.6.5 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{b}}\right), 2.55-2.42(\mathrm{~m}, 2 \mathrm{H})$ and 2.14-2.04 (m, 2H) $\left(3^{\prime}-\mathrm{H}_{2}, 4^{\prime}-\mathrm{H}_{2}\right.$, diastereotopic and presumably splitted into axial and equatorial signals), 2.25 (dddd, ${ }^{2} J_{3-\mathrm{H}_{4}, 3-\mathrm{H}_{b}}=13.9,{ }^{3} J_{3-\mathrm{H}_{4}, 4-\mathrm{H}_{4}}=$ $\left.9.9,{ }_{3}^{3} J_{-\mathrm{H}_{4} 4-\mathrm{H}_{\mathrm{b}}}=6.5 \mathrm{~Hz},{ }^{3} J_{3-\mathrm{H}_{\mathrm{a}}, 2-\mathrm{H}}=4.6 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{a}}\right), 2.15\left(\mathrm{dddd},{ }^{2} J_{3-\mathrm{H}_{\mathrm{b}}, 3-\mathrm{H}_{\mathrm{a}}}=13.9,{ }^{3} J_{3-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{b}}}=9.5\right.$, $\left.{ }^{3} J_{3-\mathrm{H}_{\mathrm{b}} 2-\mathrm{H}}=9.1,{ }^{3} J_{3-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{a}}}=5.4,3-\mathrm{H}_{\mathrm{b}}\right) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=170.0\left(\mathrm{ArCO}_{2}\right)$, 140.2 (C-1'’), 135.8, 134.2 (Ar-1, Ar-3), 131.7, 130.0, 129.4, 127.9 (Ar-2, Ar-4, Ar-5, Ar-6), 128.7 and 128.6 (C-2'/C-6" and C-3'/C-5''), 126.4 (C-4''), 73.0 (C-1), 69.5, 67.2 (C-2' and C-5', diastereotopic), 55.1 (C-2), 38.7 (C-4), 32.1 (C-3), 22.3, 20.6 (C-3' and C-4', diastereotopic); HRMS (ESI, pos., MeOH), calc for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ClNO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) m / z:$ 254.1306, found: 254.1304; as a minor peak beside $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}^{+}\left([\mathrm{M}-\mathrm{Cl}]^{+}\right) \mathrm{m} / \mathrm{z}: 218.1539$, found: 218.1549.

1.9. General procedure GP9: Enamine N-oxides by dehydrochlorination of β-chloroamine N-oxides

To a suspension of KOtBu (4 eq .) in THF (0.6 M), cooled with an ice-brine bath to $-5-0^{\circ} \mathrm{C}$, was added dropwise via syringe a solution of the m-chlorobenzoic acid salt of β-chloroamine N-oxide (obtained by GP8) in THF (0.2 M). The mixture was then stirred while being allowed to warm up to room temperature. After 7 to 12 h , consumption of the starting amine was complete as shown by TLC $\left(\mathrm{SiO}_{2}\right.$, Eluent $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}: 80 / 20$, staining with a $5 \mathrm{wt} . \%$ solution of 2,3,5-Triphenyltetrazolium chloride in $i \mathrm{PrOH}$). The THF was removed under reduced pressure. The resulting solid was triturated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (potassium chlorobenzoate is only sparingly soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and filtered over plug of Celite ${ }^{\circledR}$, or alternatively triturated in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(80 / 20)$ and filtered over a short plug of neutral alumina (potassium chlorobenzoate does not elute on alumina). Concentration under reduced pressure afforded the crude enamine N-oxide, which was further purified by flash chromatography (SiO_{2},
$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ from $95 / 5$ to $70 / 30$). This afforded enamine N-oxides as crystalline products, that rapidly became oily if exposed to atmospheric moisture. (In which case co-evaporation with CHCl_{3} at the rotary evaporator removed most residual MeOH and water and yielded a crystalline product again.) The highly hygroscopic nature of these compounds limits their suitability for combustion analysis. Typical yield: $55-65 \%$ based on the starting β chloroamine N-oxide salt.

1.9.1. N, N-Dimethylvinylamine N-oxide (1aa)

Prepared according to GP9, starting from $\mathrm{KOtBu}(6.72 \mathrm{~g}, 60.0 \mathrm{mmol}, 3 \mathrm{eq}$.) and $\mathbf{8 a a}(5.98 \mathrm{~g}$, 20.0 mmol). After 7h, work-up followed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ gradient from $90: 10$ to $70: 30$) and co-evaporation with CHCl_{3} at the rotary evaporator to remove excess MeOH afforded $\mathbf{1 a a}(1.06 \mathrm{~g})$ as a crystalline product. Yield: 60%.
(Described in literature ${ }^{[19]}$)
IR $\left(\mathrm{CHCl}_{3}\right): v=3660,3630,3205,2915,2500,1650,1455,1390,1360,1075,1040,1015$, $960,900 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=6.46\left(\mathrm{dd},{ }^{3} J_{1-\mathrm{H}, 2-\mathrm{Htrans}}=14.8 \mathrm{~Hz},{ }^{3} J_{1-\mathrm{H}, 2-\mathrm{Hcis}}=\right.$ $7.7 \mathrm{~Hz}, 1-\mathrm{H}$), $5.890\left(\mathrm{dd},{ }^{3} J_{2-\mathrm{Htrans}, 1-\mathrm{H}}=14.8 \mathrm{~Hz},{ }^{3} J_{2 \text { - } \mathrm{Htrans}, 2-\mathrm{Hcis}}=2.0 \mathrm{~Hz}, 2-\mathrm{Htrans}\right.$), 5.19 (dd, $\left.{ }^{3} J_{2 \text {-Hcis }, 1-\mathrm{H}}=7.7 \mathrm{~Hz},{ }^{3} J_{2 \text {-Hcis }, 2 \text {-Htrans }}=2.0 \mathrm{~Hz}, 2-\mathrm{Hcis}\right), 3.30\left(\mathrm{~s}, \mathrm{NMe}_{2}\right) ;{ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 101\right.$ $\mathrm{MHz}): \delta_{C}=148.1(\mathrm{C}-1), 107.8(\mathrm{C}-2), 60.0\left(\mathrm{NMe}_{2}\right) ;$ HRMS (EI, positive), calc for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}^{+\bullet}$ $\left([\mathrm{M}]^{+}\right) \mathrm{m} / \mathrm{z}: 87.0684$, found: 87.0679 .

1.9.2. N-Vinylpiperidine N-oxide (1ca)

Prepared according to GP9, starting from $\mathrm{KOtBu}(761 \mathrm{mg}, 6.80 \mathrm{mmol}, 4 \mathrm{eq}$.) and 8ca (662 $\mathrm{mg}, 1.70 \mathrm{mmol}$). After 7 h , work-up followed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ gradient from 90:10 to 70:30) and co-evaporation with CHCl_{3} at the rotary evaporator to remove excess MeOH afforded $\mathbf{1 c a}(133 \mathrm{mg})$ as a crystalline product. Yield: 62%.
IR $\left(\mathrm{CHCl}_{3}\right): v=2935,2500,1645,1445,1355,1265,1015,955,915 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $270 \mathrm{MHz}) \delta_{H}=6.37\left(\mathrm{dd},{ }^{3} J_{1-\mathrm{H}, 2-\mathrm{H} \text { trans }}=14.8 \mathrm{~Hz},{ }^{3} J_{1-\mathrm{H}, 2-\mathrm{Hcis}}=7.8 \mathrm{~Hz}, 1-\mathrm{H}\right), 5.98\left(\mathrm{dd},{ }^{3} J_{2-\mathrm{Htrans}, 1-}\right.$ $\left.\mathrm{H}=14.8 \mathrm{~Hz},{ }^{3} J_{2 \text {-Htrans }, 2 \text {-Hcis }}=1.5 \mathrm{~Hz}, 2-\mathrm{Htrans}\right), 5.21\left(\mathrm{dd},{ }^{3} J_{2-\mathrm{Hcis}, 1-\mathrm{H}}=7.8 \mathrm{~Hz},{ }^{3} J_{2-\mathrm{Hcis}, 2 \text { - } \mathrm{H} \text { trans }}=\right.$ $1.5 \mathrm{~Hz}, 2-\mathrm{Hcis}$), 3.25 (ddd, ${ }^{2} J_{2^{\prime} / 66^{\prime}-\mathrm{H}_{\mathrm{a} 2} 2^{2} / 6^{\prime}-\mathrm{H}_{\mathrm{eq}}}={ }^{3} J_{2^{2} / 6^{\prime}-\mathrm{H}_{\mathrm{ax}}, 3^{\prime} / 5^{\prime} \cdot \mathrm{H}_{\mathrm{ax}}}=11.2,{ }^{3} J_{2^{2} / 6} / 6^{\cdot} \mathrm{H}_{\mathrm{a} x}, 3^{\prime} / 5^{\prime}-\mathrm{H}_{\mathrm{eq}}=3.1,2^{\prime}-$ H_{ax} and $6^{\prime}-\mathrm{H}_{\mathrm{ax}}$), 3.18 (ddd, ${ }^{2} J_{2^{\prime} / 6^{\prime}-\mathrm{H}_{\mathrm{cq},} 2^{2} / 6^{\prime}-\mathrm{H}_{\mathrm{ax}}}=11.2,{ }^{3} J_{2^{\prime} / / 6^{\prime}-\mathrm{H}_{\mathrm{cq}, 3} 3^{3} / 5^{\prime}-\mathrm{H}_{\mathrm{ax}}}={ }^{3} J_{2^{\prime} / 6 / 6^{\prime}-\mathrm{H}_{\mathrm{c},}, 3^{\prime} / 5^{\prime} \cdot \mathrm{H}_{\mathrm{eq}}}=4.2,2^{\prime}-$

[^8]H_{eq} and $6^{\prime}-\mathrm{H}_{\mathrm{eq}}$), 2.42 (app. dddt, ${ }^{2} J_{3^{\prime} / 5^{\prime} \cdot \mathrm{H}_{\mathrm{a}} \times 3^{\prime} / 5^{\prime} \cdot \mathrm{H}_{\mathrm{eq}}}=14.5,{ }^{3} J_{3^{\prime} / 5^{\prime}-\mathrm{H}_{\mathrm{ax}}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}}=11.5,{ }^{3} J_{3^{\prime} / 5^{\prime} \cdot \mathrm{H}_{\mathrm{x} \times}, 2^{\prime} / 6^{\prime} \cdot \mathrm{H}_{\mathrm{ax}}}=$ $11.1,{ }^{3} J_{3^{\prime} / 5^{\prime}-\mathrm{H}_{\mathrm{ax}, 2^{\prime} / 6^{\prime}-\mathrm{H}_{\mathrm{cq}}}}={ }^{3} J_{3^{\prime} / 5^{\prime}-\mathrm{H}_{\mathrm{ax},} 4^{\prime}-\mathrm{H}_{\mathrm{cq}}}=3.9$, $3^{\prime}-\mathrm{H}_{\mathrm{ax}}$ and $5^{\prime}-\mathrm{H}_{\mathrm{ax}}$), 1.77 (app. dtt, ${ }^{2} J_{4^{\prime}-\mathrm{H}_{\mathrm{cq},}, 4^{\prime}-\mathrm{H}_{\mathrm{ax}}}=$ $13.4,{ }^{3} J_{4^{\prime}-\mathrm{H}_{\mathrm{cq} 9}, 3^{\prime} / 5^{\prime}-\mathrm{H}_{\mathrm{cq}}}^{=} 4.2,{ }^{3} J_{4^{\prime}-\mathrm{H}_{\mathrm{cc},}, 3^{\prime} / 5^{\prime}-\mathrm{H}_{\mathrm{ax}}}=3.9,4^{\prime}-\mathrm{H}_{\mathrm{eq}}$), 1.64 (app. dtt, ${ }^{2} J_{3^{3} / 5^{\prime} \cdot \mathrm{H}_{\mathrm{cq}}, 3^{\prime} / 5^{\prime}-\mathrm{H}_{\mathrm{ax}}}=14.5$,
 1.39 (app. dtt, $\left.{ }^{2} J_{4^{\prime}-\mathrm{H}_{\mathrm{ax}} 4^{\prime}-\mathrm{H}_{\mathrm{cq}}}=13.4,{ }^{3} J_{4^{\prime}-\mathrm{H}_{\mathrm{ax}}, 3^{\prime} / 5^{\prime} \cdot \mathrm{H}_{\mathrm{ax}}}=11.5,{ }^{3} J_{4^{\prime}-\mathrm{H}_{\mathrm{ax}} 3^{3} / 5^{\prime} / 5^{\prime}-\mathrm{H}_{\mathrm{cq}}}=3.9,4^{\prime}-\mathrm{H}_{\mathrm{ax}}\right) ;{ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta_{C}=148.3(\mathrm{C}-1), 108.8(\mathrm{C}-2), 66.6\left(\mathrm{C}-2^{\prime} / 6^{\prime}\right), 22.1\left(\mathrm{C}-4^{\prime}\right), 21.0\left(\mathrm{C}-3^{\prime} / 5^{\prime}\right) ;$ HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=128.1070$, found: 128.1067; Main peak is the homoconjugate dimer: calcd. for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\left([2 \times \mathrm{M}+\mathrm{H}]^{+}\right): \mathrm{m} / \mathrm{z}$ $=255.2067$, found: 250.2067 .

1.9.3. N-Vinylpyrrolidine N-oxide (1da)

Prepared according to GP9, starting from $\mathrm{KOtBu}(4.04 \mathrm{~g}, 36.0 \mathrm{mmol}, 3 \mathrm{eq}$.) and $8 \mathrm{da}(4.04 \mathrm{~g}$, $12.0 \mathrm{mmol})$. After 7 h , work-up followed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ gradient from 90:10 to 70:30) and co-evaporation with CHCl_{3} at the rotary evaporator to remove excess MeOH afforded $\mathbf{1 d a}(807 \mathrm{mg})$ as a crystalline product. Yield: 60%.
IR $\left(\mathrm{CHCl}_{3}\right): v=3200,2915,2500,1650,1455,1390,1360,1295,1075,1040,1015,960$, $900 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta_{H}=6.45\left(\mathrm{dd},{ }^{3} J_{1-\mathrm{H}, 2-\mathrm{Htrans}}=14.7 \mathrm{~Hz},{ }^{3} J_{1-\mathrm{H}, 2-\mathrm{Hcis}}=7.7\right.$ $\mathrm{Hz}, 1-\mathrm{H}$), 6.03 (dd, ${ }^{3} J_{2-\mathrm{Htrans}, 1-\mathrm{H}}=14.7 \mathrm{~Hz},{ }^{3} J_{2 \text {-Htrans, } 2 \text {-Hcis }}=1.5 \mathrm{~Hz}$, 2-Htrans), 5.26 (dd, ${ }^{3} J_{2 \text {-Hcis, } 1-}$ $\left.{ }_{\mathrm{H}}=7.7 \mathrm{~Hz},{ }^{3} J_{2 \text {-Hcis, } 2 \text {-Htrans }}=1.5 \mathrm{~Hz}, 2-\mathrm{Hcis}\right), 3.48-3.38(\mathrm{~m}, 4 \mathrm{H}), 2.65-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.00$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right): \delta_{C}=145.5(\mathrm{C}-1), 109.6(\mathrm{C}-2), 69.3\left(\mathrm{C}-2^{\prime} / 5^{\prime}\right), 22.0$ (C-3'/4'); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{\dagger}\right): m / z=136.0733$, found: 136.0739; Homoconjugate dimer is a much stronger peak: calcd. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$ ([2× $\left.\mathrm{M}+\mathrm{H}]^{+}\right): m / z=227.1754$, found: 227.1746.

1.9.4. N-(2-cyclohexylvinyl)pyrrolidine N-oxide (1db)

Prepared according to GP9, starting from $\mathrm{KO} t \mathrm{Bu}$ ($449 \mathrm{mg}, 4.00 \mathrm{mmol}, 4 \mathrm{eq}$.) and $\mathbf{8 d b}$ (422 $\mathrm{mg}, 1.00 \mathrm{mmol}$). After 7 h , work-up followed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ gradient from 90:10 to $80: 20$) afforded $\mathbf{1 d b}(98 \mathrm{mg})$ as an oil. Yield: 58%.
IR $\left(\mathrm{CHCl}_{3}\right): v=2960,2930,2875,1450,1260,950,920,910 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta_{H}=6.43\left(\mathrm{dt},{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}}=13.3,{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{2}}=7.3,2-\mathrm{H}\right), 6.11\left(\mathrm{dt},{ }^{3} J_{1-\mathrm{H}, 2-\mathrm{H}}=13.3,{ }^{4} J_{1-\mathrm{H}, 3-\mathrm{H}_{2}}=\right.$ $1.4,1-\mathrm{H}), 3.48-3.22\left(\mathrm{~m}, 2^{\prime}-/ 5^{\prime}-\mathrm{H}_{2}\right), 2.55-2.43(\mathrm{~m}, 2 \mathrm{H})$ and 2.03-1.93 (m, 2H) $\left(3^{\prime}-\mathrm{H}_{2}, 4^{\prime}-\mathrm{H}_{2}\right.$, splitted into axial and equatorial), 2.07 (td, ${ }^{3} J_{3-\mathrm{H}_{2}, 2-\mathrm{H}} \sim{ }^{3} J_{3-\mathrm{H}_{2}, 4-\mathrm{H}_{2}}=7.3,{ }^{4} J_{3-\mathrm{H}_{2}, 1-\mathrm{H}}=1.4,3-\mathrm{H}_{2}$),
1.41-1.33 (m, 2H) and 1.33-1.23 (m, 2H) $\left(4-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}_{2}\right), 0.84\left(\mathrm{t},{ }^{3} J_{6-\mathrm{H}_{3}, 5-\mathrm{H}_{2}}=7.2,6-\mathrm{H}_{3}\right) ;{ }^{13} \mathbf{C}-$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=138.7(\mathrm{C}-1), 126.6(\mathrm{C}-2), 69.7(\mathrm{C}-2$ ', $\mathrm{C}-5$ '), $30.9(\mathrm{C}-3), 28.5$ (C-4), 22.3 (C-5), 22.0 (C-3', C-4'), 13.9 (C-6); HRMS (ESI, pos., MeOH), calc for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) m / z: 170.1539$, found: 170.1552. Main peak: calc for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$ $\left([2 \times \mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}: 339.3006$, found: 339.3009.

1.9.5. N-(2-cyclohexylvinyl)pyrrolidine N-oxide (1dc)

Prepared according to GP9, starting from $\mathrm{KO} t \mathrm{Bu}$ (224 mg , 4 eq.) and 8dc ($229 \mathrm{mg}, 0.50$ mmol). After 7h, work-up followed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ gradient from 90:10 to 80:20) and co-evaporation with CHCl_{3} at the rotary evaporator to remove excess MeOH afforded $1 \mathbf{d c}(55.0 \mathrm{mg})$ as a crystalline product. Yield: 56%.
IR $\left(\mathrm{CHCl}_{3}\right): v=2960,2935,2870,1450,1265,950,915,905 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta_{H}=6.37\left(\mathrm{dt},{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}}=13.4,{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{2}}=7.2,2-\mathrm{H}\right), 6.06\left(\mathrm{dt},{ }^{3} J_{1-\mathrm{H}, 2-\mathrm{H}}=13.4,{ }^{4} J_{1-\mathrm{H}, 3-\mathrm{H}_{2}}=\right.$ $1.1,1-\mathrm{H}), 3.45-3.29\left(\mathrm{~m}, 2^{\prime}-/ 5^{\prime}-\mathrm{H}_{2}\right), 2.55-2.41(\mathrm{~m}, 2 \mathrm{H})$ and $2.10-1.92(\mathrm{~m}, 3 \mathrm{H})\left(3^{\prime}-\mathrm{H}_{2} / 4^{\prime}-\mathrm{H}_{2}\right.$, splitted into axial and equatorial, and 1 '' -H), $1.76-1.57(\mathrm{~m}, 5 \mathrm{H})$ and $1.30-1.02(\mathrm{~m}, 5 \mathrm{H})\left(2^{\prime \prime}\right.$ $\mathrm{H}_{2} / 6^{\prime}{ }^{\prime}-\mathrm{H}_{2}, 3^{\prime \prime}-\mathrm{H}_{2} / 5^{\prime}$ ' $\left.-\mathrm{H}_{2}, 4^{\prime}{ }^{\prime}-\mathrm{H}_{2}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=137.0(\mathrm{C}-1), 131.9(\mathrm{C}-$ 2), 69.5 (C-2', C-5'), 37.6 (C-1'), 32.5 (C-2"/C-6"), 25.9 (C-4'), 25.8 (C-3'//C-5''), 21.8 (C-3', C-4'); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=196.1696$, found: 196.1746main peak is $\left([2 \mathrm{M}+\mathrm{H}]^{+}\right)$: 391.3326).

1.9.6. N-(4-phenylbuten-1-yl)pyrrolidine N-oxide (1dd)

Prepared according to GP9, starting from KOt Bu ($10.0 \mathrm{~g}, 3$ eq.) and 8dd ($13.3 \mathrm{~g}, 28.8 \mathrm{mmol}$). After 7h, work-up followed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ gradient from $90: 10$ to $70: 30$) and co-evaporation with CHCl_{3} at the rotary evaporator to remove excess MeOH afforded afforded $\mathbf{1 d d}(3.91 \mathrm{~g})$ as a crystalline product. Yield: Yield: 67%.
IR $\left(\mathrm{CHCl}_{3}\right): v=2975,2465,1720,1680,1660,1625,1605,1560,1495,1455,1380,1265$, 1240, 1030, $945 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta_{H}=7.29-7.24\left(\mathrm{~m}, 2^{\prime \prime}-\mathrm{H} / 6\right.$ ' $\left.{ }^{\prime}-\mathrm{H}\right)$, 7.19$7.13\left(\mathrm{~m}, 3^{\prime}{ }^{\prime}-\mathrm{H} / 5^{\prime}{ }^{\prime}-\mathrm{H}\right.$ and $\left.4{ }^{\prime \prime}-\mathrm{H}\right), 6.49\left(\mathrm{dt},{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}}=13.3,{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}}=7.5,2-\mathrm{H}\right), 6.03\left(\mathrm{dt},{ }^{3} J_{1-\mathrm{H}, 2-}\right.$ $\left.{ }_{\mathrm{H}}=13.3,{ }^{4} J_{1-\mathrm{H}, 3-\mathrm{H}_{2}}=1.4,1-\mathrm{H}\right), 3.42-3.36(\mathrm{~m}, 2 \mathrm{H})$ and $3.29-3.22(\mathrm{~m}, 2 \mathrm{H})\left(2^{\prime}-/ 5^{\prime}-\mathrm{H}_{2}\right.$, splitted into axial and equatorial), $2.74\left(\mathrm{t},{ }^{3} J_{4-\mathrm{H}_{2}, 3-\mathrm{H}_{2}}=7.5,4-\mathrm{H}_{2}\right), 2.42\left(\mathrm{qd},{ }^{3} J_{3-\mathrm{H}_{2} 2-\mathrm{H}}={ }^{3} J_{3-\mathrm{H}_{2}, 4-\mathrm{H}_{2}}=7.5\right.$,
$\left.{ }^{4} J_{3-\mathrm{H}_{2}, 1-\mathrm{H}}=1.4,3-\mathrm{H}_{2}\right), 2.55-2.46(\mathrm{~m}, 2 \mathrm{H})$ and 2.01-1.92(m,3H) $\left(3^{\prime}-\mathrm{H}_{2} / 4^{\prime}-\mathrm{H}_{2}\right.$, splitted into axial and equatorial); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=140.9\left(\mathrm{C}-1{ }^{\prime}{ }^{\prime}\right), 139.4(\mathrm{C}-1), 128.5$ and 128.4 (C-2''/C-6" and C-3'"/C-5''), 126.2 (C-4''), 125.3 (C-2), 69.6 (C-2'/C-5'), 35.0 (C-4), 30.5 (C-3), 21.8 (C-3'/C-4'); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calc for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}: 218.1539$, found: 218.1556.

Crystal structure determination: The asymmetric unit of this structure contains four independent molecules, and their pseudosymmetric relationship leads to systematic weaknesses in the diffraction dataset. Two of the molecules exhibit disorder in their phenyl rings, while the other two molecules have disorder of their oxygen atoms (attached to N).

The phenyl ring disorder affects the $2,3,5,6$ positions and this was modelled by allowing elongated ellipsoids to model a torsional mode of disorder. A model which allowed up to three alternative sites for each affected atom shows no advantages. These ellipsoids lead to a number of checkCIF Alerts but these are consistent with the model being used.

The disorder of the two oxygen atoms O 21 and O 31 was modelled by using two alternative sites for each atom and then refining occupancies competitively. Similarity restraints were applied among the molecules and disorder components and the $\mathrm{N}-\mathrm{O}$ distances were restrained to be equal within $0.01 \AA$. The occupancies converged to around 0.5 . The final $\mathrm{N}-\mathrm{O}$ distances of around $1.39 \AA$ are close to values in the literature $(1.36 \pm 0.03 \AA$ for trimethylamine N -oxide). ${ }^{[20]}$

Figure 1. Crystal structure of $\mathbf{1 d d}$ at $150(2) \mathrm{K}$.

[^9]
1.9.7. cis-1-(2-chlorocyclohexyl)pyrrolidine N-oxide (1dx)

To a solution of $m \mathrm{CPBA}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~m}, 3.20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added the cis β-chloroamine cis-7dx ($100 \mathrm{mg}, 0.533 \mathrm{mmol}$). The mixture was stirred 8 h at room temperature, the concentrated in vacuo. The residual oil was dissolved in THF (5 mL) and added dropwise to a suspension of $\mathrm{KOtBu}\left(240 \mathrm{mg}, 2.13 \mathrm{mmol}, 4\right.$ eq.) in THF (5 mL) at $0^{\circ} \mathrm{C}$, then the reaction mixture was allowed to warm up to room temperature slowly and stirred for 7 h . The THF was removed under reduced pressure. The resulting gel was triturated in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ and filtered over plug of celite. Concentration under reduced pressure afforded the crude enamine N-oxide, which was further purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ from $95 / 5$ to $70 / 30$). This afforded the enamine N-oxide $\mathbf{1 d x}$ contaminated with approx. 1.70 eq. of 3 -chlorobenzoic acid as a clear, colourless oil (126 mg). Yield: 55% based on the starting β chloroamine.
(In an attempt to remove the 3-chlorobenzoic acid by chromatography on basic alumina, partial decomposition was observed leading to a mixture of enamine N-oxide 1dx with an other unidentified compound showing inter alia 2 signals in the olefinic regions of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-$ NMR spectra.) ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=8.04\left(\mathrm{t}, 1 \mathrm{H},{ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}}\right.$, Ar6-H $=1.8 \mathrm{~Hz}, \mathrm{Ar} 2-\mathrm{H}), 7.93\left(\mathrm{dt}, 1 \mathrm{H},{ }^{2} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=7.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}} \sim{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}} \sim 1.3 \mathrm{~Hz}\right.$, Ar6-H), 7.40 (ddd, $1 \mathrm{H},{ }^{2} J_{\text {Ar4-H,Ar5-H }}=7.8 \mathrm{~Hz},{ }^{3} J_{\text {Art-H,Ar6-H }} \sim{ }^{3} J_{\text {Art-H,Ar2-H }} \sim 1.6 \mathrm{~Hz}$, Ar4-H), 7.30 $\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar}-\mathrm{H}}=7.8 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H}\right), 6.34\left(\mathrm{tt},{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{2}}=4.1,{ }^{4} J_{2-\mathrm{H}, 6-\mathrm{H}_{2}}=1.2,2-\right.$ H), 4.34-4.26 (m), 3.49-3.39 (m) ($2^{\prime}-\mathrm{H}_{2}$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 2.65-2.51(\mathrm{~m}, 4 \mathrm{H})$ and 2.21-2.08 (m, 4H) $\left(2^{\prime}-\mathrm{H}_{2} / 5^{\prime}-\mathrm{H}_{2}, 6-\mathrm{H}_{2}\right.$ and $\left.3-\mathrm{H}_{2}\right), 1.85-1.70(\mathrm{~m}, 2 \mathrm{H})$ and $1.62-1.54(\mathrm{~m}, 2 \mathrm{H})\left(4-\mathrm{H}_{2}\right.$ and $\left.5-\mathrm{H}_{2}\right) ;{ }^{13} \mathbf{C}-$ NMR ($\left.\mathrm{CDCl}_{3}, 120 \mathrm{MHz}\right): \delta_{C}=170.3\left(\mathrm{ArCO}_{2}\right), 145.0(\mathrm{C}-1), 138.3,134.0(\mathrm{Ar}-1, \mathrm{Ar}-3), 131.0$, 129.9, 129.2, 127.8 (Ar-2, Ar-4, Ar-5, Ar-6), 121.1 (C-2), 65.8 (C-2', C-5'), 45.1 (C-6), 24.4, 22.6, 21.2 (C-3, C-4, C-5), 21.4 (C-3', C-4'); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calc for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}: 168.1383$, found: 168.1372.

1.10. General procedure GP10: Forced "Owari-type" rearrangement

1.10.1.2-(pyrrolidin-1-yloxy)ethyl 3-chlorobenzoate (12da)

To a solution of 8da ($2.53 \mathrm{~g}, 7.50 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(3.11 \mathrm{~g}, 22.5$ $\mathrm{mmol}, 3.0$ eq.). The suspension was stirred for 2 h at $50^{\circ} \mathrm{C}$. After cooling down to room temperature, the mixture was diluted with EtOAc (20 mL), filtered over Kieselguhr, and
concentrated under reduced pressure. The residual oil was purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=5: 1\right)$ to yield $12 \mathrm{da}(1.36 \mathrm{~g})$ as a yellow oil. Yield: 67%.
IR $\left(\mathrm{CHCl}_{3}\right): v=2955,2875,1715,1575,1455,1390,1365,1295,1130,1085,1075,900 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathbf{H}-N M R\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=8.03\left(\mathrm{t}, 1 \mathrm{H},{ }_{3}^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{4} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=1.8 \mathrm{~Hz}, \mathrm{Ar} 2-\mathrm{H}\right)$, $7.94\left(\mathrm{dt}, 1 \mathrm{H},{ }^{2} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=7.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}} \sim{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}} \sim 1.3 \mathrm{~Hz}, \operatorname{Ar} 6-\mathrm{H}\right), 7.52$ (ddd, 1 H , $\left.{ }^{2} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=7.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}} \sim{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}} \sim 1.6 \mathrm{~Hz}, \mathrm{Ar} 4-\mathrm{H}\right), 7.38\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}=\right.$ $\left.{ }^{2} J_{\text {Ars-H,Arb-H }}=7.8 \mathrm{~Hz}, \operatorname{Ar5-H}\right), 4.51\left(\mathrm{~m}, 2-\mathrm{H}_{2}\right), 3.99\left(\mathrm{~m}, 1-\mathrm{H}_{2}\right), 3.04-2.97\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}_{2}\right.$ and $\left.{ }^{\prime}-\mathrm{H}_{2}\right)$, 1.87-1.68 (br. s., $3^{\prime}-\mathrm{H}_{2}$ and $\left.4^{\prime}-\mathrm{H}_{2}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 120 \mathrm{MHz}\right): \delta_{C}=165.5\left(\mathrm{ArCO}_{2}\right), 134.6$, 132.1 (Ar-1, Ar-3), 133.1, 129.9, 129.8, 127.9 (Ar-2, Ar-4, Ar-5, Ar-6), 70.2 (C-2), 63.8 (C1), 57.0 (C-2', C-5'), 22.1 (C-3', C-4'); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClNO}_{3}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=270.0891$, found: 270.0890 ; Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClNO}_{3}$: C $57.89 \%, \mathrm{H}$ 5.98%, N 5.19%, found C 57.64%, H 5.94%, N 5.17%.

1.10.2.2-(diisobutylaminoxy)ethyl 3-chlorobenzoate (12ea)

To a solution of N -(2-chloroethyl)- N, N-diisobutylamine ($192 \mathrm{mg}, 1.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise a solution of dried $m \mathrm{CPBA}\left(0.2 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.5 \mathrm{~mL}, 1.1 \mathrm{eq}$.) at $0^{\circ} \mathrm{C}$. The mixture was stirred over night at room temperature and concentrated under vacuum to afford a mixture of β-chloroamine N-oxide and the corresponding Owari-rearrangement product 12ea. This mixture was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(415 \mathrm{mg}, 3 \mathrm{eq}$.) was added, and the resulting suspension and stirred for 2 h at room temperature, then concentrated in vacuo. Flash-chromatography of the resulting oil $\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=5: 1\right)$ afforded 12ea $(186 \mathrm{mg})$ as a yellow oil. Yield: 57\%.
IR $\left(\mathrm{CHCl}_{3}\right): v=2960,2930,2870,1720,1470,1430,1260,1135,1075 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}$ $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta_{H}=8.03\left(\mathrm{t},{ }^{3} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{3} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=1.5, \mathrm{Ar} 2-\mathrm{H}\right), 7.94\left(\mathrm{dt},{ }^{2} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}\right.$ $=8.0,{ }^{3} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}}={ }^{3} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}}=1.5$, Ar6-H), 7.53 (app ddd, ${ }^{2} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=8.0,{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}} \sim$ ${ }^{3} J_{\text {Ar4-H,Ar6-H }}=1.5$, Ar4-H), $7.38\left(\mathrm{t},{ }^{2} J_{\text {Ar5-H,Ar4-H }}={ }^{2} J_{\text {Ars-H,Ar6-H }}=8.0 \mathrm{~Hz}, \mathrm{Ar} 5-\mathrm{H}\right), 4.44\left(\mathrm{t},{ }^{3} J_{1-\mathrm{H}, 2-}\right.$ $\left.\mathrm{H}_{2}=4.9 \mathrm{~Hz}, 1-\mathrm{H}_{2}\right), 4.02\left(\mathrm{t},{ }^{3} J_{2-\mathrm{H}_{2}, 1-\mathrm{H}_{2}}=4.9 \mathrm{~Hz}, 2-\mathrm{H}_{2}\right), 2.45$ (br. d, $\left.{ }^{3} J_{1}{ }^{\prime}-\mathrm{H}_{2}, 2^{2}-\mathrm{H}=6.8 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}_{2}\right)$, 1.84 (apparent hept., $\left.{ }^{3} J_{2^{\prime}-\mathrm{H}, 2^{\prime}-\left(\mathrm{CH}_{3}\right)_{2}}={ }^{3} J_{2^{\prime}-\mathrm{H}, 1^{\prime}-\mathrm{H}}=6.8 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 0.94\left[\mathrm{~d},{ }^{3} J_{2^{\prime}-\mathrm{CH}_{3}, 2^{\prime}-\mathrm{H}}=6.8 \mathrm{~Hz}, 2^{\prime}-\right.$ $\left.\mathrm{CH}_{3}\right)_{4}$]; ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta_{C}=165.4\left(\mathrm{ArCO}_{2}\right), 134.6,132.0(\mathrm{C}-\mathrm{Ar} 1, \mathrm{C}-\mathrm{Ar} 3)$, 133.1, 130.0, 129.8, 127.9 (Ar-2, Ar-4, Ar-5, Ar-6), 70.8 (C-2), 67.6 (C-1'), 63.9 (C-1), 26.3 (C-2'), $21.1\left(2^{\prime}-\mathrm{CH}_{3}\right)$; HRMS (ESI, pos., $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$, calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{ClNO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=$ 328.1674, found: 328.1698.

1.10.3.1-chloro-4-phenyl-2-(pyrrolidin-1-yloxy)butane (11dd) and 4-phenyl-2-(pyrrolidin-1-yloxy)butyl 3-chlorobenzoate (12dd)

$\mathrm{CH}_{3} \mathrm{CN}, 40^{\circ} \mathrm{C}, 2 \mathrm{~h}$

To a solution of $\mathbf{8 d d}(225 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(7 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(207 \mathrm{mg}, 1.50$ $\mathrm{mmol}, 3.0$ eq.). The suspension was stirred for 2 h at $40^{\circ} \mathrm{C}$. After cooling down to room temperature, the mixture was diluted with EtOAc (10 mL), filtered over Kieselguhr, and concentrated under reduced pressure. The residual oil was purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=5: 1\right)$ to yield a first fraction of $11 \mathrm{dd}(12.5 \mathrm{mg} ; 10 \%)$ as a light brown oil (this sample was unstable. NMR after 1 day at room temperature showed significant decomposition to unidentified species. The main peak in ESI-MS was [M-Cl]+, expectably indicating that the opening of the 'Owari" oxazetidinium intermediate by chloride anions is a reversible process) and a second fraction of $\mathbf{1 2 d d}(109 \mathrm{mg} ; 58 \%)$ as a light brown oil.

11dd: ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta_{H}=7.32-7.26\left(\mathrm{~m}, 2^{\prime}{ }^{\prime}-\mathrm{H} / 6^{\prime}{ }^{\prime}-\mathrm{H}\right), 7.22-7.16\left(\mathrm{~m}, 3^{\prime \prime}-\mathrm{H} / 5^{\prime}{ }^{\prime}\right.$ H and $\left.4^{\prime \prime}-\mathrm{H}\right), 3.79\left(\mathrm{ddt},{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}}=8.3,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{a}}}=5.2,{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}}=4.5,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{o}}}=3.5,2-\mathrm{H}\right)$, $3.73\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{\mathrm{a}}, 1-\mathrm{H}_{\mathrm{b}}}=11.0,{ }^{3} J_{1-\mathrm{H}_{\mathrm{a}}, 2-\mathrm{H}}=5.2,1-\mathrm{H}_{\mathrm{a}}\right), 3.67\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{\mathrm{b}}, 1-\mathrm{H}_{\mathrm{a}}}=11.0,{ }^{3} J_{1-\mathrm{H}_{\mathrm{b}}, 2-\mathrm{H}}=3.5,1-\right.$ H_{b}), 3.05-2.91 (m, 2'- $\left.\mathrm{H}_{2} / 5^{\prime}-\mathrm{H}_{2}\right), 2.77\left(\mathrm{ddd},{ }^{2} J_{4-\mathrm{H}_{\mathrm{a}} 4-\mathrm{H}_{\mathrm{b}}}=13.9,{ }^{3} J_{4-\mathrm{H}_{3}, 3-\mathrm{H}_{\mathrm{a}}}=9.3,{ }^{3} J_{4-\mathrm{H}_{3}, 3-\mathrm{H}_{\mathrm{b}}}=5.8\right.$, 4$\mathrm{H}_{\mathrm{a}}$), 2.63 (ddd, $\left.{ }^{2} J_{4-\mathrm{H}_{\mathrm{b}}, 4-4 \mathrm{H}_{\mathrm{a}}}=13.9,{ }^{3} J_{4-\mathrm{H}_{\mathrm{b}}, 3-\mathrm{H}_{\mathrm{b}}}=9.5,{ }^{3} J_{4-\mathrm{H}_{\mathrm{b}}, 3-\mathrm{H}_{\mathrm{a}}}=7.0,4-\mathrm{H}_{\mathrm{b}}\right), 1.90\left(\mathrm{dddd},{ }^{2} J_{3-\mathrm{H}_{3}, 3-\mathrm{H}_{\mathrm{o}}}=\right.$ $14.2,{ }_{3}^{3} 3_{3-\mathrm{H}_{3} 4-\mathrm{H}_{\mathrm{a}}}=9.3, J_{3-\mathrm{H}_{2}, 4-\mathrm{H}_{\mathrm{b}}}=7.0,{ }^{3} J_{3-\mathrm{H}_{3} 2-\mathrm{H}}=4.5,3-\mathrm{H}_{\mathrm{a}}$), 1.86 (dddd, ${ }^{2} J_{3-\mathrm{H}_{0}, 3-\mathrm{H}_{\mathrm{a}}}=14.2,{ }_{3}{ }_{3-\mathrm{H}_{0}, 4-}$ $\left.\mathrm{H}_{\mathrm{b}}=9.5,{ }^{3} J_{3-\mathrm{H}_{\mathrm{b}}, 2-\mathrm{H}}=8.3,{ }^{3} J_{3-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{a}}}=5.8,3-\mathrm{H}_{\mathrm{b}}\right), 1.87-1.69\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}_{2} / 4{ }^{\prime}-\mathrm{H}_{2}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $68 \mathrm{MHz}): \delta_{C}=128.5\left(\mathrm{C}-2^{\prime \prime} / 6^{\prime \prime}, \mathrm{C}-3^{\prime \prime} / 5^{\prime \prime}\right), 126.0\left(\mathrm{C}-4{ }^{\prime \prime}\right), 80.0(\mathrm{C}-2), 57.4$ (broad, C-2'/C-5'), 46.2 (C-1), 32.7 (C-3), $31.9(\mathrm{C}-4), 22.1$ ($\left.\mathrm{C}-3^{\prime} / \mathrm{C}-4^{\prime}\right), \mathrm{C}-1^{\prime \prime}$ was not observed due to very poor signal/noise ratio; HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}^{+}\left([\mathrm{M}-\mathrm{Cl}]^{+}\right): m / z=$ 218.1539, found: 218.1552.

12dd: ${ }^{1} \mathbf{H - N M R}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta_{H}=8.02\left(\mathrm{t},{ }^{3} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{3} J_{\mathrm{Ar} 2-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=1.5, \mathrm{Ar} 2-\mathrm{H}\right), 7.92$ $\overline{\left(\mathrm{dt},{ }^{2} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=8.0,{ }^{3} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}}={ }^{3} J_{\mathrm{Ar} 6-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}}=1.5, \operatorname{Ar} 6-\mathrm{H}\right), 7.53\left(\mathrm{app} \mathrm{ddd},{ }^{2} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 5-\mathrm{H}}=\right.}$ $\left.8.0,{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 2-\mathrm{H}} \sim{ }^{3} J_{\mathrm{Ar} 4-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=1.5, \mathrm{Ar} 4-\mathrm{H}\right), 7.38\left(\mathrm{t},{ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar} 4-\mathrm{H}}={ }^{2} J_{\mathrm{Ar} 5-\mathrm{H}, \mathrm{Ar} 6-\mathrm{H}}=8.0 \mathrm{~Hz}\right.$, Ar5H), 7.32-7.26 (m, 2''-H/6"'H), 7.24-7.17 (m, 3''-H/5' -H and $\left.4{ }^{\prime}-\mathrm{H}\right), 4.51\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{3} 1-\mathrm{H}_{\mathrm{b}}}=\right.$ $\left.11.4,{ }^{3} J_{1-\mathrm{H}_{2}, 2-\mathrm{H}}=4.4,1-\mathrm{H}_{\mathrm{a}}\right), 4.40\left(\mathrm{dd},{ }^{2} J_{1-\mathrm{H}_{\mathrm{b}}, 1-\mathrm{H}_{\mathrm{a}}}=11.4,{ }^{3} J_{1-\mathrm{H}_{\mathrm{b}}, 2-\mathrm{H}}=4.9,1-\mathrm{H}_{\mathrm{b}}\right), 3.94\left(\mathrm{ddt},{ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{a}}}\right.$ $\left.=8.5,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{\mathrm{b}}}=4.9,{ }^{3} J_{2-\mathrm{H}, 1-\mathrm{H}_{a}}={ }^{3} J_{2-\mathrm{H}, 3-\mathrm{H}_{\mathrm{b}}}=4.4,2-\mathrm{H}\right), 3.05-2.94\left(\mathrm{~m}, 2^{\prime}-\mathrm{H}_{2} / 5{ }^{\prime}-\mathrm{H}_{2}\right), 2.83(\mathrm{ddd}$, $\left.{ }^{2} J_{4-\mathrm{H}_{4}, 4-\mathrm{H}_{\mathrm{b}}}=13.9,{ }^{3} J_{4-\mathrm{H}_{4}, 3-\mathrm{H}_{\mathrm{b}}}=9.8,{ }^{3} J_{4-\mathrm{H}_{3}, 3-\mathrm{H}_{\mathrm{a}}}=5.2,4-\mathrm{H}_{\mathrm{a}}\right), 2.69\left(\mathrm{ddd},{ }^{2} J_{4-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{a}}}=13.9,{ }^{3} J_{4-\mathrm{H}_{\mathrm{b}}, 3-\mathrm{H}_{\mathrm{a}}}=\right.$
$9.6,{ }^{3} J_{4-\mathrm{H}_{\mathrm{b}}, 3-\mathrm{H}_{\mathrm{b}}}=6.8,4-\mathrm{H}_{\mathrm{b}}$), 1.95 (dddd, ${ }^{2} J_{3-\mathrm{H}_{3}, 3-\mathrm{H}_{\mathrm{b}}}=14.2,{ }^{3} J_{3-\mathrm{H}_{3} 4-\mathrm{H}_{\mathrm{b}}}=9.6,{ }^{3} J_{3-\mathrm{H}_{\mathrm{a}} 2-\mathrm{H}}=8.5,{ }^{3} J_{3-\mathrm{H}_{3}, 4-}$ $\mathrm{H}_{\mathrm{a}}=5.2,3-\mathrm{H}_{\mathrm{a}}$), 1.87 (dddd, ${ }^{2} J_{3-\mathrm{H}_{\mathrm{b}}, 3-\mathrm{H}_{\mathrm{a}}}=14.2,{ }^{3} J_{3-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{a}}}=9.8,{ }^{3} J_{3-\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{\mathrm{b}}}=6.8,{ }^{3} J_{3-\mathrm{H}_{\mathrm{b}}, 2-\mathrm{H}}=4.4,3-$ $\left.\mathrm{H}_{\mathrm{b}}\right), 2.03-1.66\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}_{2} / 4^{\prime}-\mathrm{H}_{2}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta_{\mathrm{C}}=165.5\left(\mathrm{ArCO}_{2}\right), 141.9$ (C-1''), 134.7, 132.2 (Ar-1, Ar-3) ${ }^{\text {a }}$, 133.1 ($\left.\mathrm{Ar}-4\right)^{\mathrm{b}}, 129.8$ ($\left.\mathrm{Ar}-5, \mathrm{Ar}-2\right)^{\mathrm{b}}, 128.6$ (C-2'"/6', C$\left.3^{\prime \prime} / 5^{\prime \prime}\right)^{\mathrm{b}}, 127.9(\operatorname{Ar}-6)^{\mathrm{b}}, 126.1\left(\mathrm{C}-4^{\prime}\right)^{\mathrm{b}}, 78.6$ (C-2), $66.0(\mathrm{C}-1)^{\mathrm{b}}, 57.2$ (broad, C-2'/C-5 $)^{\mathrm{b}}$, $32.56(\mathrm{C}-3)^{\mathrm{b}}, 32.00(\mathrm{C}-4)^{\mathrm{b}}, 22.04\left(\mathrm{C}-3^{\prime} / \mathrm{C}-4^{\prime}\right)^{\mathrm{b}}$; HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClNO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): m / z=374.1517$, found: 374.1522.
${ }^{\text {a }}$ Assignment confirmed by HMBC crosspeaks - ${ }^{\text {b }}$ Assignment confirmed by HMQC crosspeaks

2. Other procedures

2.1.1. trans-1-benzyl-1-(2-hydroxycyclohexyl)pyrrolidinium chloride (rac. trans-13)

To a solution of aminoalcohol ($10 \mathrm{mmol}, 1.69 \mathrm{~g}$) in toluene (20 mL) was added benzyl chloride ($1.15 \mathrm{~mL}, 10 \mathrm{mmol}, 1 \mathrm{eq}$.). The mixture was refluxed for 12 h . After cooling to room temperature, the mixture was concentrated in vacuo and recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to yield the β-hydroxyammonium chloride ($1,71 \mathrm{~g}, 58 \%$) as white crystals.
IR $\left(\mathrm{CHCl}_{3}\right): v=3255,2940,1460,1220,1075,1000,775,710 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta_{H}=7.72-7.67(\mathrm{~m}, \mathrm{Bn}-2 / \mathrm{Bn}-6), 7.46-7.36(\mathrm{~m}, \mathrm{Bn}-3 / \mathrm{Bn}-5$ and $\mathrm{Bn}-4), 6.68\left(\mathrm{~d},{ }^{3} J_{1-\mathrm{OH}, 1-\mathrm{H}}\right.$ $=7.0,1-\mathrm{OH}), 5.14\left(\mathrm{~d},{ }^{2} J=12.7\right)$ and $4.56\left(\mathrm{~d},{ }^{2} J=12.7\right)\left(\mathrm{PhCH}_{2} \mathrm{~N}\right) ; 4.39-4.27(\mathrm{~m}), 4.13-4.00$ (m), 3.83-3.73 (m) and 3.65-3.54 (m) $\left(2^{\prime}-\mathrm{H}_{2}\right.$ and $5^{\prime}-\mathrm{H}_{2}$, diastereotopic and splitted into axial and equatorial signals), 4.26-4.16 (m, 2-H), 3.48-3.39 (m, 1-H), 2.25-1.99 (m, 3H), 1.95-1.77 $(\mathrm{m}, 2 \mathrm{H}), 1.76-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.12(\mathrm{~m}, 3 \mathrm{H})\left(3-\mathrm{H}_{2}, 4-\mathrm{H}_{2}, 5-\mathrm{H}_{2}, 6-\mathrm{H}_{2}, 3^{\prime}-\mathrm{H}_{2}\right.$ and $\left.4^{\prime}-\mathrm{H}_{2}\right) ;{ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{C}=133.2$ and $129.3(\mathrm{Bn}-2 / 6$ and $\mathrm{Bn}-3 / 5), 130.6(\mathrm{Bn}-4), 129.0$ (Bn-1), 78.8 (broad, C-1), 69.7 (C-2), 64.3 and 60.9 (C2' and C-5', diastereotopic), 60.5 $\left(\mathrm{PhCH}_{2} \mathrm{~N}\right), 36.5(\mathrm{C}-6), 27.5,25.6,24.2,22.9,21.6$ (C-3, C-4, C-5, C-3' and C-4'); HRMS (ESI, pos., $\mathrm{CH}_{3} \mathrm{CN}$), calc for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}^{+}\left([\mathrm{M}]^{+}\right) m / z: 260.2009$, found: 260.2020.
2.1.2. cis-1-(2-chlorocyclohexyl)pyrrolidine (rac.cis-7dx)

The starting β-hydroxyammonium chloride ($592 \mathrm{mg}, 2 \mathrm{mmol}$) was dissolved in CHCl_{3} (10 mL) and the solution was cooled with an ice-water bath. Thionyl chloride ($0.19 \mathrm{~mL}, 2.6$ eq.) was added dropwise. The mixture was stirred over night, then the excess thionyl chloride was destroyed by adding $\mathrm{MeOH}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 1 h , then volatiles were removed in vacuo. (NMR analysis at this point showed a complex mixture of products) The residual oil was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{~g})$ was added. The mixture was degassed by 2 cycles of vacuum $/ \mathrm{N}_{2}$-flushings, then Palladium on charcoal ($10 \% \mathrm{wt}$., $5 \mathrm{~mol}-\%, 106 \mathrm{mg}$) was added. The mixture was degassed again by 2 cycles of vacuum $/ \mathrm{N}_{2}$-flushings, then a ballon of hydrogen gas was fitted to the flask and the reaction was left to stir at room temperature over 12h. After filtration over celite, concentration in vacuo and flashchromatography ($\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=5: 1$), the cis β-chloroamine cis- $7 \mathbf{d x}$ was obtained $(112 \mathrm{mg})$ as a clear oil. Yield: 30\%.
IR $\left(\mathrm{CHCl}_{3}\right): v=3395,2940,2865,2780,1650,1445,1375,1355,1270,1215,1160,1130$, 885, $770 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{H}=4.45$ (br. s, 2-H), 2.70-2.52 $\left(2^{\prime}-\mathrm{H}_{2} / 5^{\prime}-\mathrm{H}_{2}\right)$, 2.15-2.01 ($\mathrm{m}, 1-\mathrm{H}$ and $3-\mathrm{H}_{\mathrm{a}}$), 1.91-1.60 $(\mathrm{m}, 9 \mathrm{H}), 1.54-1.41(\mathrm{~m}, 1 \mathrm{H})$ and 1.37-1.17 $(\mathrm{m}, 1 \mathrm{H})(3-$ $\left.\mathrm{H}_{\mathrm{b}}, 4-\mathrm{H}_{2}, 5-\mathrm{H}_{2}, 6-\mathrm{H}_{2}, 3^{\prime}-\mathrm{H}_{2}, 4^{\prime}-\mathrm{H}_{2}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta_{\mathrm{C}}=67.7(\mathrm{C}-2), 62.0(\mathrm{C}-$ 1), 51.7 (C-2'/C-5'), 33.5 (C-3), 23.3 (C-3'/C-4'), 26.1, 24.8, 19.6 (C-4, C-5, C-6); HRMS (ESI, pos., $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$, calc for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{ClN}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) m / z: 188.1201$, found: 188.1203.
[1] Still, W. C.; Kahn, M.; Mitra, A., J. Org. Chem. 1978, 43, 2923-2925.
[2] Gottlieb, H. E.; Kotlyar, V.; Nudelman, A., J. Org. Chem. 1997, 62, 7512-7515.
[3] Cosier, J.; Glazer, A. M., J. Appl. Crystallogr. 1986, 19, 105-107.
[4] Sheldrick, G. M., Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112-122.
[5] Spek, A. L., J. Appl. Crystallogr. 2003, 36, 7-13.
[6] Aggarwal, V. K.; Gültekin, Z.; Grainger, R. S.; Adams, H.; Spargo, P. L., J. Chem. Soc., Perkin Trans. 1 1998, 2771-2781.
[7] Woodward, S. in Transition metals in Organic Synthesis: A practical approach, Gibson, S. E., Ed., Oxford University Press: Oxford, 1997, p.
[8] Hickmott, P. W.; Wood, S.; Murray-Rust, P., J. Chem. Soc., Perkin Trans. 1 1985, 2033-2038.
[9] Speziale, A. J.; Hamm, P. C., J. Am. Chem. Soc. 1956, 78, 2556-2557.
[10] Bachman, G. B.; Szmant, H. H., J. Am. Chem. Soc. 1946, 68, 31-34.
[11] Dupre, D. J.; Elks, J.; Hems, B. A.; Speyer, K. N.; Evans, R. M., J. Chem. Soc. 1949, 500-510.
[12] Trapani, G.; Reho, A.; Latrofa, A., Synthesis 1983, 1013-1014.
[13] White, M. C.; Doyle, A. G.; Jacobsen, E. N., J. Am. Chem. Soc. 2001, 123, 7194-7195.
[14] Elings, J. A.; Downing, R. S.; Sheldon, R. A., Eur. J. Org. Chem. 1999, 4, 837-846.
[15] Mojtahedi, M. M.; Saidi, M. R.; Bolourtchian, M., J. Chem. Res., Synop. 1999, 2, 128129.
[16] Miyano, S.; Lu, L. D.-L.; Viti, S. M.; Sharpless, B. K., J. Org. Chem. 1985, 50, 43504360.
[17] Meguro, M.; Asao, N.; Yamamoto, Y., J. Chem. Soc., Perkin Trans. 1 1994, 25972601.
[18] Chakraborti, A. K.; Rudrawar, S.; Kondaskar, A., Org. Biomol. Chem. 2004, 2, 12771280.
[19] Krouwer, J. S.; Richmond, J. P., J. Org. Chem. 1978, 43, 2464-2466.
[20] Maia, E.; Peguy, A.; Perez, S., Acta Crystallogr., Sect. B: Struct. Sci. 1981, B37, 1858-1862.

[^0]: ${ }^{1}$ Still; Kahn; Mitra, J. Org. Chem. 1978, 43, 2923-2925.
 ${ }^{2}$ Gottlieb; Kotlyar; Nudelman, J. Org. Chem. 1997, 62, 7512-7515.
 ${ }^{3}$ Cosier; Glazer, J. Appl. Crystallogr. 1986, 19, 105-107.
 ${ }_{5}^{4}$ Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112-122.
 ${ }^{5}$ Spek, J. Appl. Crystallogr. 2003, 36, 7-13.
 ${ }^{6}$ Aggarwal; Gültekin; Grainger; Adams; Spargo, J. Chem. Soc., Perkin Trans. 1 1998, 2771-2781.
 ${ }^{7}$ Woodward in Transition metals in Organic Synthesis: A practical approach, Gibson, Ed., Oxford University Press: Oxford, 1997.

[^1]: ${ }^{8}$ Hickmott; Wood; Murray-Rust, J. Chem. Soc., Perkin Trans. 1 1985, 2033-2038.

[^2]: ${ }^{9}$ Speziale; Hamm, J. Am. Chem. Soc. 1956, 78, 2556-2557.

[^3]: ${ }^{10}$ Bachman; Szmant, J. Am. Chem. Soc. 1946, 68, 31-34.

[^4]: ${ }^{11}$ Dupre; Elks; Hems; Speyer; Evans, J. Chem. Soc. 1949, 500-510.
 ${ }^{12}$ Trapani; Reho; Latrofa, Synthesis 1983, 1013-1014.

[^5]: ${ }^{13}$ White; Doyle; Jacobsen, J. Am. Chem. Soc. 2001, 123, 7194-7195.
 ${ }_{15}^{14}$ Elings; Downing; Sheldon, Eur. J. Org. Chem. 1999, 4, 837-846.
 ${ }^{15}$ Mojtahedi; Saidi; Bolourtchian, J. Chem. Res., Synop. 1999, 2, 128-129.

[^6]: ${ }^{16}$ Miyano; Lu; Viti; Sharpless, J. Org. Chem. 1985, 50, 4350-4360.

[^7]: ${ }^{17}$ Meguro; Asao; Yamamoto, J. Chem. Soc., Perkin Trans. 1 1994, 2597-2601.
 ${ }^{18}$ Chakraborti; Rudrawar; Kondaskar, Org. Biomol. Chem. 2004, 2, 1277-1280.

[^8]: ${ }^{19}$ Krouwer; Richmond, J. Org. Chem. 1978, 43, 2464-2466.

[^9]: ${ }^{20}$ Maia; Peguy; Perez, Acta Crystallogr., Sect. B: Struct. Sci. 1981, B37, 1858-1862.

